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Abstract

This dissertation deals with the image-based approach to synthesize a virtual scene using

sparse images or a video sequence without the use of 3D models. In our scenario, a real dy-

namic or static scene is captured by a set of un-calibrated images from different viewpoints.

After automatically recovering the geometric transformations between these images, a series

of photo-realistic virtual views can be rendered and a virtual environment covered by these

several static cameras can be synthesized. This image-based approach has applications in ob-

ject recognition, object transfer, video synthesis and video compression. In this dissertation,

I have contributed to several sub-problems related to image based view synthesis.

Before image-based view synthesis can be performed, images need to be segmented into

individual objects. Assuming that a scene can approximately be described by multiple planar

regions, I have developed a robust and novel approach to automatically extract a set of affine

or projective transformations induced by these regions, correctly detect the occlusion pixels

over multiple consecutive frames, and accurately segment the scene into several motion layers.

First, a number of seed regions using correspondences in two frames are determined, and

the seed regions are expanded and outliers are rejected employing the graph cuts method

integrated with level set representation. Next, these initial regions are merged into several

initial layers according to the motion similarity. Third, the occlusion order constraints
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on multiple frames are explored, which guarantee that the occlusion area increases with

the temporal order in a short period and effectively maintains segmentation consistency

over multiple consecutive frames. Then the correct layer segmentation is obtained by using

a graph cuts algorithm, and the occlusions between the overlapping layers are explicitly

determined. Several experimental results are demonstrated to show that our approach is

effective and robust.

Recovering the geometrical transformations among images of a scene is a prerequisite

step for image-based view synthesis. I have developed a wide baseline matching algorithm

to identify the correspondences between two un-calibrated images, and to further determine

the geometric relationship between images, such as epipolar geometry or projective trans-

formation. In our approach, a set of salient features, edge-corners, are detected to provide

robust and consistent matching primitives. Then, based on the Singular Value Decomposi-

tion (SVD) of an affine matrix, we effectively quantize the search space into two independent

subspaces for rotation angle and scaling factor, and then we use a two-stage affine matching

algorithm to obtain robust matches between these two frames. The experimental results

on a number of wide baseline images strongly demonstrate that our matching method out-

performs the state-of-art algorithms even under the significant camera motion, illumination

variation, occlusion, and self-similarity.

Given the wide baseline matches among images I have developed a novel method for

Dynamic view morphing. Dynamic view morphing deals with the scenes containing moving

objects in presence of camera motion. The objects can be rigid or non-rigid, each of them
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can move in any orientation or direction. The proposed method can generate a series of con-

tinuous and physically accurate intermediate views from only two reference images without

any knowledge about 3D. The procedure consists of three steps: segmentation, morphing

and post-warping. Given a boundary connection constraint, the source and target scenes are

segmented into several layers for morphing. Based on the decomposition of affine transfor-

mation between corresponding points, we uniquely determine a physically correct path for

post-warping by the least distortion method. I have successfully generalized the dynamic

scene synthesis problem from the simple scene with only rotation to the dynamic scene

containing non-rigid objects. My method can handle dynamic rigid or non-rigid objects,

including complicated objects such as humans.

Finally, I have also developed a novel algorithm for tri-view morphing. This is an efficient

image-based method to navigate a scene based on only three wide-baseline un-calibrated im-

ages without the explicit use of a 3D model. After automatically recovering corresponding

points between each pair of images using our wide baseline matching method, an accurate

trifocal plane is extracted from the trifocal tensor implied in these three images. Next, em-

ploying a trinocular-stereo algorithm and barycentric blending technique, we generate an

arbitrary novel view to navigate the scene in a 2D space. Furthermore, after self-calibration

of the cameras, a 3D model can also be correctly augmented into this virtual environment

synthesized by the tri-view morphing algorithm. We have applied our view morphing frame-

work to several interesting applications: 4D video synthesis, automatic target recognition,

multi-view morphing.
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CHAPTER 1

INTRODUCTION

A camera can capture pictures of a real scene using a perspective projection, which is similar

to human eyes. In real world, human eyes can extract 3D information from the pictures

projected on the retina to perceive and understand the 3D world. In computer vision,

the task to recover 3D information of real scenes from 2D images is still an open problem

for researchers. Inversely, computer graphics begins with geometric models, textures and

illumination to generate a visual representation for the 3D world. Currently, there is a lot

of interest to combine computer graphics and computer vision, and use them in synergy to

solve a variety of problems between the two areas[55], such as:

• Dynamic image-based rendering or view interpolation.

• Virtual reality (VR) using image based rendering.

• Reconstruction of highly realistic 3D static models from calibrated or non-calibrated

image sequences.

• Building dynamic deformation models from real video sequence.
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• Model based tracking, registration, motion estimation.

In this thesis, we attempt to solve some of challenging problems at the confluence of

computer vision and computer graphics. Particularly, given a set of sparse uncalibrated

images, we want to generate a photo-realistic virtual scene, where the user can immerse and

navigate it. We consider that such scene can contain several rigid or non-rigid (articulated)

moving objects, where each of them can rotate around any axis or translate in any direction.

Employing computer vision techniques, the correspondences among multiple images are es-

timated and a novel view is further generated by using image based rendering technique. As

a result, a continuous and seamless transition over the original views can be obtained by 2D

warping of shapes and blending the colors without using 3D models.

1.1 MOTIVATION AND GOAL

Using geometry to reconstruct the 3D model from the images has been studied for a long

time in computer vision and computer graphics. Such approaches usually need a large num-

ber of views and tedious manual work. Another kind of approach is based on image based

rendering (IBR), which does not need a precise 3D model and avoids the tedious modeling

procedure. Using image warping and interpolation, we can also recover the transformation

and illumination variations of the scene from the images. IBR is broadly used to generate

virtual views to visualize and navigate within the synthesized environment. Instead of using

2



geometrical primitives (such as a polygon mesh) as in traditional graphics, these approaches

discover the geometrical relationships between multiple images based on perspective princi-

ples. Finally, ray-correspondences or point-correspondences are recovered to render a new

virtual view by a back-tracing projection or forward warping.

Most IBR methods are based on a plenoptic function, which represents ray properties of

a scene. Therefore, in order to record each ray from the scene, these approaches, such as

light fields [54], lumigraphs [31], panorama mosaics [79], and visual hulls [59], require a large

number of pictures for a static scene. Another limitation of the existing approaches is that

they require special markers in images for camera calibration [117, 59, 6, 31, 16, 54]. Some

of them even need an explicit 3D model or geometric proxy to trace ray correspondences [16,

6, 31], and others require an assumption about depth [79].

Another class of approaches for interpolating two reference images is called image mor-

phing and view morphing [102]. These approaches can transform a source view into a target

view, which can be categorized into three groups: shape blending [1, 90], feature-based mor-

phing [56, 11], and view morphing [23, 73, 105]. Compared with the ray tracing methods,

these approaches use relatively few images. However, since shape blending and feature-based

morphing usually cannot retain strict geometrical properties of the scene, they are mainly

used for images of different scenes (e.g. morphing of an elephant into a deer). View morph-

ing and view interpolation are based on perspective geometry principles, which can provide

more realistic results when blending the images of the same scene. Another drawback is that

all of these approaches can only be used to fill the gap between two views (i.e. navigation is
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limited to a straight line between two original views), therefore cannot be used to navigate

in a 2D virtual environment.

However, the ultimate goal in this thesis is to relax the assumptions made by the previous

IBR methods and get even better results with less input data and interactions. In particular,

we are interested to see:

• Can we determine corresponding feature points and the epipolar geometry over a pair

of images with different appearances?

• Can we perform accurate segmentation for a video sequence to extract 2.5D informa-

tion?

• Can we create a virtual environment by using only three uncalibrated wide-baseline

images?

• Can we generate a virtual moving video camera using the videos acquired by a few

fixed video cameras?

• Can we fill in the gaps in a dynamic scene based on only sparse still images?

• Can we morph the deformed objects in a scene only using two images? and what kind

of deformation we can handle?
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1.2 OUR APPROACH AND CONTRIBUTIONS

In this dissertation, we propose a novel technique to synthesize a series of virtual views for

a complicated 3D scene, where the objects may move or deform. Our input data are a set

of sparse images of the scene, which may be taken at the different locations, orientations,

and times. After acquiring the sparse images of the scene, the epipolar geometry among

the original cameras can be automatically determined by recovering corresponding feature

points between each image pair. Based on the initial projective relationship of the cameras,

the disparity or depth can be recovered using stereo-shading method. As a result, we can

generate an arbitrary novel view by interpolating the original images, and easily navigate

through the scene.

Our approach consists of the following key steps as the follows:

• Wide baseline matching:

In our input data set, the reference images are wide baseline images under significant

camera motions with illumination changes, occlusions, and self-similarities. We use

affine invariant features, edge-corners, as robust and consistent matching primitives.

Then, based on Singular Value Decomposition (SVD) of an affine matrix, a two-stage

affine matching algorithm is designed to obtain robust matches over two frames.

• Segmentation and compositing:
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For dynamic view synthesis, the moving objects have to be extracted from the reference

image into different layers. Each layer is assumed to have a different epipolar geometry

in all reference images.

• Morphing and interpolation:

After recovering epipolar geometry amongst the reference views, the original images

can be rectified by using projective geometrical transformation. Then, employing linear

interpolation of the rectified views, a novel view can be efficiently blended.

• Postwarping:

In order to recover a reasonable view position and orientation, we re-project the mor-

phing image to correct the warping path. Using the least distortion method, we can

uniquely determine an optimized postwarping path with the least shape distortion.

The main contributions of this work are:

• We have successfully solved the problem of how to obtain reliable corresponding points

over two wide baseline frames with fairly different appearances.

• We design an effective algorithm to obtain accurate layer segmentation from a video

sequence.

• We have successfully solved the dynamic view interpolation problem by combining the

least distortion method and boundary connection constraint.
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• We have developed a system to synthesize a virtual environment for navigation using

only sparse images.

• We present a novel approach to implement 4D video based on sparse static video

cameras.

Our approach can be also used in several other applications, such as filling a gap in a

movie, creating virtual views from static images, movie-making, compressing movie sequences

for fast transmission, and switching camera views from one to another.

1.3 DISSERTATION OVERVIEW

The dissertation is organized as follows. Chapter 2 discusses the related work. Chapter 3

presents a novel approach to recover robust corresponding points over two wide baseline

images. Chapter 4 provides another powerful tool to extract accurate layers from video se-

quences. Chapter 5 starts by analyzing simple dynamic view morphing for a rigid object with

translation and rotation respectively, and then explains how to combine the least distortion

method and the boundary connection constraint to obtain a reasonable postwarping. Chap-

ter 6 proposes a novel framework for tri-view morphing, 4D video synthesis, and multiple

view morphing. Chapter 7 summarizes this dissertation.
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CHAPTER 2

RELATED WORK

In this chapter, we will review the related approaches for matching, shape blending, view

interpolation, and object segmentation.

2.1 TRACKING AND MATCHING

A popular technique for small baseline motion tracking is to minimize the sum of squared

differences (SSD) of image intensities over two consecutive frames. However, SSD-based

frame-to-frame trackers can deal with translation motion only. Therefore, these trackers

may accumulate errors over time due to other geometric deformations, like rotation, scaling,

and shearing. Shi and Tomasi demonstrated that the use of an affine model can effectively

compensate the errors in video frames [85]. At the same time, they proposed a monitor to

evaluate the quality of the correspondences based on the image residuals. Following this di-

rection, Fusiello et al. presented a statistical approach to monitor and reject the outliers [29],

and Jin et al. explicitly used illumination information to improve the monitor [42].
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Shi and Tomasi [85] claimed that the affine model works very well when the image

warping includes scaling, shearing and small rotation, since all of them can be approximated

by using the linear expansion of brightness constancy equation. However, the affine model

fails to correctly track if a large rotation or a significant scaling between the two frames is

introduced.

Pritchett and Zisserman estimated reliable point correspondences based on local planar

homographies [87, 68]. These homographies were determined by parallelogram structures or

using motion pyramids. Based on these homographies, the matches can be increased by cross-

correlation at the sub-pixel level. However, the parallelograms may not be present in certain

images, or similar parallelograms may be repeated due to self-similar structure. Hence, it

is challenging to find the exactly corresponding structures between wide baseline frames.

Moreover, their method only recovers the homographies related to the parallelograms, and

misses some other important homographies implied in the frames.

Baumberg detected Harris features using the second moment matrix and scale space [5].

After obtaining affine texture invariant corners, a Mahalanobis distance metric was used

to measure similarity between the two feature vectors. Similarly, Tuytelaars and Van Gool

extracted affine invariant regions based on a combination of corners and edges, then matched

these features using color moments [91]. Brown and Lowe proposed to use groups of interest

points to form geometrically invariant descriptors of image regions [9]. Mikolajczyk and

Schmid presented recent work on an affine invariant interest point detector [61, 60]. Since

they used multi-scale space to determine feature points, their method worked very well for

9



the significant scaling case (homography case). However, their corner descriptors employing

high order derivatives cannot fully recover non-linear rotation transformations implied in

the affine matrix. For instance, they failed to get correct matches for the “House” sequence

frames when the view angle changed significantly (3D case). Ferrari et al. [28] used multiple

color images as input to extract the pairwise correspondences. In their method, they also

noticed that an affine decomposition is helpful to determine the correspondences over wide

baseline images as in our work [107].

2.2 SHAPE BLENDING AND FEATURE BASED

MORPHING

Shape blending is an important topic in computer graphics. Given source and target shapes

referred to as key shapes, shape blending algorithms can determine a smooth transformation

between the key shapes, and generate a series of in-between shape sequence.

Sederberg and Greenwood [77] used a physical mode to establish correspondences between

two polygonal shapes. Their method constructed the contour of an object by connected wires.

Using the relationship among the polygon angles, they presented an algorithm to search the

global minimum work solution by means of a directed graph. The drawback of their method

is that it is difficult to specify the values of the parameters of work function in order to achieve

the desired result. Based on this method, Sederberg et al. [78] proposed an intrinsic solution
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to 2-D shape blending by interpolating shape with boundary vertices. Their approach can

avoid the shrinkage that normally occurs when a rigid object is rotating. Shapira and

Rappoport [82] extended this concept by introducing the internal shape represented by star-

skeleton. They modeled the interior of the shape using a star-skeleton scheme. Using this

method, the shape and area of the in-between polygons can be controlled better than previous

approaches.

Cohen et al. [17] used piecewise curve to fit the boundary with the least square, and

then used dynamic programming to optimize the curve matching in the parameter space.

Their method established the correspondences by maximizing the sum of the inner prod-

ucts between tangent vectors at the points on the source and target shapes. However, if

the orientations of the shapes are different, the method cannot give a correct solution. Tal

and Elber [90] extended this approach and used Bspline curves matching to determine the

boundary correspondences, and then established compatible triangulation for two shapes.

Based on triangulation, they applied texture mapping on each shape. Since the compati-

ble triangulation heavily relied on the boundary points, the internal shape may have large

distortion during transformation, even though they tried to use interior hole to improve it.

Recently, Alexa et al. [1] proposed another approach to construct isomorphic triangular

meshes using boundary vertex correspondences, and then to interpolate the two images by

both boundary and interior vertices. Their approach obtained as rigid as possible shape

interpolation by the least distortion method. However, the interior vertices are generated

by a compatible triangulation, and they did not guarantee that the corresponding interior
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points come from the same source point. Therefore, the distortion in the internal area is still

difficult to avoid.

All of the above methods are 2D based image morphing methods. They attempt to

prevent shape bleeding and make the in-between shapes retain their original appearance as

much as possible. These methods are useful and powerful when the two objects are different

and the goal is to obtain a smooth transformation between the key frames. However, if the

two reference frames come from the same source, these approaches cannot preserve 3D shape

information implied in the images.

In order to obtain high quality image sequence blended from reference images, the inte-

rior features (landmarks) of the objects are as important as boundary information. If the

corresponding features can be extracted correctly from the images, the in-between image

sequence can be generated realistically.

In [102], the meshing warping was introduced. This approach is simple and intuitive,

where the objects are covered by a nonuniform mesh to specify the coordinates of control

points and landmarks. Both meshes have the same topology, the intermediate mesh is

linearly interpolated from the two meshes. Beier and Neely [11] introduced a field morphing

technique to improve 2D mesh warping. In their method, a uniform 2D mesh is mapped on

the objects in the reference images respectively. Rather than requiring all the corresponding

features, only line pairs and key feature points were manually marked on each mesh. They

utilized the continuity of mesh to control image warping based on fields of influence. The

drawback of their approach is that an unexpected distortion or ghost may be produced.
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Lee et al. [52] introduced snakes to determine the landmarks semi-automatically. Using

snakes, the salient edges can be refined, and the features can be located more precisely than

previous methods. Lee applied multilevel free-form deformation (MFFD) across a hierarchy

of control lattices to generate one-to-one and C2-continuous warp function.

Johan et al. [43] extended the work of Sederbeg [77] and Cohen [17] to feature based

morphing. Their method established a cost function based on the angle and parameter

costs. By minimizing the cost function, an optimized curve matching is obtained. In their

method, a dependency graph was constructed for representing the relationship among the

feature curves. Based on the directed dependency graph, the intermediate feature curves

were generated. In the morphing step, they used field morphing technique to implement the

image warping function.

For morphing two different objects, feature based morphing can carry more information

including inside and boundary landmarks, and shape blending only use the boundary points.

If the objects are from the same source, the corresponding features may implicitly contain

some 3D information, even though this may not satisfy epipolar constraints, such as funda-

mental matrix. Therefore, this group of methods usually can obtain better appearance and

effect than the previous ones.
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2.3 VIEW MORPHING

View morphing is a different approach based on the principles of projective geometry, which

can explicitly preserve 3D information by employing the fundamental matrix.
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Figure 2.1: The real world point P is projected respectively at p1,p2 on projection plane of

camera C1 and C2, where e1 and e2 are the epipoles of the cameras.

Considering two images of an object taken from different view points, the correspond-

ing points in the two images come from the same 3D point in the real world as shown in

Figure 2.1. The relationship between two images can be represented by Equation 2.1.

pT
1 Fp2 = 0, (2.1)

where p1 and p2 are corresponding points in reference images, F is the fundamental matrix,

which can be computed by linear or nonlinear algorithms [41, 95, 34].
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Based on the fundamental matrix, Seitz and Dyer introduced the approach to rectify the

reference images to parallel views, and then linearly blended the corresponding points on

each scanline [71, 73, 72]. This method can effectively synthesize a physically correct view

from two static views. However, they did not consider the partial occlusion case.

Manning and Dyer extended this approach to dynamic view morphing [57]. In their

dynamic scenario, the objects were restricted to be rigid and could only have translate

motion. By separating the objects into different layers, they computed the fundamental

matrix for each layer and applied the static view morphing algorithm to blend the objects.

Welxer and Shashua presented another approach to use more than two images to in-

terpolate a new view. They assumed that a rigid object can move along a straight line

path [103]. In their method, the dense correspondence was assumed to be known using cross

correlation. Based on this assumption, they not only interpolated the original views, but

also extrapolated them to get new views for the extra time steps by dual Htensor, which

connects together three views of a coplanar configuration of static and moving points.

For view morphing, we do not need to recover internal and external parameters of the

camera from images. Images are directly aligned based on the fundamental matrix. The

most important advantage of view morphing is that it can reflect the physical change of the

scene accurately without 3D knowledge of the scene.

How to compute the postwarping path is still an ill-posed problem. In Seitzs’ method, the

path is approximated by the linear interpolation of four control points [75], which is correct

only for the translation case with a dominated plane. If the object has a large rotational
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motion, the shape cannot be maintained and the distortion will be intolerable. The reason

is that the depth can be recovered implicitly by interpolating in the translation case, but

cannot be recovered in the rotation case.

2.4 MULTI-VIEW SYNTHESIS

Avidan and Shashua proposed their work on tri-view synthesis by using trifocal tensor [83].

They generated an arbitrary novel view for any 3D view position based on three small base-

line images, where the disparity can easily be determined by the Lucas-Kanade optical-flow

method. It will be almost impossible for the Lucas-Kanade method to work for the wide

baseline images. Since they did not describe the warping function among these three images,

they could only demonstrate the novel view synthesis between two images, where their third

image was specified as the same as the second one. Maurizio Pilu et. al. determined edge

correspondences and used interpolation to generate a new view over trinocular images [67].

However, since they cannot guarantee that the edge correspondences are correct, their dis-

parity map was computed using the conventional edge-scanline algorithm, which is not clean.

Therefore, their results encountered a lot of artifacts due to some incorrect correspondences.

Pollefeys and Van Gool combined 3D reconstruction and IBR to render a new view using

a sequence of images [64, 65]. They first determined the relative motion between consecutive

images, and then recovered the structure of the scene. Next, employing unstructured light

field rendering, they generated a virtual view by using view-dependent texture. With the
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help of the image sequences (small baseline), they estimated dense surface of the scene more

accurately, which can efficiently improve the visual effect of their results. However, they

could only reproduce one visualization trajectory, which was followed by the operator during

the image capturing.

Recently, Zhang et al. proposed to use feature-based morphing with light fields to obtain

realistic 3D morphing [117]. In their approach, a large number of images (hundreds of pic-

tures) were taken for each object using an array of calibrated cameras. Then, several feature

polygons were manually determined employing a user interface. Using the corresponding

feature polygons, they generated a 4D lighting field and grouped the corresponding ray bun-

dles for reference images. Finally, a novel view was synthesized using blending and warping

functions on reference images.

2.5 SEGMENTATION

Before performing view interpolation, we first need to segment the image into several layers,

such that each layer only includes one rigid object, even though there may be apparent

deformation at the joints between the parts.

Segmentation is a fundamental topic in computer vision. There are an abundance of

segmentation methods, which can be classified as follows:
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2.5.1 SINGLE IMAGE SEGMENTATION

Given a single image, segmentation is to group similar pixels and form a set of uniform,

piecewise regions. A simple approach is to use thresholds and histograms to detect the

histogram peaks. A good peak can be considered as a candidate of region, which can be

segmented by threshold at the valleys between peaks. This is followed by a connected

component algorithm to determine the different regions. The approach can be refined by

using information of the region’s shape and semantics.

Another kind of approach is to perform segmentation based on shape, where the image is

broken into disjoint regions based on contour with or without color information [58, 12]. In

these methods, a good edge detection or contour analysis should be provided as preliminary

information. Medioni introduced a method using tensor voting to detect the saliency of the

shape [58]. In their method, sparse tokens are encoded into tensor tokens, and a saliency

tensor field is obtained after tensor votings. The saliency tensor field can provide the shape

information, which is extracted by using feature extraction process. Based on the contour

information, the shape can be divided into several pieces by edges and corners based on the

semantics of the region [114].

Recently, two filter-based approach are proposed: one is the bilateral filter [93], the other

is the mean-shift filter [18, 20, 21, 22]. In these approaches, a non-linear filter is designed

to make a large influence on the pixel when its neighboring pixels are similar to it. Then a

group method can be used to partition this smoothed image.
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In computer vision area, the most popular methods for image segmentation and restora-

tion are level set [76, 63, 89] and graph cut methods [7, 14, 81]. In these methods, after

given the layer number for the image, an energy function is constructed and minimized to

assign the pixels into a proper layer label. In the two-label case, these methods can achieved

a global solution. For the multi-label case, an approximate global solution can be obtained.

2.5.2 MOTION SEGMENTATION

Automatic extraction of layers from a video sequence has broad applications, such as video

compression and coding, recognition, synthesis, registration [112], and completion [119, 118].

In an earlier work, Wang and Adelson proposed the use of optical flow to estimate the motion

layers, where each layer corresponds to a smooth motion field [99]. Ayer and Sawhney com-

bined Minimum Description Length (MDL) and Maximum-Likelihood Estimation (MLE)

in Expectation-Maximization (EM) framework to estimate the number of layers and the

motion model parameters for each layer [4]. Several other approaches used Maximum A-

Posteriori (MAP) or MLE for estimation of model parameters assuming different constraints

and motion models [66, 94, 48, 116, 101, 74]. Khan and Shah [48] employed MAP framework

combining with multiple cues, like spatial location, color, and motion, for segmentation.

Smith et. al. [74] integrated the edge information in an EM algorithm to segment the video

into regions along the edges. Gaucher and Medioni [33] presented using dense tensor field to

detect the discontinuities of motion.
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Another class of motion segmentation approaches is to group the pixels in a region by

using linear subspace constraints. In [47, 46, 45], Ke and Kanade first expanded the seed

regions into the initial layers by using k-connected components. After enforcing a low di-

mensional linear affine subspace constraint on multiple frames, they clustered these initial

layers into several groups, and then assigned the image pixels to these layers. Zelnik-Manor

and Irani also used the homography subspace for planar scenes to extract a specific layer

and to register the images based on this layer [115].

In motion segmentation area, only few researchers have tried to formulate the occlusion

problem between overlapping layers. Giaccone and Jones proposed to use four-label system,

“background, uncovered, covered and foreground”, to label image pixels [32]. The uncovered

and covered pixels correspond to occluded or reappeared respectively between two frames.

However, they only restricted their framework to two-layer (foreground and background)

sequences, and the segmentation results were not piecewisely smooth. Based on the obser-

vation that the segmentation boundary is usually not accurate due to the occlusion, Bergen

and Meyer proposed to use motion estimation error to estimate the depth order and refine

the segmentation boundary, where no occlusion pixel was identified [10]. Compared with

the previous work, our approach clearly formulates the occlusion problem into graph cut

framework, and also explicitly identifies the occluded pixels for the scene which contains

multiple layers.

Beyond the 2D motion segmentation, multi-body or 3D motion segmentation is another

interesting topic in computer vision [27, 19]. In this area, the layer clustering is based
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on 3D geometry information, such as fundamental matrix [92, 98] and trifocal tensors [97,

40]. Currently, the 3D segmentation is mainly focused on sparse point segmentation and

clustering, the dense segmentation of 3D scene is an active research area.
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CHAPTER 3

WIDE BASELINE MATCHING

Tracking feature points is a basic computer vision problem. Currently, the tracking tech-

niques over small baseline frames, such as a video sequence, are fully developed [25, 85]. In

these methods, some matches are automatically detected over an image sequence, and then

the outliers are discarded by a corner monitor or a similar rejection criteria. The epipolar

geometry between two successive frames are then robustly determined. Once epipolar ge-

ometry is available, stereo matching technique can recover disparity, motion, or determine

other structure feature correspondences such as lines or curves.

However, a number of interesting applications need to obtain reliable corresponding fea-

tures over a wide baseline, such as view morphing [73] and reconstruction from multiple

images [84, 41, 26]. In these applications, the external and internal parameters between

any two views are significantly different, and illumination may also be significantly different.

Therefore, the corresponding features in two wide baseline frames cannot be determined

effectively using the traditional matching or tracking methods due to the large geometric

transformation and illumination changes. Figure 3.1 shows two sequences of wide baseline
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frames at different viewing angles. Even though point correspondences between consecutive

frames (e.g. frame 0 and 1) may be easily determined, it is a challenging problem to fully

and automatically recover correspondences between non-consecutive frames (e.g. frame 0

and 6). This is the focus of this chapter.

In this chapter, we present a new approach to obtain a number of reliable corresponding

points. First, an edge-corner detector is used to determine affine invariant edge-corners.

These corners are located at the intersection of two or more edges. Second, after decomposing

the affine matrix, we found that the affine matching space between two corners can be

approximately divided into two independent spaces by rotation angle and scaling factor. We

use a two-stage affine matching algorithm to obtain robust matches over these two frames

to recover the geometric transformation and illumination changes between corresponding

points. In the first stage, we explicitly search these two spaces to obtain a good initial

estimate using the gradient descent minimization. In the second stage, the residue between

two corners can be minimized by using Newton-Raphson iteration from this initial estimate.

Third, we use the robust fundamental matrix estimation [113, 26, 41] to eliminate the outliers

and estimate the initial epipolar geometry. Fourth, using the initial epipolar geometry

constraint and the common motion constraint, we increase and refine the matches in the

images, which can efficiently eliminate false matches due to the self-similarities. Finally, we

reestimate the fundamental matrix and get more robust corresponding points, and generate

a series of virtual views to synthesize a 3D virtual scene by employing image based rendering

techniques.
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Figure 3.1: Wide baseline frames. Top: the “House” sequence from Oxford University are

3D views. Bottom: the “Graffiti-6” sequence from INRIA are planar views (Homography).

The corresponding viewing angle is indicated below each image.

Section 3.1 introduces edge-corners and describes how to determine edge-corners using

a local Hough transform. Section 3.2 gives a complete mathematical analysis for affine in-

variant corner matching, then shows how to get the reliable matches using our two-stage

matching method based on SVD of the affine matrix. Section 3.3 illustrates how to use the

initial epipolar geometry and common motion constraint to increase and refine the corre-

spondences. Finally, in Section 3.4, we demonstrate several results obtained by our approach,

and show that using our corresponding points and the estimated epipolar geometry, we can

efficiently synthesize a 3D virtual scene from two wide baseline images.
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Figure 3.2: The red pixel ‘×’ is an edge pixel (a) or a pixel neighboring edge pixels (b). It

is located at the origin of a n × n window (n is chosen from 20 ∼ 30). The edge passing

through the origin can be quickly detected.

3.1 EDGE-CORNERS

A corner is a useful feature for motion correspondence and stereo matching. The common

Harris corner detector uses a corner operator,

C =
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, (3.1)

over a window around a pixel, where C is the second moment matrix. This operator detects

points where the image gradients, Ix and Iy, change significantly along the horizontal and

vertical directions.
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Rangarajan, et. al. defined a corner as the junction of two or more straight line edges, and

determined an optimal function to detect the corner [69]. Smith and Brady used non-linear

filtering to obtain a fast, noise resistant corner over an image [70]. Recently, Shen and Wang

used a modified Hough transform to dynamically detect edges and corners [86]. They used a

new dynamic edge detector to simplify line detection and avoid rounding problems in a local

window. However, the edge detector is not robust when it is applied to real images. In our

experiments, we found that the existing corner detectors usually do not provide consistent

and reliable results when the motion gap between two frames is large.

In order to obtain a consistent and affine invariant corner over a wide baseline gap, we

combine the Canny edge detector, the local Hough transform, and the Harris corner operator

together to design a new matching primitive, the edge-corner. One important property of

an edge-corner is that the corner is guaranteed to be located at the intersection of multiple

edges. Since the intersection of edges is projected as an edge intersection under perspective

projection (except in cases when the viewpoint is located on the plane containing these

edges), the edge-corner is a consistent, affine invariant primitive for accurate matching over

wide baseline frames. Our edge-corner detector is implemented using the following steps.

First, we use the Canny edge detector to get the edges. Then, we select each edge pixel

and its neighboring pixels as corner candidates. The neighboring pixels are selected to avoid

the corners missed by the Canny edge detector (or due to rounding problems). Figure 3.2.b

shows that even though the pixel marked with ‘×’ is not lying on the edge, it still has a

chance to become an edge corner.
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(a) (b)

Figure 3.3: Corners in house frame 0. (a) corners detected by Harris corner detector. (b)

edge-corners detected by our method.

Next, for each candidate, we consider an n × n window around this pixel, and set the

origin at the window’s center to build a local coordinate system (Figure 3.2). Every straight

line across the origin has a fixed angle, which can be denoted as

θ = tan−1(y/x).

The space of parameter θ can be quantized from [−π/2,π/2] by 2(n− 1) (half of the number

of boundary points). For each interval θi, if the number of edge points on the line through

the origin at angle θi is greater than a threshold, there is an edge with angle θi passing

through the corner candidate. If the number of edges passing through this origin is more

than one, this point becomes a potential corner.

Third, we select a threshold λ and use the classic corner operator (Eq.3.1) to evaluate

the goodness of this corner. A non-maxima suppression method is applied in a small window
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area to find the best corner candidates. Figure 3.3 compares Harris corners with edge-corners

for “House” frames. Our edge-corners are more precisely located on the junction of edges

than Harris corners, and some poor Harris corners are eliminated, which can speed up the

matching process in the next step.

3.2 CORNER MATCHING

In this section, we first derive the affine matching equation. Next, we show that our matching

scheme with the affine matching equation can obtain stable matches over wide baseline

images, which do not contain significant inplane rotation or scaling. Furthermore, we show

that using affine matrix decomposition, the affine matching space between two corners can

be approximately divided into two independent spaces by the rotation angle and the scaling

factor. Then, a two-stage affine matching algorithm is used to overcome the scaling and

inplane rotation limitations and determine reliable matches for general wide baseline images.

3.2.1 AFFINE MATCHING

Since our edge-corners are affine invariant, the matching between corresponding points can

be represented as:

I2(Ax + d) = I1(x), (3.2)
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where I1 and I2 are two original images, A is a 2D matrix and d is the translation vec-

tor. Eq.3.2 uses affine motion to model the geometric transformation between two image

patches (or corners). However, in wide baseline images, the illumination may also change

significantly. In order to eliminate the illumination effect, we modify Eq.3.2 and obtain

µI2(Ax + d) + δ = I1(x), (3.3)

where µ depends on the reflection angle of the light source, and δ depends on the camera

gain. We can compute the best match by minimizing the residual

ǫ =
∑

W

[(µI2(Ax + d) + δ) − I1(x)]2, (3.4)

where W is the image patch. This function can be minimized by using Newton-Raphson

iteration starting from A = I (identity matrix), d = 0, µ = 1, and δ = 0.

In wide baseline matching, the search process is more difficult than the small baseline

frames. Figure 3.4.a shows a traditional searching scheme, which starts from position of

p1i following the initial gradient descent direction. After encountering a local minimum or

a corner (a corner may be a kind of local minimum), the algorithm will stop and usually

can not jump out of the trap by using Newton-Raphson iteration. Since the displacement

between two corresponding points in the wide baseline frames can be up to 100 ∼ 400 pixels,

there may be many local minima located in this large search area. As a result, the traditional

searching scheme usually cannot obtain the correct solution even for a simple translation or

looming case as shown in Figure 3.5.a and Figure 3.6.a (we used the KLT code of [85] with

a large search range. The code is available online).
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1
2

(a) (b)

Figure 3.4: Two corner matching schemes. Point ‘⋄’ is the starting position of p1i, which is

located at the center of a search area (big square). Points ‘△’ are the local minima. Points

‘◦’ are the corner points p2j. (a) Search by traditional gradient descent scheme. The search

may be stalled at some local minimum such as 1 and 2. (b) corner matching scheme, which

directly compares the corners p2j with p1i in the search area.

We use our corner matching scheme (Figure 3.4.b) to overcome this problem by employing

the corner matching property, which guarantees that the match only happens between the

corners. In this scheme, we only compare the matches between edge-corners, which can

efficiently reduce the search space and avoid the trapping problem due to the local minima.

In our approach, we initialize the translation d = 0 in Eq.3.3 and set the origin of the

corner’s window at p1i in I1 and p2j in I2 respectively. The new equation is x2 = Ax1 + d,

where x1 and x2 are the local coordinates of the corners. Next, we apply this scheme using

Eq.3.3. Since our edge-corner is consistent in most cases, we add a constraint d ≤ 2 pixels
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(a)

(b)

Figure 3.5: Comparison of KLT algorithm and the proposed corner matching scheme for

translation case. (a) shows the results obtained by using KLT code. There are 5 correct

matches in (a)(frame 0 and 100 of “Artichoke” from CMU). (b) shows the results by using

the proposed scheme. (b) shows 184 correct inliers for this translation case (a), the RMS

error is 0.277. Blue points are incorrect inliers, but are consistent with the estimated

fundamental matrix. In our results, the outliers have been eliminated by the robust

fundamental matrix estimation.
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(a)

(b)

Figure 3.6: Comparison of KLT algorithm and the corner matching scheme for looming

case. (a) shows the results obtained by using KLT code. There are no correct matches in (a)

(frame 0 and 40 of “Lab” from CMU). (b) shows the results by using the proposed scheme.

(b) shows 67 correct inliers for the looming case (a), the RMS error is 0.435. Red points

are correct inliers. Blue points are incorrect inliers, but are consistent with the estimated

fundamental matrix.

and only allow a small translation of p2j, which can effectively avoid the serious divergence

problem in the Newton-Raphson iteration. After the iteration, the corner p2j may move to a
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(a) (b)

Figure 3.7: The corner matching scheme for two large rotation cases. (a) (frame 0 and 6

of “House”) shows 59 correct inliers located on the house. No correct correspondences are

recovered on the ground due to the in-plane rotation. (b) (image 3 and 8 of “Valbonne”

from Oxford Univ.) shows that no correct inliers are obtained. Red points are correct

inliers. Blue points are incorrect inliers, but are consistent with the estimated fundamental

matrix. In our results, the outliers have been eliminated by the robust fundamental matrix

estimation.
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new position p′2j, where d = |p′2j − p2j| ≤ 2. The residue ǫ1i2j(Eq.3.4) is used to evaluate the

goodness of the match. After searching the whole area, we consider the corner p′2j with the

smallest ǫ1i2j as the best match for corner p1i. Third, we use the robust fundamental matrix

estimation to eliminate the outliers in these matches.

In this chapter, we use RMS (Root-Mean-Squared) distance error (measured in pixels)

to evaluate our results [41].

ǫRMS =

√

√

√

√

(

1

2n

n
∑

i=1

d(m2i, Fm1i)2 + d(m1i, F T m2i)2

2

)

, (3.5)

where m1i and m2i are corresponding points, F is the estimated fundamental matrix.

Figure 3.5 and Figure 3.6 show that our method works very well if the major motion of

camera is translation (Figure 3.5.b) or looming (≤ 2× scaling) (Figure 3.6.b).

However, in general, the camera motion between wide baseline frames is not restricted to

translation and looming, but may be combined with some significant rotation. Part of the

3D rotation of the camera (Rx or Ry) may be converted to stretch-shearing or translation

after projection, and the rotation component around the Z axis, Rz, remains as the in-

plane rotation. In these complicated cases, this scheme cannot accurately recover point

correspondences. Figure 3.7.a and b show that the correct matches cannot be obtained if

there are significant in-plane rotations.
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3.2.2 AFFINE MATRIX DECOMPOSITION

The reason for the above problems is that we minimize the error ǫ (Eq.3.4) using only the

first order Taylor expansion and employing the Newton-Raphson iteration method. This

method is sensitive to the initial state, which is usually set as A = I, d = 0, µ = 1, and

δ = 0. This initial state is only correct for a small in-plane rotation and scaling. Therefore,

if the initial state is not correct, the search will follow the wrong initial gradient descent

direction and stop at some local minimum, or will diverge.

In order to find a reasonable initial state for the Newton-Raphson iteration, we decompose

the affine matrix A into three components, rotation matrix R, scaling matrix S, and stretch-

shearing matrix E the Singular Value Decomposition (SVD).

A = UDV ′ = U(V ′V )DV = (UV ′)(V DV ′)

=
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where U and V are the orthogonal matrices, D is a diagonal matrix, and E is a positive

symmetric matrix. In 2D space, U , V and R(α) are represented as rotation matrices, S(κ)

is a scaling matrix, E is represented as a stretch-shearing matrix.

After decomposing the affine matrix, it is clear that this affine matrix implies a non-

linear rotation component, R(α), which depends on, Rz, one component of the 3D camera

rotation. The scaling matrix S(κ) depends on the focal length (zooming) and 3D translation

component Tz (looming) of the camera. Compared with R(α) and S(κ), the matrix E is

complicated, which may be due to Rx, and Ry. Therefore, if the viewing angle is large or

if there is some significant scaling between two images, it is difficult to obtain the correct

convergence by using the linear Taylor expansion with the Newton-Raphson iteration from

the initial state, A = I, d = 0, µ = 1, and δ = 0. Figure 3.8.c shows the image patches

with a significant rotation or scaling that do not converge to the correct solution using our

preliminary corner matching scheme.

In order to obtain a reasonable initial state, we simplify the affine matching matrix

A≈R(α)S(κ).

As a result, this affine matching space can be divided into two independent spaces, rotation

and scaling. The rotation angle α and scaling factor κ can easily be quantized into different

ranges.
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(a) (b) (c) (d) (e)

Figure 3.8: Matching procedures for two corresponding corners (30 × 30). The first

row: rotation case, the corners from “House” (Figure 3.7.a). The second row: rota-

tion case, the corners from “Car” (Figure 3.14.b). The third row: rotation case, the

corners from “Valbonne” (Figure 3.7.b). The last row: scaling case, the corners from

‘Boat” (Figure 3.12.a). (a) and (b) are the windows around the original corners in two

frames. (c) is the warped version of (b) using the corner matching scheme. (d) is the

warped version of (b) after finding the best rotation and scaling in the first matching

stage. (e) is the final result after using our two-stage matching algorithm. It is clear

that our method maintains the appearance (compare (a) and (e)) of the patch over two

wide baseline frames, and provides an accurate matching for the corresponding edge-corners.
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3.2.3 TWO-STAGE MATCHING

Using this quantization of the affine matrix, we design a two-stage algorithm for corner

matching on a general wide baseline image pair.

The first stage is to find a reasonable initial state for the Newton-Raphson iteration.

For any corner p1i in I1, we select p2j from I2 in a large search area. Then, we apply a

rotation-scaling warping R(α)S(κ) to a window around p2j and compare this with a window

around p1i in I1 by using SSD. We search for a minimal image residual by varying α from

αl to αh. At each rotation angle, we use five different ranges of κ for the scaling matrix S,

which are 4, 2, 1, 0.5 and 0.25. In our implementation, we use an N -split tree (large step of

20◦ and small step of 4◦) to speed up the search between αl and αh.

After computing the best estimates of matrices R(α) and S(κ), we initialize the affine

matrix A = R(α)S(κ) in Eq.3.3, which provides a reasonable gradient descent direction for

the Newton-Raphson iteration. Then, following this gradient descent direction, the correct

affine matching matrix A between two corners is determined and the residual is minimized.

There are three advantages of our approach. First, we only compare corners with corners

instead of searching every pixel in a large area, that may have several local minima. Second,

the first step of our matching method quantizes affine space by using the rotation angle and

scaling factor. It avoids the computation of non-linear components R(α) and S(κ) in terms

of gradients Ix and Iy, but recovers an approximate state of the geometric deformation due to

the large rotation and scaling. Third, based on the reasonable initial value of A = R(α)S(κ),
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(a) (b)

Figure 3.9: Results obtained by using our two-stage matching scheme. (a) shows 83 correct

inliers, several of them are on the ground. (b) shows 78 correct inliers.

the second step follows the correct initial gradient descent direction and quickly finds an

optimized solution of A between p1i and p2j, which efficiently avoids the local minima.

Compared to conventional scale-space matching [5, 61], which only changes the scaling

factor, our method explicitly changes two independent factors, α and κ, which can effectively

approximate and quantize the affine matching space, and provide a reasonable initial state for
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the Newton-Raphson iteration. Figure 3.8 compares the results by using our two matching

schemes, and illustrates the detailed steps of our matching procedure. It is clear that a

correct initial state is required to obtain a reliable optimized solution for correspondences

matching. Figure 3.9 shows that using the two-stage matching algorithm, we can overcome

the in-plane rotation problem and recover more reliable correspondences.

3.3 CORRESPONDENCES REFINEMENT

Even though we obtain many reliable correspondences over two images by using our two-

stage matching algorithm, some correspondences cannot be determined due to the self-similar

structures and some false matches. These false matches are consistent with the estimated fun-

damental matrix and cannot be eliminated by using the robust fundamental matrix algorithm

(blue points in Figure 3.9). We propose a new approach to increase the correspondences and

eliminate these false matches by the estimated epipolar geometry and local motion vector.

After robust fundamental matrix estimation, the epipolar geometry can be obtained. Let

F denote the fundamental matrix, the epipolar line of p1i on the second image is l1i = Fp1i.

The point corresponding to p1i should be located around this epipolar line on I2. Therefore,

for each point p2j, we check the distance d1i2j, such that

d1i2j =

√

(pT
2jFp1i)2

(

1

(Fp1i)2
1 + (Fp1i)2

2

)

. (3.7)
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(a) (b)

Figure 3.10: Refined results obtained by our approach. (a) shows 150 correct inliers, and

the RMS error is 0.418. (b) shows 102 correct inliers, the RMS error is 0.632. Several green

corresponding epipolar lines are drawn on the images.

If the distance is less than a threshold ξ (ξ ∈ (2 ∼ 4 pixels)), we use the two-stage matching

algorithm to reestimate the residue ǫ1i2j between these two points p1i and p2j in the two

images. Since the probability of self-similar corners is dramatically reduced within a small

band around the epipolar line, this method can efficiently increase the matches, which may

be missed due to self-similarity.
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However, it cannot eliminate the false matches that are consistent with the fundamental

matrix F . In order to eliminate these false matches, we assume that local motion should be

consistent. Hence, the motion between a pair of correct correspondences should be similar to

the neighboring corresponding pairs; this is called the common motion constraint. For each

pair of correspondences m1i and m2i, the motion vector ζi = m1i −m2i. We select the neigh-

boring corresponding pairs close to m1i in an adaptive window N to compute the average

local motion ζ. After checking the direction and magnitude differences between ζi with ζ,

we eliminate the matches, which are not consistent with the local motion. Figure 3.10 shows

the final matching results obtained by our approach, where more corresponding points are

determined.

3.4 EXPERIMENTAL RESULTS

In this section, we demonstrate our results on wide baseline matching. All of our experi-

ments used gray scale images to compute correspondences, and most of the images are from

public domain resources (CMU, Oxford, OSU, INRIA, etc). Then, we illustrate several view

morphing examples, where the epipolar geometries are estimated by the proposed method,

to show that our matching algorithm is effective and stable.

Figure 3.11 shows the results for two sequences of real scenes (shown in Figure 3.1),

where the viewing angle ranges from 0◦ to 70◦. The RMS distance error increases as the
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Figure 3.11: RMS error and number of corresponding points of “House” and “Graffiti-6”

sequences under different viewing angles.

angle increases, but is less than 0.6 pixel. After the viewing angle reaches 60◦, the number of

correct corresponding points decreases due to the severe occlusion in the “House” sequence

and shrinking in the “Grafitti-6” sequence.

Figure 3.12 and Figure 3.13 show the matching results for the different scenes, which

include several kinds of significant camera motions (rotation, translation, or scaling) with

some severe occlusion, illumination changes, and the presence of self-similar structures. Fig-

ure 3.12.a and b show significant scaling (about 4×) between the two images. Figure 3.12.c,

Figure 3.13.a and b show non-inplane rotation angles over 50◦. Figure 3.13.c shows severe

occlusions in the scene.
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Table 3.1: The comparison of Affine-Harris method with our approach.

Name (Frame No) A-H T-S (RMS) RF (RMS)

Graffiti-5 (4,8) 33 276 (0.110) 299 (0.127)

Graffiti-6 (1,5) 27 135 (0.341) 202 (0.327)

Boat (0,5) 22 163 (0.301) 175 (0.560)

Valbonne (5,14) 14 57 (0.665) 185 (0.658)

Valbonne (9,13) 22 155 (0.486) 194 (0.661)

UBC (8,10) 34 184 (0.266) 227 (0.242)

We also tested a number of image pairs from INRIA and compared our results with

the Affine-Harris method of [61] in Table 3.1, which compares the correspondence number

and RMS obtained by using different methods. A-H are the results using the Affine-Harris

method. T-S are the results using two-stage matching without refinement. RF are the

results after increasing correspondences using epipolar geometry. In all of the test cases,

our method was able to determine more corresponding points than the Affine-Harris method

even without the refinement step.

Figure 3.14 shows three examples of view synthesis results using our estimated matches

as well as view morphing techniques. After automatically determining corresponding points

between two original wide baseline images, we rectified the original images to parallel views

and morphed them using a linear ratio. Then, using a 5-point postwarping algorithm [110],
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we postwarped the blended images into the final view position. As a result, a series of

virtual views were rendered following the baseline between two original cameras, providing

a realistic 3D visual effect from a static scene.

Note : All of these results are available on our web site [39].

3.5 SUMMARY

In this chapter, we successfully solved the problem of how to obtain reliable corresponding

points over two wide baseline frames. First, a number of affine-invariant edge-corners are

detected in both images. Then, based on singular value decomposition of the affine matrix, we

found that the affine matching space between two corners can be approximately divided into

two independent spaces by rotation angle and scaling factor. Using this property of the affine

matrix, we designed a novel two-stage matching algorithm to determine the robust matches

between edge-corners, which effectively overcome the significant affine transformation in the

wide baseline images. Moreover, employing the estimated epipolar geometry and common

motion constraint, we efficiently refined and increased the matches. Finally, we demonstrated

that a series of virtual views can be correctly synthesized using our correspondences and

estimated epipolar geometries.
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We have tested a number of wide baseline image pairs under different severe camera mo-

tions with illumination changes, occlusions, and self-similarities, and have obtained excellent

results for all of these cases.
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(a)

(b)

(c)

Figure 3.12: Final matching results by our algorithm. (a) (frame 8 and 0 of “Boat” from

INRIA.) shows 75 inliers, the RMS is 0.686. (b) (frame 0 and 10 of “INRIA-Model” from

INRIA.) shows 25 inliers, the RMS is 0.583. (c) (frame 1 and 5 of “Graffiti-6” from INRIA)

shows 202 inliers, the RMS is 0.327. Several green corresponding epipolar lines are drawn

in each pair of images.
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(a) (b)

(c)

Figure 3.13: Final matching results by our algorithm. (a) (frame 5 and 9 of “Movi” from

OSU) shows 89 inliers, the RMS is 0.471. (b) (frame 5 and 14 of “Valbonne” from Oxford

Univ.) shows 185 inliers, the RMS is 0.658. (c) (frame 1 and 90 of “SRI” from CMU.)

shows 61 inliers, the RMS is 0.268. Several green corresponding epipolar lines are drawn in

each pair of images.
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(a) (b) (c)

Figure 3.14: View synthesis results after matching. The first and the last images are the

original frames. (a) “Hotel”(frame 0 and 100 of “Hotel” from CMU), there are 131 inliers,

the RMS is 0.664. (b) “Car”, there are 176 inliers, the RMS is 0.519. (c) “Dancing”, there

are 71 inliers, the RMS is 0.752. The rest of images are virtual views synthesized using the

reference images.
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CHAPTER 4

MOTION SEGMENTATION

Layer based motion segmentation has been investigated by computer vision researchers for

a long time [109, 46, 66, 101, 4, 99, 2, 2]. Once motion segmentation is achieved, a video

sequence can be efficiently represented by different layers. The major steps of motion seg-

mentation consist of: (1) determining the layer descriptions, which include the layer number

and the motion parameters for each layer; (2) assigning each pixel in the image sequence

to the corresponding layer and identifying the occluded pixels. In general, this is a hard

problem since it may not be possible to segment a scene just based on 2D parametric motion

as shown in Figure 4.1.c. Hence, this kind of scene cannot be simply represented by planar

layers and it may be necessary to compute the full disparity map using a stereo algorithm.

However, in the motion segmentation area, we assume that the pixels in a given video can

be partitioned into several layers, and each layer can share a single 2D motion, such as affine

or projective transformation, as shown in Figure 4.1.b.

Using this assumption, several different approaches have been proposed to solve this

problem. The typical motion segmentation methods employ: optical flow with K-mean
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(a) (b) (c)

Figure 4.1: Depending on the complexity of a scene, it can be represented by one layer (a.

image registration or mosaic), multiple layers (b. motion segmentation), or disparities (c.

stereo).

clustering [99], Expectation-Maximization (EM) framework [4], normalized graph cut [80],

or linear subspace [46]. While most of the existing approaches have only focused on the

layer description and representation, comparatively little work has been done to handle the

occlusion problem between the overlapping layers. In contrast, the occlusion problem has

been widely studied in the context of stereo algorithms [49, 51, 50]. Accurate detection of

the occluded areas is important to improve the dense disparity map and the quality of 3D

reconstruction. Similarly, in the motion segmentation area, this occlusion problem is essential

to detect the discontinuities between the overlapping layers and improve the quality of the

layer boundaries.
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Another important problem in motion segmentation is how to determine layer description

or layer clustering. Merging the similar motion of a set of small patches is a popular approach

used in different methods such as K-mean clustering, or linear subspace. However, the

motion parameters computed from a small patch usually are not reliable due to the over-

fitting problem. Therefore, for layer clustering, it is essential to expand the region and detect

outliers.

In this chapter, we propose a novel approach to extract accurate layer representations

from a video sequence and explicitly determine occlusions between the overlapping layers.

Our algorithm is implemented in two stages as shown in Figure 4.2. In the first stage, we

determine seed correspondences over a short video clip (3-5 frames). Then, we gradually ex-

pand each seed region from an initial rectangular patch of fixed dimensions into an enlarged

support region of an arbitrary shape to eliminate the over-fitting problem and detect the

outliers. This is achieved using a graph cut approach integrated with the level set represen-

tation. After that, we employ a two-step merging process to obtain a layer description of the

video clip. In the second stage, we introduce the occlusion order constraint over a multiple

frame segmentation, which guarantees that the occlusion areas increase with the temporal

order and effectively maintains segmentation consistency in consecutive frames. After ap-

plying this constraint on the graph cut framework, we obtain an accurate and stable video

segmentation in terms of layers and their 2D motion parameters. At the same time, the

occluded pixels between overlapping layers are correctly identified, which greatly improves

the quality of the layer boundaries.
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Figure 4.2: The flow chart of our algorithm.

The chapter is organized as follows. Section 4.1 reviews the previous work related to layer

extraction. Section 4.2 addresses how to extract layer descriptions from short video clips.

Section 4.3 deals with the use of the occlusion order constraint, three-state pixel graph, and

a multi-frame graph cut algorithm for obtaining precise layer segmentation in the presence

of occlusion. Finally, in Section 4.4, we demonstrate several results obtained by our method

on different applications.

4.1 GRAPH CUT AND NOTATION

Recently, graph cut approaches [14, 7, 15, 51, 50] were proposed to successfully minimize

energy functions for various computer vision problems, such as stereo, image segmentation,
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image restoration, and texture synthesis [44]. After formulating these different energy min-

imization problems into a graph cut framework, an approximate optimal solution can be

obtained in a polynomial time. As an extension of the smoothness of the geodesic active

contour approach, Boykov and Kolmogorov modified the n-neighbor system of the graph cut

to simulate Riemannian metrics and reduced metrication error on 2D and 3D image restora-

tion [8]. Xu et al. also presented an approach to refine an active contour by iteratively

using the graph cut method [104]. Birchfield and C. Tomasi proposed an approach to use

a graph cut framework to combine layer segmentation and stereo for the scene with slant

surfaces, where the stereo disparities and discontinuities are improved by the explicit layer

segmentation [13].

In the motion segmentation area, Shi and Malik first used the normalized graph cut to

extract layers from a video sequence [80]. However, since they grouped pixels based on the

affinity of motion profile, a local measurement, their method ignored the global constraints

and appeared unstable for noisy image sequences. Wills et al. proposed the use of graph

cut to extract layers between two wide baseline images [100]. After employing the RANSAC

technique, they clustered the correspondences into several initial layers, then performed the

dense pixel assignment via graph cut.
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Figure 4.3: An example of a graph G for a 1D image. Nodes p, q, r, and o correspond to

the pixels in the image. After computing minimum cut C, the nodes are partitioned into

supporting pixels p, q (source) and unsupporting pixels r, o (sink). The weights of the links

are listed in the table on the right.

4.1.1 GRAPH CUT NOTATION

In this chapter, we use the terminology and notations similar to [15]. For example, Figure 4.3

shows a typical weighted graph with four nodes. This graph G = 〈V, E〉 is defined by a set

of nodes V (image pixels) and a set of directed edges E which connect these nodes as shown

in Figure 4.3. In this graph, there are two distinct nodes s and t, called the source and

sink respectively. The edges connected to the source or sink are called t-links, such as (s, p)

and (p, t). The edges connected to two neighboring pixel nodes are called n-links, which are

bi-directional, such as (p, q) and (q, p). The weights of these n-links in both directions may

not be equal. A cut C is a subset of edges which separates the nodes into two parts; one part
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belongs to the source and the other belongs to the sink. The cost of a cut is the summation

of the weights of its edges. Using a standard max-flow algorithm [3], the cost of the cut is

globally minimized, and such a cut is called a minimum cut. Given a labeling system f ,

each pixel in an image will be assigned one label. In this chapter, we use fp to represent the

label of pixel p. D(p, fp) is the data penalty of pixel p when it is assigned a label fp. V (p, q)

is a smoothness penalty function between two neighboring pixels p and q.

4.2 LAYER DESCRIPTION EXTRACTION

In our approach, the first stage is to extract the layer descriptions from the video sequence,

which includes the number of layers and the motion parameters for each layer. In this stage,

we first detect the robust seed correspondences over a short video clip. Then, using the

shape prior of the previous seed region, the region’s front is gradually propagated along the

normal direction using a bi-partitioning graph-cut algorithm integrated with the level set

representation. Third, we design a two-step merging process to merge the seed regions into

several groups, such that each group belongs to a single motion field.

56



Figure 4.4: The corner tracking results for frames 1 and 5 of the mobile-calendar sequence.

4.2.1 DETERMINING SEED CORRESPONDENCES

In order to correctly extract the layer descriptions, we consider a short video clip K instead of

only two consecutive frames. The reason is that if the motion between two consecutive frames

is too small, the motion parameters between different layers are not distinct. Therefore, we

use an average pixel flow ν̄ of the seed correspondences as a measurement to decide the

number of frames in the video clip K.

ν̄ =
1

N

N
∑

i=0

|νi|,

where νi is the pixel flow from the current frame In to the first frame I1 for correspondence

i, and N is the total number of the seed correspondences. If ν̄ between In and I1 is greater

than some threshold (i.e 3 pixels), the number of frames K is set to n.

In our approach, we detect the Harris corners in the first frame, then we use the KLT

tracking algorithm [85] or our matching algorithm [107] to track the corners over this short

period using a 17× 17 pixel window. Compared with the KLT algorithm, our wide baseline

matching approach can efficiently compensate for the rotation component between two cor-
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ners by breaking the affine transformation into different parts. Figure 4.4 shows the tracking

results for frames 1 to 5 of the mobile-calendar sequence using [107], where the corresponding

corners with a large rotation are more accurate.

Since the Harris corners are located in the textured areas, we can obtain reliable affine

transformations for the seed regions, and skip the non-textured areas, where the motion

parameter estimation is unreliable.

4.2.2 EXPANDING SEED REGIONS

Once the seed correspondences are determined between frames I1 and In
1, we consider a

patch (17 × 17 window) around each seed corner as an initial layer, which corresponds to

a planar patch in the scene. This way, we get a number of initial layers, and each layer is

supported by a small patch with a corresponding affine transformation. Nevertheless, the

affine motion parameters estimated using the small patches may over-fit the pixels inside the

region, and may not correctly represent the global motion of a larger region. Particularly,

when the corner is located at the boundary of two true layers, the over-fitting may introduce

a serious distortion on this patch after applying the affine transformation.

One straightforward solution is to simply extend the region by including neighboring

pixels which are consistent with the affine transformation. Such pixels can be determined

1In the rest part of this section, we refer I1 as the first frame and In as the second frame for the convenience
of description since our layer clustering algorithm will only use these two frames.
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by applying a threshold to the SSD (Sum of Squared Differences) computed between the

original and warped windows. However, this scheme has two problems: First, the resulting

expanded region may not be compact and smooth. Second, the new patch may include

pixels from multiple layers, and may not be consistent with a single planar patch in the

scene. Figure 4.5.b shows one sample result obtained by using this simple scheme. The seed

region is originated from the seed on the rotating ball (Figure 4.5.a). After expanding the

boundary and bi-partitioning by applying a simple threshold, the region is not smooth, and

it also includes pixels from other layers.

In order to deal with these problems, we propose a novel approach to gradually expand the

seed region by identifying the correct supporting pixels by using the bi-partitioning graph cut

method and employing the level set representation. We introduce a smoothness energy term,

which can maintain the partitions piecewisely smooth and naturally solve the first problem.

Then, using a level set representation, the contour of the seed region is gradually evolved

by propagating the region’s front along its normal direction, which effectively eliminates the

second problem.

The process of expanding the seed region can be easily formulated into the graph cut

framework [15] as a bi-partitioning problem of a node set. In this framework, we seek the

labeling function f by minimizing the energy

E = Esmooth(f) + Edata(f) =
∑

(p,q)∈N

V (p, q) +
∑

p∈P

D(p, fp), (4.1)
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(a) (b) (c)

(d) (f)(e) (g)

Figure 4.5: A procedure for expansion of an initial 17 × 17 seed region (a) to a large sup-

port region. (b) The result after simple expansion and partitioning. (c) The result after

bi-partitioning without the level set representation. (d) − (g) are the intermediate steps of

bi-partitioning with the level set representation. (d) and (f) respectively are the expansions

of the seed region during the first and fourth iterations using the level set representation.

(e) and (g) are the results obtained after the graph cut partitioning, where the new region

can have an arbitrary compact contour. Note: The red box is the initial seed region. The

green contours are obtained after using bi-partitioning algorithm.

where Esmooth is a piecewise smoothness term, Edata is a data error term, P is the set of

pixels in the image, V (p, q) is a smoothness penalty function (Eq. 4.2), D(p, fp) is a data

penalty function (Eq. 4.3), N is a 4-neighbor system, and fp is the label of a pixel p. In this

bi-partitioning problem, the label fp of the pixel p is assigned either 0 or 1. If fp = 1, the
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Figure 4.6: Comparison between the approximate Heaviside function and the truncated

quadratic function. Top: The truncated quadratic function. Bottom: Heaviside function.

pixel p is supporting this seed region, otherwise this pixel is not supporting the region.

V (p, q) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

3λ if max(|I1(p) − I1(q)|, |In(p) − In(q)|) < 8,

λ otherwise,

(4.2)

Instead of using the truncated quadratic function D(p, fp) =min(|δ(p) − c(fp)|2, const),

we use an approximate Heaviside function to compute the data penalty as follows:

D(p, fp) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

tan−1(δ(p)2 − τ) + π/2 if fp = 0,

π/2 − tan−1(δ(p)2 − τ) if fp = 1,

(4.3)

where δ(p) is the absolute intensity difference of pixel p between the first frame and the

warped version of the second frame, c(fp) is the ideal value for layer fp, and τ is an empirical
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threshold, which is set to 64 for all our experiments. If there is more noise on the images,

we can slightly increase τ to compensate the noise affect. When δ(p) = τ , D(p, 0) = D(p, 1)

and the corresponding value D = π/2, which is called a critical value D̂. The value of λ

in Eq.4.2 is related to the critical value D̂. Here we usually set λ = D̂. Since λ is used to

control smoothness penalty, a large λ will cause more piecewisely smooth segmentation.

Figure 4.6 compares the Heaviside function with the truncated quadratic function. Since

the Heaviside function provide a sharp change around
√

τ , it effectively distinguish the value

in an ambiguity region around
√

τ . Our experiments also show that using the Heaviside

function the partition is more prone to obtain good discontinuities. In Figure 4.3, we show

the detailed graph for this bi-partition problem. After assigning weights D(p, 0) to the source

side t-links, D(p, 1) to the sink side t-links, and V (p, q) to n-links in graph G, we can compute

the minimum cut C using the standard graph cut algorithm and obtain a piecewise smooth

partition of the supporting region.

However, the partitioning using graph cut cannot guarantee the gradual expansion or

shrinking of a region along the normal direction as shown in Figure 4.5.c, where some pixels

not belonging to this region are also included. As a result, the computed transformation

may not be represented as the real layer. Since the contour information of the initial seed

region is not integrated in the function given in equation 4.1, the graph cut algorithm cannot

correctly evolve the region contour along the normal direction (Figure 4.7.a). In order to

solve this problem, we use the contour of the seed region as a prior to compute the level set,

v, of this region. Then, we apply v on the t-links at the sink side and adjust the weights
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Figure 4.7: Comparison between the graph cut method without the level set representation

(a) and that with the level set representation (b). The green nodes corresponds to the center

of the initial seed region, which belong to the sink. After bi-partitioning in (a), the nodes far

away from the center may be assigned the sink label, which cannot guarantee the gradual

expansion or shrinking of a region along the normal direction. After integrating the level

set representation, the weights of the links on the sink side are changed. Therefore, the cut

is always made at the adjacent area around the original seed region (b). Note: We use the

thickness to represent the weights of the links.
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of the t-links for pixels outside of the region in graph G. Therefore, we effectively restrict

the graph cut algorithm to gradually expand the seed region (Figure 4.7.b). The detailed

process is described as follows:

• Step 1 : Construct a mask β of the original seed region, which has a value in [0, 1],

where the inside pixels of the region are marked by 1 and the others are marked by 0.

Then, compute a level set v (Figure 4.5.d) simply by convolving the region mask, β,

with a Gaussian kernel such as: v = G ∗ β, where G is the Gaussian kernel.

Note: For a pixel i inside of the seed region, vi, has a high constant value, and the vi

outside of the region falls down along the normal direction of the contour until vi = 0

(Figure 4.5.d). Therefore, we obtain an implicit surface for this contour evolution,

which can be represented by level set [76, 63]. Here we propose a novel approach

to evolve the region contour by integrating the level set representation into graph cut

method as the next two steps.

• Step 2 : Warp the second image using the corresponding affine transformation, and

compute SSD between the warped image and the first frame. Construct a graph G for

the pixel with vi > 0. Compute data penalty D according to the computed SSD and

smoothness penalty V (p, q) for each link in this graph.

• Step 3 : Convolute v on the t-links at the sink side and change the sink weights for

these pixels, then compute the minimum cut C.
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Note: The weights of the pixels inside the region are almost not changed, while the

weight (p, t) will decrease when the pixel p is further from the boundary as shown in

Figure 4.7.b. As a result, the minimum cut C is most likely to cut the outside pixels,

and label them as the unsupporting pixels for this region. This way, the seed region will

gradually propagate from the center outward (Figure 4.5.e).

• Step 4 : Use the new computed region as the seed region to compute a new affine

transformation by minimizing the image residue inside the region, then goto Step 1 to

do the next iteration. If the new region shrinks to a fraction of the original seed region

area (e.g. 75% coverage threshold), it is discarded as a poor initial layer.

After a few iterations of the above steps, the front of the seed region will either expand or

shrink along the normal direction of the contour.

Figure 4.5 and Figure 4.8.a−b show the detailed process for seed region expansion started

from different seeds. Figure 4.5.d shows the level set representation obtained from the initial

seed region (Figure 4.5.a). Figure 4.5.e and 4.5.g are the partitioning results after the first

and fourth iterations. In Figure 4.8.c, we show some good results for seed region expansion

of the mobile-calendar and flower-garden sequences. Figure 4.8.d shows that we can identify

the poor seed regions using the coverage threshold. Most of these poor seed regions are

located at the boundary of multiple layers.
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(a)

(b)

(c)

(d)

Figure 4.8: Region expansion process. (a) Seed region expansion started from a seed on

the train in the mobile-calendar sequence, which is similar to the process in Figure 4.5.d-g.

(b) Seed region expansion started from a seed on the background in the mobile-calendar

sequence. (c) Some results of the good regions (inliers) after expansion. (d) Some results

of the poor regions (outliers) after expansion, where the new region cannot cover the most

of the area of the original seed. Note: The red box is the initial seed region. The green

contours are obtained after using the bi-partitioning algorithm.

4.2.3 REGION MERGING

After expanding the regions, each good seed region becomes an initial layer. Most of these

layers may share the same affine transformation. Therefore, we use a two-step merging

algorithm to merge these layers to obtain the layer descriptions.
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Figure 4.9: Merging process. Top: Several initial seed regions sharing the same affine

transformation. Bottom: The intermediate steps of the merging process when it starts from

the top left seed region.

In the first step, we only merge the layers that overlap with each other. Given two

regions R1 and R2, we test whether the number of overlapping pixels is more than half of the

pixels in the smaller region. If this is true, we compute the SSD by warping the first region,

R1, using the transformation H2 of the second region R2. Using this SSD as the measure

and employing the graph cut algorithm, we can detect how many pixels support H2. If the

majority (say 80%) of pixels of R1 support R2, we merge these two regions and recompute

the motion parameters using the merged pixels. After that, we use the bi-partitioning graph

cut algorithm again to prune the unsupporting pixels from the new region.

If only a few pixels of R1 support H2, we repeat the process by warping R2 using the

transformation H1 of R1. In order to achieve large merged regions, we iterate the whole

process a few times (typically 3 to 4) to make sure the merging process converges.
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Figure 4.10: Extracting layer descriptions. Top: Four layers of the mobile-calendar sequence,

which correspond to the calendar, train, ball, and wall respectively. Bottom: Three layers of

the flower-garden sequence, which correspond to the tree, house, and flower-garden respec-

tively. The green contour is the region boundary, and non-supporting pixels are marked by

red. Note: The non-textured areas may belong to several layers due to their ambiguities,

such as the white paper at the lower part of the calendar in the mobile-calendar sequence,

and the blue sky in the flower-garden sequence.

After the first step of merging, only a few large regions may survive. Some of the non-

overlapping regions may still share a single motion transformation. During the second step,

we also merge these non-overlapping regions. Figure 4.10 shows the results for the mobile-

calendar and flower-garden sequences.
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4.3 MULTI-FRAME LAYER SEGMENTATION

After extracting layer descriptions in a short video clip using our proposed method in the

previous section, the number of layers in the scene and the corresponding motion transfor-

mation of each layer are known. However, these layer descriptions can only provide rough

layer representations and layer boundaries are incorrect. Moreover, some non-textured areas

may have multiple labels due to their ambiguities as shown in Figure 4.10. In this section,

we will solve this problem: Given the extracted layer descriptions, compute an accurate layer

segmentation in presence of occlusion using multiple frames from the video sequence.

In this process, we explicitly identify the occluded pixels which will be assigned a new

occlusion label, ζ. Then using the occlusion order constraint over multiple frames, the

consistency of the layer segmentation between frame pair (1, 2) and frame pair (1, j) (j > 2)

is maintained, and the quality of segmentation boundary can be visibly improved. First, we

will state the occlusion order constraint. Next, we introduce a three-state pixel graph to

handle occlusion problem between two frames in motion segmentation. Third, based on this

pixel graph, we integrate this occlusion order constraint in a novel multi-frame graph model

which can be minimized using the graph cut algorithm.
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Figure 4.11: The occlusion order in a short video clip containing five consecutive frames

(the first image is the reference image). The top row shows the five-frame sequence, where

a solid circle is moving along the left-top direction. The bottom images show the occlusions

(color areas) between the first frame and other frames. It is clear that the occlusion area is

increasing with time.

4.3.1 OCCLUSION ORDER CONSTRAINT

With the intention of computing an accurate motion layer segmentation of a video clip, let’s

first take a look of the occlusion process over a temporal domain. Figure 4.11 shows the

occlusion has a temporal order for a linearly moving object. It is obvious that occlusion area

is increasing with the temporal order. During a short period (3-5 frames), this observation

is not violated if the object is not thin and not moving fast. Therefore, based on this

assumption, we state the occlusion order constraint as follows:
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• Rule 1 : During a short period, if a pixel is occluded between frames 1 and j, this pixel

will also be occluded between frames 1 and (j + 1).

• Rule 2 : If a pixel, pj−1, is assigned a label fp1
�= ζ between frames 1 and j, then pixel

pk−1 should be assigned either fp1
or ζ between frames 1 and k, where k > j; and pixel

pk−1 should be assigned fp1
between frames 1 and k, where k < j. 2

According to this occlusion order constraint, only the pixels at the same image coordinates

in two consecutive frame pairs can influence each other, such as p1 and p2 in frame pair

(1, 2) and (1, 3), which can effectively maintain the segmentation consistency between the

consecutive frame pair.

Now, the multi-frame motion segmentation problem can be formulated as an energy

minimization problem of the following energy function:

E =
n−1
∑

j=1

(Esmoothj
(f) + Edataj

(f) + Eocj
(f)) +

n−2
∑

j=1

Eorderj
(f), (4.4)

where j is the frame number, and n is the total number of frames. Compared to Eq. 4.1,

there are two additional terms in this equation. The first one is Eoc(f), which is used to

impose the occlusion penalties for the occluded pixels between frames 1 and (j + 1). The

second one is Eorder(f), which is used to impose occlusion order penalties for maintaining

the occlusion order constraint on each consecutive image pairs, such as frame pair (1, 2) and

2If we have only one image pair, we use p to refer the pixel in reference image for this image pair. If
we have multiple image pairs, we use p1 to refer the pixel in the reference image for image pair (1, 2), use
pixel p2 to refer the pixel in the reference image for image pair (1, 3), and pixel pk−1 to refer the pixel in
the reference image for image pair (1, k), and so on. Note: p1, p2, · · ·, pk−1 have the same location p in the
reference image for every frame pair. The reference image is always frame 1.
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Figure 4.12: A typical multiway cut problem. (a) {l1, l2, · · ·, lk} is the label set.

p, q, r, · · ·, x, y, z are the nodes associated with the pixels in an image. (b) After select-

ing l1 as the α label (or source) and the other label terminals are grouped as one sink, a

bi-partition can be achieved, where red nodes are assigned label α and the blue nodes will

keep original label fp. (c) An example for another step of α-expansion. After these two steps

((b) and (c)), p, q, u, and v will be assigned by label l1, and x and y will be assigned by label

l2.

(1, 3). In this multiple labeling system, given a pixel pj, the label fpj
of pixel pj is assigned

one label from a label set L = {l1, l2, · · ·, lk} ∪ {ζ}, where k is the real labeling number

extracted from the layer descriptions obtained in the previous section.
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4.3.2 THREE-STATE PIXEL GRAPH

In order to minimize the multiple label energy function, we have to use α-expansion or

α − β swapping techniques [50, 15] to solve the multiway cut problem [13]. In a multiway

cut problem, there is a label set L = {l1, l2, · · ·, lk} as shown in Figure 4.12.a, and each

node in the graph will finally be assigned one of these labels according to its data energy

(t-links) and smoothness energy (n-links). However, Dahlhaus et al. have already shown

that to find a minimum cost multiway cut is NP-complete [24]. One feasible solution for

this problem is to use multiple two-terminal subgraphs to achieve an approximate result

as shown in Figure 4.12.b and c. In each step, we randomly or sequentially pickup a label

as the source terminal which is named as α (such as l1 in Figure 4.12.b), and merge the

other labels as one sink terminal. Then, the maximum flow algorithm will give an optimal

solution for this bi-partition problem at a linear computational time, and the total energy

of this graph will be reduced. In each step, the α-expansion of f allows any set of pixels

to change their original labels to α in one step as shown in Figure 4.12.b and c. Finally, a

global approximation of the multiway cut problem can be obtained until the energy is not

reduced for each label in L.

Traditionally, each node in graph is only associated with one pixel such as Figure 4.3

and Figure 4.12. Thus, each pixel has one individual two-state pixel graph as shown in

Figure 4.13.a. In this pixel graph, the states of each pixel will be assigned by new label α
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Figure 4.13: Pixel graphs. (a) A two-state pixel graph has two states which are corresponding

to the sink or source respectively. (b − e) Three-state pixel graphs which can handle the

occlusion label. After one α-expansion of an independent pixel graph p, there three possible

cuts. (b) The two nodes belong to the sink, and p will be assigned the new label α. (c) The

two nodes belong to the source, p will keep the original label fp. (d) One node belongs to

source and the other belongs to the sink, therefore p is occluded and assigned the label ζ.

(e) Impossible case due to the link p1,1, p1,0 = ∞.

or keep original label fp, which can be naturally represented by the two states, [0] or [1], of

each node3.

However, in motion segmentation application, one pixel can be assigned by three labels

α, fp, or ζ at one step α-expansion. If using one node to represent one pixel, this pixel will

not have three states. In order to provide three states for a single pixel, we use two nodes

3After the graph cut partition, each node will be assigned either source [0] or sink [1]. There are two
possible states for each node.
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to construct a pixel graph, and four possible combination of these two nodes are available

for this pixel, such as [0,0], [0,1], [1,0], and [1,1].

Given a pixel p1 in image pair (1,2), the corresponding pixel graph is constructed in

Figure 4.13.b − e. There are two nodes, p1,0 and p1,1, and one pair of occlusion n-links,

(p1,0, p1,1) and (p1,1, p1,0), associated with this pixel. If the minimum cut, C, cuts the link

(p1,0, p1,1), the pixel p1 is occluded. Using the link weights given in Table 4.1, Figure 4.13

shows three cases for C after bi-partition on this pixel graph. Let fp1
be the original label of

pixel p1 in the reference image. The pixel will be assigned a new label fC
p1

as follows:

fC
p1

=

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

α if (s, p1,0) ∈ C, (s, p1,1) ∈ C (Figure4.13.b),

fp1
if (p1,0, t) ∈ C, (p1,1, t) ∈ C (Figure4.13.c),

ζ if (p1,0, t) ∈ C, (s, p1,1) ∈ C, (p1,0, p1,1) ∈ C (Figure4.13.c),

(4.5)

where ζ is the occlusion label. In the first case, pixel p1 is assigned a new label α, where

the node state is [0,0]. In the second case, pixel p1 will keep its original label, where the

node state is [1,1]. In the occlusion case, both data penalties D(p1, α) and D(p1, fp1
) of pixel

p1 are greater than the occlusion penalty D(p1, ζ), which is a fixed empirical value4. This

means that it is not suitable to assign either the original label fp1
or the new label α to this

pixel. Hence, this pixel is an occluded pixel and is assigned ζ (Figure 4.13.c), where the node

state is [0,1]. Due to infinite weight of (p1,1, p1,0), the fourth node state [1,0] is disabled.

To compute the data penalties D(p1, fp1
) and D(p1, α), we first need to determine the

image difference δ(p1) related to each label for pixel p1. As shown in Figure 4.14.a, pixel p1 in

4We usually set the value of D(p1, ζ) is slightly larger than the critical value D̂ (see Eq.4.3). If D(p1, ζ)
is increasing, the number of the occlusion pixels will be reduced.

75



(a)

Frame 1 Frame 2

p

H

f
pp

H
f
p

(b) (c) (d) (e)

1

1

1
1

p
1

a

a

Figure 4.14: Determine data penalty for pixel p1. (a) Pixel p1 in the first frame may be

projected on different locations, p
fp1

1 and pα
1 , in the second frame by transformations Hfp1

and

Hα respectively. (b− e) are difference maps corresponding to background, calendar, mobile,

and ball respectively, where the image intensities are corresponding to the differences.

frame 1 may be projected on different locations, p
fp1

1 and pα
1 , in frame 2 by transformations

Hfp1
and Hα respectively. Therefore, δ(p1) can be obtained as follows:

δ(p1, fp1
) = |I1(p1) − I2(p

fp1

1 )| (4.6)

δ(p1, α) = |I1(p1) − I2(p
α
1 )| (4.7)

where I1(p1) is the intensity value of pixel p1 in the first frame, I2(p
fp1 ) is the intensity

value of pixel p
fp1

1 in the second frame. p1 and p
fp1

1 are correspondences by transformation
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Hfp1
. The notations related to α have the similar meanings. Then, the data penalties are

computed as follows:

D(p1, fp1
) = tan−1(δ(p1, fp1

)2 − τ) + π/2 (4.8)

D(p1, α) = tan−1(δ(p1, α)2 − τ) + π/2 (4.9)

where τ is set as same as Eq.4.3. To improve computational performance, we precompute

the difference map δ(pj) for each possible label as shown in Figure 4.14.b − e, where four

difference maps are computed by using frame 1 and 5 from mobile-calendar sequence.

4.3.3 MULTI-FRAME MOTION SEGMENTATION VIA GRAPH

CUT

Based on basic graph element, pixel graph, the multi-frame motion segmentation graph

model can be constructed as Figure 4.15. To illustrate occlusion order constraint in multi-

frame segmentation, we stack four pairs of image nodes together in this graph. Note that

each image pair involves the first frame (the reference frame) and one of the other frames,

which is consistent with Figure 4.11.

In Figure 4.15, each image pair is separated by the red dotted lines. In each image pair

(1, j + 1), j > 1, only the pixel in the reference image (frame 1) will be assigned one pixel

graph. For each pixel pj
5, a pixel graph is created with two nodes pj,0 and pj,1. In each image

5pj has the same location p in frame 1 for every frame pair (1, j + 1).
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Figure 4.15: This graph is constructed using five consecutive frames, which have four image

pairs related to the reference image. The red lines separate each pair of images into one

block. The blue n-links are introduced to maintain the occlusion order constraint. Note:

Only some of the nodes and links are shown here.

pair (1, j + 1), pj belongs to a pixel set, Pj, where Pj is the set of pixels in the reference

image for image pair (1, j + 1). In Figure 4.15, there are four pixels subset P1, P2, P3, and

P4 corresponding to each image pair.

According to the occlusion order constraint, a set of order n-links (blue edges), such as

(p3,0, p2,0) and (p2,0, p3,0), are added in the graph G to interact with the pixel graph at the

same image coordinates. To simplify graph G, we only show two nodes from one particular
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Figure 4.16: A graph G1,2, where three basic pixel graphs are shown corresponding to pixels p,

q, and r respectively. The n-links between neighboring pixels are to enforce the smoothness

penalties, such as (p1,1, q1,1) and (q1,1, p1,1). After applying the inverse transformations H−1
α

and H−1
fb

to pixel b in the second frame such that bα = p1,0 and bfb = r1,1, a pair of n-links

is introduced to enforce the symmetric property of the occlusion, such as (p1,0, r1,1) and

(r1,1, p1,0).

pixel pj for each image pair to illustrate these order n-links. The detailed sub-graph G1,2 for

the first image pair is redrawn in Figure 4.16.

Before we describe how to minimize the energy E for the whole graph G, we first discuss

the interaction of the nodes in sub-graph G1,2, and then discuss how to assign the weights to

these links. To reduce the complexity, we show only three pixels p1, q1, and r1 of frame 1 in

graph G1,2, where each pixel has one pixel graph.

79



Table 4.1: Weights of the links. Occlusion penalty D(p, ζ) is a empirical constant. Note:

bα
j,1 and bfb

j,0 are the symmetric node pair to enforce the symmetric occlusion property, such

as the nodes p1,0 and r1,1 in Figure 4.16.

Edge Weight for

(s, pj,1), (pj,0, t) 0 pj ∈ Pj

(pj,1, t) D(pj , fpj
) pj ∈ Pj , fpj

�= ζ

(pj,1, t) ∞ pj ∈ Pj , fpj
= ζ

(s, pj,0) D(pj , α) pj ∈ Pj

(pj,0, pj,1) D(pj , ζ) pj ∈ Pj

(pj,1, pj,0) ∞ pj ∈ Pj

(pj,i, qj,i)

(qj,i, pj,i)

V (pj,i, qj,i) {pj , qj} ∈ N ,{pj , qj} ∈ Pj

(bα
j,0, b

fb

j,1) D(p, ζ) bj ∈ Pj , b
α
j ∈ Pj , b

fb

j ∈ Pj

(bα
j,1, b

fb

j,0) ∞ bj ∈ Pj , b
α
j ∈ Pj , b

fb

j ∈ Pj

(p(j+1),0, pj,0) 0 pj ∈ Pj , p(j+1) ∈ P(j+1)

(pj,0, p(j+1),0) ∞ pj ∈ Pj , p(j+1) ∈ P(j+1)

(p(j+1),1, pj,1) ∞ pj ∈ Pj , p(j+1) ∈ P(j+1)

(pj,1, p(j+1),1) 0 pj ∈ Pj , p(j+1) ∈ P(j+1)

In graph G1,2 (Figure 4.16), the smoothness energy function, Esmooth(f), is implemented

by the smoothness n-links, which connect each pair of neighboring pixel graphs such as

(q1,1, p1,1) and (p1,1, q1,1). In order to compute the smoothness penalty term V (p1,i, q1,i) of a
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link (p1,i, q1,i), we warp the second image I2 to obtain the warped image I
H−1

fi

2 by applying

the inverse motion transformation H−1
fi

, corresponding to label fi, for each label in the layer

descriptions. Here

fi =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

α if i = 0

fpj
if i = 1

. (4.10)

Therefore, the smoothness penalty term V (pj,i, qj,i) can be computed as

V (pj,i, qj,i) =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

4λ if max(|I1(p) − I1(q)|, |IH−1

fi

(j+1)(p) − I
H−1

fi

(j+1)(q)|) < 4,

2λ if 4 ≤max(|I1(p) − I1(q)|, |IH−1

fi

(j+1)(p) − I
H−1

fi

(j+1)(q)|) < 8,

λ otherwise,

(4.11)

where I1 is the first frame, I
H−1

fi

(j+1) is the warped version of I(j+1) obtained by applying inverse

transformation H−1
fi

, and λ is an empirical constant as Eq.4.2.

To deal with the symmetric properties of the occlusion, a set of new symmetric occlusion

n-links are added to connect the related nodes. Given a pixel b in the second frame, two

pixels bα and bfb in the first frame can be mapped to the same pixel b by transformations Hα

and Hfb
, where fb is the current label of b in the second frame. After applying the inverse

transformations H−1
α and H−1

fb
to b, we can determine both bα and bfb . Then, a pair of n-links

are added to connect these two nodes, such as the blue dotted links (r1,1, p1,0) and (p1,0, r1,1)

shown in Figure 4.16. With the help of these symmetric occlusion n-links, the occlusion

penalties from frame 2 to frame 1 are also specified.
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4.3.4 ENERGY MINIMIZATION

After assigning weights 0, ∞, ∞, and 0 to n-links (p(i+1),0, pi,0), (pi,0, p(i+1),0), (p(i+1),1, pi,1),

and (pi,1, p(i+1),1) respectively, the occlusion order constraint is fully satisfied. Therefore, the

energy function in Eq.4.4 can be rewritten as

E =
n−1
∑

j=1

(Esmoothj
(f) + Edataj

(f) + Eocj
(f)) +

n−2
∑

j=1

Eorderj
(f)

=
n−1
∑

j=1

(
1

∑

i=0

(
∑

(pj ,qj)∈N

V (pj,i, qj,i)) +
∑

pj∈Pj

(D(pj, fpj
) · T (fpj

�= ζ))

+
∑

pj∈Pj

(D(pj, ζ) · T (fpj
= ζ))) +

n−2
∑

j=1

(
∑

pj∈Pj

(∞ · T (fpj+1
�= ζ ∧ fpj

�= fpj+1
))

=
n−1
∑

j=1

(
1

∑

i=0

(
∑

(pj ,qj)∈N

V (pj,i, qj,i)) +
∑

pj∈Pj

D(pj, fpj
))

+
n−2
∑

j=1

(
∑

pj∈Pj

(∞ · T (fpj+1
�= ζ ∧ fpj

�= fpj+1
)), (4.12)

where V (pj,i, qj,i) is smoothness penalty term, D(pj, fpj
) · T (fpj

�= ζ) is data penalty term,

D(pj, ζ) · T (fpj
= ζ) is occlusion penalty term, and ∞ · T (fpj+1

�= ζ ∧ fpj
�= fpj+1

) is

occlusion order penalty term. Using three state pixel graph system, the data penalty term

and occlusion penalty term can be merged together to obtain a new data and occlusion

penalty term D(pj, fpj
). T (·) is 1 if its argument is true and 0 otherwise. From the occlusion

order penalty term, we can see that if the label of pixel pj+1 is not ζ, pixels pj+1 and pj should

have the same label, otherwise an infinity penalty will be imposed on the corresponding

occlusion order n-links. This is consistent with our occlusion order constraint listed in

Section 4.3.1.
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Figure 4.17: Verification for Rule 1. Three possible cases (b− d) after assuming a cut across

(p2,0, p2,1) in (a). All of the occlusion links after (p2,0, p2,1) are definitely crossed by the

minimal cut C, while the occlusion links before (p2,0, p2,1) may or may not be cut.

We can easily verify the occlusion constraint by assuming the minimum cut position.

For example, to verify Rule 1, we assume that a minimum cut C cuts the occlusion n-link

(p2,0, p2,1) in the second block as shown in Figure 4.17.a, and therefore pixel p2 is occluded

between frame pair (1, 3). According to the weights of these links, C should not cut the order

n-links (p2,0, p3,0) and (p3,1, p2,1) since their weights are ∞. Therefore, this minimal cut C

will definitely cut the occlusion n-links (p3,0, p3,1). Similarly, (p4,0, p4,1) will also be cut. As

a result, pixel p3 will be occluded between frame pair (1, 4), and pixel p4 will be occluded
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Figure 4.18: Verification for Rule 2. Three possible cases (b− d) after assuming a cut across

(p2,0, t) and (p2,1, t) in (a). All of the sink side t-links before the (p2,0, t) and (p2,1, t) are

definitely crossed by the minimal cut C, while the sink side t-links after the (p2,0, t) and

(p2,1, t) may or may not be cut. Note: in this case none of the source side t-links can be

crossed.

between frame pair (1, 5). On the other hand, the label of pixel p1 in the first block (1, 2) is

not affected by the second block (1, 3) since the weights of occlusion n-links (p2,0, p1,0) and

(p1,1, p2,1) are 0. Therefore, there are three possible cases after cutting the link, (p2,0, p2,1),

as shown in Figure 4.17.b-d.
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(a) (b) (c) (d)

Figure 4.19: Segmentation results for frame 1 of the mobile-calendar sequence. Top: The

segmentation results obtained by using only two frames. Bottom: The segmentation results

obtained by using five frames (1-5) with the occlusion order constraint. (a) Segmentation

results between frames 1 and 2. (b) Segmentation results between frames 1 and 3. (c)

Segmentation results between frames 1 and 4. (d) Segmentation results between frames 1

and 5. The red pixels in the segmented images are the occluded pixels, which are consistently

increasing with time in the bottom row. After using the occlusion order constraint on these

frames, the segmentation results on the reference image (frame 1) are much more consistent

than those without the occlusion order constraint (top).

In order to verify Rule 2, we need to assume that some pixel has a label fpj
�= ζ. For

example, after assuming that the pixel p2 keeps the original label fp2
between frames 1 and

3 during α-expansion (Figure 4.18.a), the nodes p2,0 and p2,1 belong to the source, and the

cut will cross the t-links (p2,0, t) and (p2,1, t). Since the weight of n-link (p2,1, p1,1) is ∞, node
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p1,1 cannot belong to the sink. Thus, p1,0 and p1,1 both belong to the source, and the pixel

p1 between frame pair (1, 2) will also keep the original label fp1
. Similarly, node p3,0 will

belong to the source due to (p2,0, p3,0) = ∞. As a result, there are also three possible cases

as shown in Figure 4.18.b − d.

Figure 4.19 compares the segmentation results obtained using five frames with those

obtained using only two frames. Due to the use of multiple frames with the occlusion order

constraint, the artifacts are removed and the segmentation results are more consistent as

shown in Figure 4.19.b − d. Moreover, it is obvious that the occluded areas between the

overlapping layers increase over time.

In order to obtain segmentation results for each pair of neighboring fames in a sequence,

we always use 3-5 consecutive frames to preform segmentation since our assumption is more

valid and feasible in a short period (we will discuss in the next section). For example, after

obtaining initial layer descriptions between frames 1 and 5 in Section 4.2, we can easily

estimate the motion parameters between frame pairs (1, 2), (1, 3), and (1, 4) for each real

layer label. Based on these motion parameters, five consecutive frames 1,2,3,4,5 are used in

multi-frame graph cut algorithm to compute the segmentation, where we can simultaneously

achieve the segmentation for each frame pair (1, j) , 2 ≤ j ≤ 5. In order to perform seg-

mentation for frame 2 and 3, we first estimate the initial layer descriptions (support regions

and corresponding motion parameters of each layer) from the previous segmentation results

between (1, 2). Then, based on the initial layer descriptions, another five consecutive frames

2,3,4,5,6 will be used to refine the segmentation between (2, 3) by employing the multi-frame
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graph cut algorithm. Finally, the segmentation of the whole sequence can be achieved by

repeating the process.

4.4 EXPERIMENTS

In this section, we demonstrate our results on two standard motion sequences, mobile-

calendar (Figure 4.20) and flower-garden (Figure 4.21), and other sequences.

Figure 4.20 and 4.21 show the segmentation results for the mobile-calendar and flower-

garden sequences. We used five frames to extract the layers for the mobile-calendar sequence,

and used three frames to extract the layers for the flower-garden sequence. We also compared

our results with other methods [4, 99, 46, 45] for these two standard sequences. Since the

ground truth for these sequences is not available, we have to limit our analysis to qualitative

comparisons. Figure 4.22 shows the comparison on these two standard motion sequences.

Compared with the previous approaches, our method not only explicitly determines the

occluded pixels, but also provides more precise and finer boundaries between overlapping

layers than the previous methods. Figure 4.23 shows the energy reducing for these two

standard sequences. After several iterations (usually around real layer number), The energy

is fast converged to an approximately optimized solution.

We also applied our method to our own sequence with a large occlusion, car-map (Fig-

ure 4.24), where the car is moving behind the map and the scale of the car is apparently
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Figure 4.20: The segmentation results for the mobile-calendar sequence. The red pixels are

occluded pixels.

Figure 4.21: The segmentation results for the flower-garden sequence. The red pixels are

occluded pixels.

changed. The sequence is taken by a hand-held moving video camera. During some frames,

most parts of the car are occluded by the map. Once the car moves behind the map, it is

difficult to compute the correct motion parameters for the car layer based on a small region

of the car due to the over-fitting problem. Therefore, we use a common tracking technique

to predict the motion parameters based on the previous frames. If the region shrinks by

some amount (say 20%) and the predicted motion parameters are much different than the
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(a) (b) (c)

Figure 4.22: Comparison on mobile-calendar and flower-garden sequences with two previous

methods. (a) Results of Ayer and Sawhney [4]. (b) Results of Ke and Kanade [46]. (c) Our

results. In our results, we can not only obtain the accurate layer segmentation, but also

explicitly detect the occluded pixels (red pixels). Note: (a) and (b) are reproduced from

papers [4, 46] respectively.

new estimated parameters, we keep the predicted parameters to perform the segmentation.

The results are shown in Figure 4.24.

Figure 4.25 shows a scene, box-card, with multiple layers, which was also taken by a hand-

held moving video camera. In order to align the imagery, we have to segment this video clip

into four planar layers such that each layer shares one projective transformation. Due to

the apparently projective transformation and large ego-rotation of the camera, the affine

transformation cannot fully capture the transitions between the consecutive frames. Instead
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Figure 4.23: Energy reducing for two standard sequences. Initially, we assign the occlusion

label to all the pixels in our graph model. In each iteration, one real label is selected as α

label. After several iterations, an approximately global solution is found in both cases.

of the affine transformation used before, we used the Levenberg-Marquardt method [88] to

compute the homography transformation for each layer to compensate for the projective

deformation. It is clear that we have obtained good results for this sequence as shown in

Figure 4.25.

Since our occlusion order constraint is based on the assumption that the moving object

is not thin and not moving fast. If the object is thin or moving back and forth randomly, the

occlusion may not have a temporal order. In this case, the segmentation around this object

may not be accurate as the tree branch in flower-garden sequence(Figure 4.21). Nevertheless,

in a real video sequence, it is rare to see an object moving randomly. In a short period (3-5

frames), a linear approximation of the object movement is a good choice for most of vision
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Figure 4.24: Segmentation results for the car-map sequence. Top: Several frames from the

sequence. Bottom: The segmentation results, where the layers are accurately extracted even

though the most parts of the moving car are occluded in some frames. There are three layers

corresponding to map, car, and background building respectively.

applications, such as object tracking. Consequently, as we expected, the experiment results

with this constraint are apparently improved when compared with those without using this

constraint (Figure 4.19).

In all of our experiments, once the layer descriptions are extracted, the average compu-

tational time for one frame segmentation is less than 30 seconds on Pentium IV 2.0G. Note:

All of our results are also available on our web site [36].
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Figure 4.25: Segmentation results for the box-card sequence using projective transformation.

Top: Several frames from the sequence. Middle: The segmentation results using homography

transformation. There are four layers corresponding to two sides of the box, card, and desk

respectively. Bottom: The mosaics of four layers after registering all frames on the first

frame.

4.5 SUMMARY

In this chapter, we presented an effective method to extract robust layer descriptions and to

perform an accurate layer segmentation for image sequences containing 2-D motion (affine

or homography). Our contributions consist of: (1) Initial layer descriptions by integrating

the level set representation into the graph cut method to obtain gradually expanding seed

regions. (2) Using the occlusion order constraints, we successfully combine multiple frames
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to compute accurate and consistent layer segmentation and explicitly detect the occluded

pixels, which has not been done before.

Furthermore, we have also successfully applied our segmentation framework on two re-

lated applications: layer based video registration [111, 112] and video completion [119].
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CHAPTER 5

TWO-FRAME DYNAMIC VIEW SYNTHESIS

Dynamic view morphing deals with the scenes containing moving objects in presence of cam-

era motion; and the moving object can be rigid or non-rigid object as shown in Figure 5.1. In

our scenario, only two reference views are taken at different times from different viewpoints.

During this period, the objects move, deform, or interact with the environment. Our aim is

to synthesize the intermediate views for the gap between two original views. In this chapter,

we only consider dynamic view with rigid objects, and prove the existence of the in-between

views based on geometric properties between the 2D images and the 3D real world.

In section 5.1, we introduce the static view morphing as preliminary. Next, we analyze

the relationship between moving and static cameras in section 5.2. After that, we show

how to extend view morphing algorithm into dynamic view with rigid and non-rigid moving

objects.
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(a) (b) (c)

Figure 5.1: A typical dynamic scenario. In this scene, a person is walking along a straight

line. (a) and (b) are two reference views taken at different times from different viewpoints.

(c) is the in-between view synthesized from the reference views. The camera shown in gray

is the virtual camera, which is on the line connecting the two original cameras.

5.1 BACKGROUND: STATIC VIEW MORPHING

In this section, we introduce the simple case of view interpolation–static view morphing [73].

In this case, two pictures are taken of a static scene from different viewing direction. Since

the scene is static, any pair of corresponding points on two images are from the same 3D

points in real world as shown in Figure 5.2.

Here P = [X Y Z 1]T is the real world point, p = [x y 1]T is the image point, and the

fundamental matrix between these two images can be represented as pT
1 Fp2 = 0.

In this chapter, we use a 3 × 4 matrix to represent perspective cameral model as Equa-

tion 5.1.
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Figure 5.2: C1 and C2 are the camera centers of images I1 and I2. p1 and p2 are the projection

of 3D point P on I1 and I2. Î1 and Î2 are the rectified images of I1 and I2 after prewarping.

M =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

−fr11 −fr12 −fr13 fRT
1 C

−fr21 −fr22 −fr23 fRT
2 C

r31 r32 r33 −RT
3 C

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

= [H|HC], (5.1)

where H =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

−fr11 −fr12 −fr13

−fr21 −fr22 −fr23

r31 r32 r33

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, C is the camera center.

The images I1, I2 are the perspective views projected by matrices M1 = [H1| − H1C1]

and M2 = [H2| − H2C2]. The epipoles e1 and e2 are the projection of C2 and C1 on image

I1 and I2.
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e1 = M1

⎡

⎢

⎢

⎣

C2

1

⎤

⎥

⎥

⎦

= H1C2 − H1C1 (5.2)

e2 = M2

⎡

⎢

⎢

⎣

C1

1

⎤

⎥

⎥

⎦

= H2C1 − H2C2 (5.3)

And the fundamental matrix F = [e2]×H2 [53].

The original images should be reprojected to new projection plane to construct parallel

view Î1 and Î2. The projection matrices of Î1 and Î2 can be given by M̂1 = [I|C1] and

M̂2 = [I|C2].

For any pair of parallel views, the corresponding points p̂1 and p̂2 are in the same scanline

and have the same y value (yp̂1
= yp̂2

). One of the fundamental matrix F̂ , satisfying p̂1F̂ p̂2 =

0, can be expressed as

F̂ =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0 0 0

0 0 −1

0 1 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

. (5.4)

Image I projected by matrix M = [H| − HC] and the rectified image Î projected by

matrix M̂ = [Ĥ| − ĤC]. Since p = MP and p̂ = M̂P , we can get
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p̂ = [Ĥ| − ĤC]P

= ĤH−1[H| − HC]P

= ĤH−1p (5.5)

When Ĥ1 = I and Ĥ2 = I, p̂1 = H−1
1 p1 and p̂2 = H−1

2 p2. The fundamental matrix F̂ can

be rewritten as

F̂ = HT
1 FH2. (5.6)

In Seitz’s paper [75], H1 and H2 can be computed by applying 3D rotation and 2D affine

transformation to prewarp the images into parallel views.

After prewarping, the rectified images can be used for linear interpolation of correspond-

ing points p1 and p2 by Equation 5.7.

ps = (1 − s)p1 + sp2 (5.7)

The last step of view morphing is to find the postwarping path to warp the new image to

correct viewing space. In Seitz’s method, they selected four control points on reference im-

ages, and used linear interpolation to generate the final position for control points. By these

control points, the perspective postwarping transformation can be computed for warping.

If the camera motion is translation or has a small rotation, this method can work very well.

In Seitz’s paper [73], they illustrated an example depicting two reference views where the
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Figure 5.3: Interpolation comparison. Top: linear interpolation of the leftmost triangle

into the rightmost triangle when the motion only including translation and scaling, where

the shape of the object can be maintained. Bottom: linear interpolation when the motion

including rotation, translation and scaling, where the shape of the object can be deformed

and unpreserved.

posture of a face is changed. In general, small changes (including translation or rotation)of

the surface features are reasonably captured due to the morphing process.

However, if the scenes contain large amounts of movement, static view morphing will

generate unsatisfactory results. Figure 5.3 shows that the distortion will be out of control

and unacceptable when the rotation is big. In this chapter, we use the least distortion

method to improve the postwarping path in the following sections.
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5.2 FIXED CAMERA V.S. MOVING CAMERA

In our scenario, two pictures are captured by uncalibrated cameras at different viewpoints

and time. During this period, the intrinsic and extrinsic parameters of camera are changed

with time.

In perspective camera model, the extrinsic parameters are comprised of rotation matrix

R and translation vector T . The relation between the coordinates of a point P in the world

and camera frame, Pw and Pc respectively, is

Pc = R(Pw − T )

=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

r11 r12 r13

r21 r22 r23

r31 r32 r33

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(Pw − T ). (5.8)

The matrix for extrinsic parameter can be written as

Mext =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

r11 r12 r13 −RT
1 T

r21 r22 r23 −RT
2 T

r31 r32 r33 −RT
3 T

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

. (5.9)

For a fixed camera, the extrinsic parameters are fixed, but the intrinsic parameters may

still change. Instead of using moving camera model, we reformulate the scenario so that the

camera centers are at the same fixed location and orientation.

For the translation case, the camera translation u can be compensated by adding −u

to the camera and every object in the scene. For the rotation case, the rotation θ also
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Figure 5.4: The orientation of the camera rotates around the optical center from OC1 to

OC2, the rotation angle is θ. This rotation can be compensated by adding rotation −θ to

the object in the scene with a translation v.

can be compensated by adding −θ to the camera, and every object rotates −θ around its

own axes with some amount of translation v (as Figure 5.4), even though for each object

the translation may be different. As we know, every camera motion can be decomposed

into translation and rotation components. Therefore, for every element of the scene, the

moving camera model can be converted into the fixed camera model by adding rotation and

translation to it.

This reformulation not only converts moving camera model to the fixed camera model,

but also guarantees that the virtual trajectory of each object is linear in translation and

rotation angle. This is useful to simplify the analysis of the dynamic view interpolation.
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Figure 5.5: Translation case. (a) Original scenario, the object translates along the direction

u and camera C is fixed. (b) Equivalent scenario, the camera translates along the inverse

direction −u and the object is fixed. The camera centers C1 at t1, Cs at ts, C2 at t2.

5.3 DYNAMIC VIEW INTERPOLATION WITH RIGID

OBJECTS

5.3.1 DYNAMIC VIEW INTERPOLATION WITH TRANSLA-

TION

In dynamic scenario, beside the camera motion, the object also can translate or rotate

during the period of capturing two pictures. In this section, we discuss the dynamic view

interpolation with translating object.
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First, we consider a simple case named fixed camera model in Figure 5.5.a: the camera

C is fixed, and two pictures I1 and I2 are taken at time t1 and t2, and an object moves along

the straight line u with constant speed v.

If we don’t consider the background, Figure 5.5.b gives the equivalent case for this scene.

The object is fixed, and the camera moves along the inverse direction −u with a constant

speed v, and two pictures I ′
1 and I ′

2 are taken at time t1 and t2. After comparing these two

images, we will find that the objects have the same location and shape in the images Ii and

I ′
i.

Next, we extend the scenario to a general case, where the cameras are not at the same

position. The translation of camera can be denoted as q. If we add −q to the translation of

each element in the scene, the original scenario can be converted to the fixed camera model.

As a result of the conversion, the object’s translation is changed from u to u − q in fixed

camera model.

In general, if the camera has only translation motion, we can always convert any dynamic

scene to the fixed camera model by subtracting out the camera displacement.

If the orientation of the camera is changed during time ∆t, the case will go beyond the

translation model. We will discuss it in the next section.
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5.3.2 DYNAMIC VIEW INTERPOLATION WITH ROTATION

Similarly, we consider the fixed camera model for the rotation case as Figure 5.6.a. In this

model, the object rotates by angle θ around axis ω with a constant speed, the camera C is

fixed, and two pictures I1 and I2 are taken at time t1 and t2.

This original rotation scenario can also be converted into an equivalent case (Figure

5.6.b), such that the object is fixed and the camera rotates by −θ around axis ω with a

constant speed, and two pictures I ′
1 and I ′

2 are taken at time t1 and t2. Therefore, the

objects also have the same location and shape in the images Ii and I ′
i.

If the cameras are not at the same location, the motion of camera can be separated

into rotation ψ and translation q. First, we consider the rotation angle, which can also be

converted to the object’s rotation by adding a rotation −ψ and translation vj to each object

j in the scene. After that, the translation −q can be applied on the objects as mentioned in

the previous section.

Based on the above analysis, it can be stated that any dynamic scene intrinsically com-

prises several static scenes. Each static scene only includes one rigid object, and its fun-

damental matrix is determined by using the object’s points. Therefore, there are several

different fundamental matrices corresponding to several objects, including the background.

Theoretically, if we can segment the scene into several layers and each of them only contain

one object, we can apply the view morphing algorithm to the dynamic scene with the rigid

objects.
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Figure 5.6: Rotation case. (a) Original scenario, the object rotates by θ around axis ω and

camera C is fixed. (b) Equivalent scenario, the camera rotates by −θ around axis ω and the

object is fixed. The camera centers C1 at t1, Cs at ts, C2 at t2.

However, due to the rotation, the object shrinks and its shape cannot be maintained when

the linear interpolation is used for postwarping (the dark intermediate shape in Figure 5.6.a).

The distortion becomes bigger when the rotation angle increases.

In order to reduce the distortion and recover the correct postwarping path as much as

possible, we use the least distortion method to minimize the error.
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5.4 POSTWARPING BY USING LEAST DISTORTION

METHOD

In shape blending or view morphing area, the task to determine the in-between shape or

path is still a difficult problem. In this section, we introduce the use of the least distortion

method to determine the postwarping path.

5.4.1 3D ROTATION

Since we only have two images without depth information for the pixels, it is impossible to

recover the exact 3D rotation of the objects, even though the object’s translation can be

obtained accurately by the linear interpolation. From geometric property, given a projection

plane ρ, the 3D rotation of an object can be decomposed into three components α, β, γ

around the axis X, Y , and Z respectively. X and Y are parallel to x and y on the plane ρ,

and Z is perpendicular to the plane ρ. The rotation transformation can be represented as

R = Rz · Ry · Rx

=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

cos γ − sin γ 0

sin γ cos γ 0

0 0 1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

cos β 0 − sin β

0 1 0

sin β 0 cos β

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

1 0 0

0 cos α − sin α

0 sin α cos α

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

= Rz · B, (5.10)
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where B = Ry · Rx. Due to the loss of depth information, the rotation Ry and Rx cannot

be recovered by using two images. But the rotation Rz around axis Z can be obtained by

decomposing affine transformation using SV D.

5.4.2 LINEAR TRANSFORMATION

For any pair of three corresponding points P1{p11, p12, p13} and P2{p21, p22, p23} not on the

same line, we can form a triangle for each set of points. There is an affine transformation

represented by a matrix A and a vector T between two original shapes such that P2 =

AP1 + T . Since the translation doesn’t change the shape of the triangle, the shape will be

determined only by the property of A.

If we change the parameters of A by a coefficient s(s ∈ [0, 1]), we can get a different

intermediate shape

Ps = A(s)P1 (5.11)

where A(s) is the corresponding intermediate transformation at s. One possible representa-

tions for A(s) based on linear interpolation can be expressed in Equation 5.12.

A(s) = (1 − s)I + sA (5.12)

However, using this linear transformation, the shape and area of the triangle cannot be

preserved very well (Figure 5.7). In order to maintain the shape and area of the triangle
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Figure 5.7: Two affine transformations. Bottom: using the least distortion method (Equa-

tion B.1), the triangle’s area is kept constant. Top: using linear transformation (Equa-

tion 5.12), the triangle shrinks in the middle position. The original triangles are at the left

and right sides.

during morphing, we use another representation of A(s), which can be implemented by the

least distortion method [1].

5.4.3 THE LEAST DISTORTION TRANSFORMATION

The least distortion method is based on the decomposition of an affine transformation. The

basic idea is that an affine transformation can be decomposed into rotation matrix R(α) and

scaling-shearing matrix C by singular value decomposition (SV D) [30].
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A = SV D = S

⎡

⎢

⎢

⎣

v1 0

0 v2

⎤

⎥

⎥

⎦

D, (5.13)

where S and D are rotation matrices, and V is scaling matrix. Then, we can denote rotation

matrix R(α) = SD, and the scaling-shearing matrix C = D−1V D.

A = SV D = S(DD−1)V D = (SD)(D−1V D)

= R(α)C =

⎡

⎢

⎢

⎣

cos α − sin α

sin α cos α

⎤

⎥

⎥

⎦

⎡

⎢

⎢

⎣

v1 vh

vh v2

⎤

⎥

⎥

⎦

. (5.14)

After the decomposition, an affine transformation can be rewritten by multiplication of

a rotation matrix R and a scaling-shearing matrix C. Comparing to Equation 5.14 and

5.10, we can find the rotation matrix R extracted from A, which is essentially Rz, one

component of rotation matrix R. The remaining part C is a combination of Rx, Ry, and

scaling components of the 3D transformation of the object. Based on Equation 5.14 , we

can construct a new intermediate transformation A(s) as below.

A(s) = R(s)C(s) = R(s)((1 − s)I + sC)

=

⎡

⎢

⎢

⎣

cos(sα) − sin(sα)

sin(sα) cos(sα)

⎤

⎥

⎥

⎦

((1 − s)I + sC), (5.15)

where rotation matrix R(s) is linearly changed by rotation angle sα, and scaling-shearing

matrix C(s) is also controlled by scale s linearly.

Since the rotation component Rz of the object is directly projected on the projection

plane, it is easier for the human eyes to detect. Using Equation 5.15 to separate Rz, and
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linearly interpolating this angle can efficiently improve the visual effect compared to other

methods as shown in Figure 5.7.

Comparing Equation 5.15 and Equation 5.12, the linear interpolation is the special case

of the least distortion transformation when R(s) = I. The least distortion transformation

can linearly change the affine transformation not only by scale-shear matrix, but also by

the rotation angle. Therefore, the triangle can control its orientation by rotation angle and

shape by scaling-shearing matrix separately during transformation. Figure 5.7 compares

the intermediate shapes obtained using the two transformations. Using the least distortion

method, the shape and area of the triangle can be kept steady, and the distortion is minimized

during the postwarping.

5.5 DYNAMIC VIEW SYNTHESIS WITH NON-RIGID

OBJECTS

For non-rigid objects, we assume these objects can be separated into several parts, where

each part can be considered as an approximate rigid object. Particularly, the human body

can be reasonably assumed as an articulated object. Therefore, the segmentation of a human

body or an articulated object into rigid parts is a preliminary step for view synthesis of the

scenes containing non-rigid objects.
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(a) (b)

Figure 5.8: Decomposition for a human body. (a) random segmentation. (b) nature seg-

mentation.

5.5.1 SEGMENTATION

Segmentation doesn’t only break the non-rigid object into small rigid pieces, which can be

aligned effectively by our approach, but also it provides the boundary connection constraint,

which is crucial to determine the postwarping path.

A non-rigid object can be decomposed in many different ways as shown in Figure 5.8.

However, the ideal decomposition for non-rigid object is the natural segmentation as shown in

Figure 5.8.b. Since we focus on humans as the non-rigid objects in my thesis, this assumption

is basic and important. In order to obtain an ideal decomposition of the non-rigid objects,

some requirements must be satisfied:
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(a) (b)

Figure 5.9: The boundary points are fitted by Hermit cubic curve.

• the segmentation should correspond to the natural body parts of an object.

• the decomposition should be invariant under translation, rotation, and scaling.

• the decomposition should be computable.

In Zhao’s dissertation [114], she suggested to use some constraints to decompose the

shape by body properties, such as negative curvature minima, symmetry, etc [35].

In our approach, we use a Hermit cubic curve to fit the boundary and smooth the noise

as shown in Figure 5.9. Next, the negative curvature minima are selected as candidates for

cutting points. Using a similar symmetric algorithm, the human body can be segmented

into nature parts. Finally, we also apply a refinement step to use the information of two

images to improve the quality of the segmentation.
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5.5.2 BOUNDARY CONNECTION CONSTRAINT

After segmentation, the object is separated into several parts, which are connected by a new

boundary between the parts. In order to preserve the connection, we select four or more

control points to outline each rigid part from the boundary points.

Figure 5.11 shows that an arm is segmented into three parts: lower arm, upper arm, and

shoulder. The selection of control points is determined by the following conditions:

• The points are selected close to the object’s boundary.

• The points can be located at the joint between the parts.

• The polygon constructed by the points can describe the part’s shape effectively.

Each set of control points can form a polygon, and any pair of neighboring parts can

share several points at the boundary. First, we consider a simple case: using four points

to outline a rigid part, which can form a quadrilateral (Figure 5.10). The quadrilateral

can be decomposed into two triangles along one diagonal, which share the points p1 and

p2 as shown in Figure 5.10.a. If we apply the least distortion transformation to the two

triangles independently, the two triangles don’t share the boundary point any more. In

order to maintain boundary connection property, we merge them to generate new points by

averaging the points from two triangles as shown in Figure 5.10.b. However, this results

in some shrinking along the other diagonal. Therefore, we decompose the quadrilateral

along the two diagonals, and get four triangles instead. Then, we apply the least distortion
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Figure 5.10: Boundary connection constraint for a quadrilateral. (a) Using least distortion

method only. (b) Using boundary connection constraint along one diagonal. (c-d) Using

boundary connection constraint along two diagonals.

transformation to each pair of triangles independently (Figure 5.10.d), and merge the points

from the same source into one point by averaging (Figure 5.10.c).

For more complicated cases, the points are not only shared in one rigid part, but are also

shared between two neighboring parts. Figure 5.11.a shows a complicated case for a non-

rigid object: a human arm moves from lower to upper part of the image. In this procedure,

there are two rotations, one at the elbow and the other at the shoulder, and some apparent

deformations also happen at the joints. We separate the images into lower arm (part 1),
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Figure 5.11: Arm morphing. (a) Boundary connection constraint. (b) Postwarping path by

least distortion method (solid line) and using linear interpolation (dot line).

upper arm (part 2) and body (part 3), and assume each part is rigid object to some extent.

The points p1 and p2 are shared by part 1 and 2; p3 and p4 are shared by part 2 and 3. In

order to get new point p′i, first we transform all triangles Ti1 , Ti2 , · · · , Tin including point pi,

and then calculate corresponding pi1 , pi2 , · · · , pin for each triangle.

p′i =
1

n

n
∑

k=1

pik

Figure 5.11.b shows the interpolation path obtained by two algorithms. The dashed lines

show the paths generated by linear algorithm; the solid lines show the paths generated by the

least distortion algorithm using connection constraint. It is obvious that the linear algorithm

causes the shrinking of the arm during the interpolation when the object has rotating motion.

Figure 5.12 shows the in-between views generated by the two reference views.
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Figure 5.12: Arm morphing. The lower arm rotates round the elbow, the upper arm rotates

round the shoulder, and some apparent deformations can be seen at the joints. The first and

last images are reference views; the middle images are in-between views.

5.6 EXPERIMENTS

Figure 5.13 shows the images of a box object, which is rotating around its symmetric axis

and translating from the right to left. We segment the image into several layers; each layer

contains one moving object. Since the object has a big rotation motion, some parts are visible

in both views, other parts are only visible in the left view, and the rest are only visible in the

right view. So we segment the object into different views, even though they have the same

motion. In order to restore the relationship of these parts, we use their common boundary

points to merge part 5.13.d with 5.13.c, and part 5.13.h with 5.13.g. Since the control points
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Figure 5.13: Segmentation of two original views of a box(a and e). (b)(f) background, (c)(g)

the first part of the rotating object, (d) the second part of the rotating object, (h) the third

part of the rotating object.

at the boundary can form a polygon or triangle, we use its normal to determine the visibility

of the parts. The final morphing results are shown in Figure 5.14. Due to segmentation,

a blank area is left on the background. The blank area of one image can be filled by the

pixels of the other image from the same source. However, if illumination conditions for two

reference views are different, the shadows will be observed in the intermediate views.

Figure 5.15 illustrates a dynamic view synthesis for human movement. In this experiment,

a person is moving left to right with different postures, and the reference pictures are taken

from two view positions. For every part of the person, there are different rotations and
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Figure 5.14: Dynamic view morphing with rotation. (a) and (i) are reference images. Since

the object has rotation motion, one side of box is occluded by itself in (a) and (f), another

side of box is occluded by itself in (g) and (i). Our approach can correctly restore the

geometric property in the intermediate views (b)-(h).

translation. In order to obtain better results, we segment the person into eight layers: head,

body, two upper arms, two lower arms, and two legs (left and right). For each part, we

use view morphing algorithm to obtain a new rectified image, and then use least distortion

method and boundary connection constraint to determine the postwarping path to get the

intermediate view as shown in Figure 5.15. The results are also available at our web site [38].
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5.7 SUMMARY

In this chapter, we successfully extend dynamic scene synthesis into the rotation case, where

the rigid objects can move in different directions and orientations. Since the problem of 3D

reconstruction from two 2D images without depth information is quite complex, it is almost

impossible to exactly recover the object’s position for postwarping due to rotation. However,

our approach provides a unique and reasonable solution for the dynamic scene. The least

distortion method fully recovers one rotational component, Rz, and partially compensates the

remaining two rotational components Rx and Ry by scaling-shearing matrix. It efficiently

avoids the shrinking problem at view morphing in the presence of rotation motion, and

generate more realistic viewing results.

Furthermore, we generalized dynamic scene synthesis for scenes containing non-rigid

objects. Our method can handle these cases mixed with dynamic rigid or non-rigid objects,

including complicated objects such as humans. In our approach, if the non-rigid object

can be segmented into several rigid parts, we can use the boundary information to connect

adjacent parts during morphing. From only two reference views, we generate a series of

continuous and realistic intermediate views without 3D knowledge.

After combining the least distortion method and boundary connection constraints with

centroid adjustment, we can effectively compensate for the displacement due to rotation,

and the amount of shape shrinking can be reduced. Moreover, due to strength of the view

morphing algorithm, our approach can preserve the realistic 3D effect for each layer.
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Figure 5.15: Dynamic view morphing for human motion. The first and last images are

reference views. The person is moving from right to left with different postures, and the

reference images are taken from different view points. Since the motion of the person is

combined with multiple rotations and translations, we segment the person into several parts

based on boundary connection constraint, and use our method to restore physically correct

motion for the man between two reference views.
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CHAPTER 6

TRI-VIEW MORPHING

In this chapter, we propose a novel technique to synthesize a virtual view in a 2D space.

First, using three wide-baseline uncalibrated images, we automatically recover corresponding

feature points and determine the epipolar geometry between each pair of images. Second, we

refine these correspondences and extract the trifocal plane by trifocal tensor computation.

Third, employing the user friendly GUI, a small number of feature lines are easily marked.

Then, we automatically compute the disparity maps using our trinocular-stereo algorithm.

As a result, we generate an arbitrary novel view located in the trifocal plane and easily

navigate through the scene over a 2D space. After self-calibration of these three cameras,

we can also accurately augment 3D objects in a virtual scene.

We demonstrate three applications of the tri-view morphing algorithm. The first one

is 4D video synthesis, which can be used to fill in the gap between a few sparsely located

video cameras to synthetically generate a video from a virtual moving camera. This synthetic

camera can be used to view the dynamic scene from a novel view instead of the original static

camera views. The second application is multi-view morphing, where we can seamlessly fly
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through the scene over a 2D space constructed by more than three cameras. The last one

is dynamic scene synthesis using three still images, where rigid objects may move in any

orientation or direction. After segmenting three reference frames into several layers, the

novel views in the dynamic scene can be generated by applying our algorithm.

Our approach overcomes the limitation of previous view morphing methods, which are

subject to a linear transformation between source and target views (or objects) and can

generate only one visualization trajectory connecting these original frames. In particular, our

approach makes the following contributions: First, we show that a virtual environment can

be generated for 2D navigation based on only a few (three or four) wide baseline reference

images. Second, using the trifocal plane extracted by the trifocal tensor, our morphing

procedure can maintain geometrical correctness of synthesized novel views, which can also

correctly augment with 3D objects. Third, we introduce three novel applications–4D video

synthesis, multi-view morphing, and dynamic tri-view morphing, which can be efficiently

implemented by using our tri-view morphing algorithm.

6.1 ALGORITHM OVERVIEW

The inputs to tri-view morphing are three wide-baseline uncalibrated reference images as

shown in Figure 6.1.a-c. A series of novel virtual views (Figure 6.1.d-f) from any arbitrary

position in the trifocal plane can be synthesized to navigate through the scene based on the
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(a) (b) (c)

(d) (e) (f)

Figure 6.1: A typical tri-view morphing scenario. (a), (b) and (c) are three uncalibrated

wide baseline reference images. (d-f) show a series of synthesized virtual views.

three original images without any knowledge of the scene. Our tri-view morphing algorithm

is implemented using the following steps:

First, using a two-stage wide baseline matching algorithm method using edge corners [107],

a number of corresponding points are automatically recovered to compute the fundamental

matrix and epipolar geometry for each pair of reference images.

Second, a unique trifocal plane E is determined using their epipoles eij (i, j ∈ {1, 2, 3}

and i �= j) as shown in Figure 6.2. Then, the three original images I1, I2 and I3 are warped

into a plane parallel to the trifocal plane to obtain rectified images Î1, Î2, and Î3.

123



C
1

C
2

C
3

C
s

E

P

p
1

p
2

p
3

e
12

e
13

e
21

e
23

e
31

e
32

I
1

I
s

I
2

I
3

I
1

^

I
s

^

I
2

^

I
3

^

Figure 6.2: Tri-view morphing procedure. After automatically determining a focal plane E,

which is constructed by three camera centers C1, C2, and C3, three original images I1, I2, and

I3 are warped into parallel views Î1, Î2, and Î3. The morphing image, Îs, is blended by using

the rectified images with correct disparity maps. The final image Is at Cs is postwarped

from Îs by using the 5-point postwarping scheme.

Third, based on the feature lines obtained by GUI, our feature-based trinocular-stereo

algorithm is used to automatically compute the correct disparity map between each pair of

rectified images.

Finally, a tri-view blending function is determined according to the viewpoint position.

Following the perspective geometrical principles, the morphing image, Îs, is obtained by

combining the blending function with the disparity maps. Then, a 5-point postwarping

scheme is used to project the morphing image to a proper final position (Appendix B).
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6.2 CORRESPONDING POINTS AND TRIFOCAL PLANE

6.2.1 DETERMINING CORRESPONDING POINTS

In this chapter, we use our wide baseline matching method to determine corresponding

points between each pair of images [107]. By decomposing the affine model into rotation

matrix R(α), scaling matrix S(κ), and stretch-shearing matrix E, the minimal image residue

between two corner windows can be computed by a two-stage algorithm.

For each pair of images, first, we determine a large number of corners by edge-corner de-

tector in two images respectively. The edge-corner detector can efficiently detect the corners

located at the intersection of multiple edges. Then, a set of reliable corresponding points

are found using the two-stage matching algorithm [107]. Figure 6.3 shows the corresponding

points and several epipolar lines obtained by our algorithm for a pair of images.

6.2.2 DETERMINING THE TRIFOCAL PLANE

In order to get geometrically correct morphing (Figure 6.2), we first need to determine a

trifocal plane E and warp the original images into parallel views. The focal plane is defined

by the three camera centers. The epipole eij = PiCj, where Pi is the projection matrix

of camera i, and Cj is the optical center of camera j. After computing the corresponding

corners m′
1 and m′

2 between image I1 and I2, and corresponding corners m′′
1 and m′′

3 between
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Figure 6.3: 182 corresponding points between two car images ((b) and (c) in Figure 6.1)

were found. The green lines are epipolar lines.

image I2 and I3, we merge these two groups of corresponding points into one group and

obtain new correspondences m1, m2, m3, where m1 ∈ (m′
1 ∩ m′′

1).

Using Hartley and Zisserman’s robust method, the outliers are eliminated and the trifocal

tensor T = [T1, T2, T3] can be determined [41]. Then, the fundamental matrices F12, F23,

and F31 can be extracted from the tensor. As a result, we can compute the trifocal plane by

using the cross products of epipoles. For each camera, the trifocal plane normal is different.

In camera C1, the plane normal NE1 = e12 × e13; in camera C2, NE2 = e23 × e21; in camera

C3, NE3 = e31 × e32.

After the trifocal plane is determined, the three original images are warped into parallel

views using the prewarping algorithm (Appendix A) and employing the computed NE1,

NE2, and NE3. Also, the epipoles are projected into infinity. As a result of this warping,
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Figure 6.4: The x axis of rectified image Îi can be rotated to make it parallel to different

epipolar directions. Î12 and Î21, Î23 and Î32, Î31 and Î13 are three corresponding rectified

pairs.

all epipolar lines in the three rectified images are pairwisely parallel. Next, for each pair of

rectified images, corresponding epipolar lines are rotated to make them parallel to scanline

directions.
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6.3 TRINOCULAR-STEREO

In this section, we propose a trinocular-stereo algorithm to compute the disparity map

between each rectified image pair, which is based on a pixel-to-pixel dynamic scanline algo-

rithm [62, 13]. In our algorithm, the dissimilarity function uses three image intensity differ-

ences (SAD: Sum of Absolute Difference) of corresponding pixels in three rectified pairs of

images (Eq. 6.1).

Figure 6.4 shows that the rectified images can be rotated to make scanlines parallel to

different epipolar lines. For example, image Î12 is obtained when the x axis of Î1 is rotated to

make it parallel to e12, and Î13 is obtained when the x axis of Î1 is rotated to make it parallel

to e13. Images Îij and Îji are called a corresponding rectified pair, since the correspondences

of these two images are always located on the same scanline.

Consider the corresponding scanlines L and R in Î12 and Î21, which start from Ls and Rs,

and end at Le and Re respectively. If the two pixels x12 and x21 match, the corresponding

pixel, x3, in original image I3 is given as the intersection of the two epipolar lines:

x3 = (F31x1) × (F32x2),

where x1 is the coordinates of the pixel x12 in the original image I1, and x2 is the coordinates

of the pixel x21 in the original image I2. Let x13 be the projection of x1 on Î13, x23 be the

projection of x2 on Î23, and x31 and x13 be the projections of x3 on Î31 and Î13 respectively.
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Figure 6.5: GUI to mark feature lines for car frames. (1), (2), and (3) are three reference

image windows. (4), (5), and (6) are zoomed windows for current corresponding feature

points. The cyan lines are feature lines. The current feature points are located at the

intersection of two epipolar lines with red ‘+’. The magenta, blue and green lines are

epipolar lines. After clicking in the first window, the UI will give two epipolar lines (blue

and green) in this window, and one corresponding epipolar line (blue) in window (2), and

one (green) in window (3). Then, the magenta lines will show the two corresponding points

(the intersections with blue and green lines) in window (2) and (3). The user can move

the mouse to drag the magenta lines and easily find these two corresponding feature points

simultaneously with the second click.

The dissimilarity function d(x12, x21) is computed by using three SADs over 3×3 window

N .

d(x12, x21) =
∑

N

|Î12(x12) − Î21(x21)| +
∑

N

|Î23(x23) − Î32(x32)| +
∑

N

|Î31(x31) − Î13(x13)|
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Next, we use a pixel-to-pixel dynamic-scanline algorithm which uses an inter-scanline

penalty to compute a dense disparity map for each corresponding rectified pair.

This stereo algorithm is reliable for the images with small occlusions and diffuse reflec-

tions. On the other hand, the stereo algorithm is not robust enough to handle some areas

with large occlusion or specular reflection. Therefore, we have developed a user interface

(GUI) to get some additional features to improve the disparity maps. This tool is based

on trifocal geometry, which guarantees that the three corresponding feature lines match si-

multaneously. Once a user clicks a point in the first window, two epipolar lines will appear

in the second and third window to guide the user to get the correct corresponding points.

Figure 6.5 shows how to find three corresponding feature points by only two clicks.

After marking the feature lines, there may be several corresponding feature pixels at

scanlines L and R with certain order, such as (Ls, L1, ···, Li, ···, Le) and (Rs, R1, ···, Ri, ···, Re).

For each corresponding marked interval, LiLi+1 and RiRi+1, we apply the previous trinocular-

stereo algorithm to compute the dense disparity inside this interval. Next, we link these

intervals together and get the complete disparity map for these scanlines.

Using this tool, the geometrically correct features can be obtained easily. As a result,

the dense disparities in these areas with specular reflections or occlusions can be correctly

computed and blended. Figure 6.6.(b-c) shows a comparison of the results with and without

the GUI. In car images, 8 feature lines are marked on the area with occlusions or specular

reflection, which required about less than ten minutes of manual work by employing the

GUI.
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(a)

(b) (c)

Figure 6.6: Comparison of the morphing results using two different disparity maps. (b) is

the result obtained without using feature lines. Note: there are some severe artifacts at the

left most edge of the box, headlight of the car, book boundaries (yellow circles), etc. (c) is

the result obtained with feature lines (red lines in (a)).
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6.4 VIEW BLENDING FUNCTION

The view blending function determines the contribution of each reference image to the mor-

phed images. In traditional image morphing, the blending function works on the original

images such as I1 and I2. Usually, it cannot maintain geometric properties as strictly as

view morphing, which interpolates the rectified images, Î1 and Î2, according to perspective

geometry principles. Following this direction, we first show that any linear combination of

three parallel views satisfies the perspective geometry property.

Suppose that the trifocal plane is located at Z = 0, and the camera center Ci =

[Cix Ciy 0]T . The projection matrices for the parallel view Ci can be represented as:

Πi =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

fi 0 0 −fiCix

0 fi 0 −fiCiy

0 0 1 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

,

where fi is focal length of Ci. The new point p̂s can be obtained by linearly blending the

three corresponding points p̂1, p̂2, p̂3, which are respectively the projections of a 3D point

P = [X Y Z 1]T on images Î1, Î2, and Î3.

p̂s = λ1p̂1 + λ2p̂2 + λ3p̂3 =
1

Z
(λ1Π1 + λ2Π2 + λ3Π3)P

=
1

Z
ΠsP,

where Πs is the linear interpolation of Π1, Π2, and Π3, its focal length fs = λ1f1+λ2f2+λ3f3,

and the camera center Cs = λ1C1 +λ2C2 +λ3C3. Therefore, any linear combination of three

parallel views satisfies the perspective geometry property when
∑3

i=1 λi = 1.
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Figure 6.7: Blending by barycentric coefficients λ1, λ2, and λ3. Î1, Î2 and Î3 are rectified

images, Îs is the desired image morphed using these three images.

Let Wij be the warping function between images Îi and Îj, which specifies the correspon-

dences between Îi and Îj.

Wij = p̂i + dij,

where dij can be obtained using the dense disparity map in the previous section when i �=j,

and dij = 0 when i = j. Next, we create a new warping function Bi to warp each of the

images Îi to Îs and blend them together.

Bi = Σ3
i=1λiWij, (6.1)

Îs = Σ3
i=1λiBi(Îi), (6.2)

where λiBi(Îi) represents the warped image Îi into Îs with opacity value λi. It is easily

verified that Eq. 6.1 and 6.2 have the linear blending property p̂s =
∑3

i=1 λip̂i.
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Based on this result, we present a scheme to blend three rectified images, which is based

on image Îs’s barycentric coordinates λ = (λ1, λ2, λ3), subject to λi ≥ 0 and
∑3

i=1 λi = 1

(Figure 6.7). Along each edge of the triangle, one of the three coordinates (corresponding

to the opposite vertex) is zero. This property is useful for continuous interpolation across

the edges of a triangulation in multi-view morphing, such as Figure 6.11. After blending

the rectified image pairs, we reproject the morphing images to the final position by 5-point

postwarping algorithm (Appendix B) and obtain the final novel views as shown in Figure 6.1.

6.5 AUGMENTING 3D OBJECTS

In order to augment 3D objects in the virtual morphing environment, first we self-calibrate

three cameras, and obtain the intrinsic and external parameters of these cameras. Then,

for any novel view, the new camera matrix can be interpolated using blending coefficient λ.

Based on this camera model, the 3D objects can be correctly rendered and augmented into

the scene during the scene navigation, which is a prerequisite for the interaction with the

synthesized environment.

Since we have three images, it become possible to perform self-calibration by assuming

that aspect ratio = 1, skew ratio = 0, and principal points are located at the image cen-

ter. This assumption is valid for most digital cameras. Therefore, we only try to recover

the unknown focal length using three images. In our experiments, we also ignore the lens
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distortion which can be compensated by a radial distortion model1. In our experiment, we

assume that the camera is distortion-free in the field of view. If the camera has a large lens

distortion, we have to remove it before we perform the self-calibration or view morphing.

From the recovered trifocal tensor T , the projective camera matrices Πp1
, Πp2

, and Πp3
,

can be extracted as follows:

Πp1
= [I | 0],

Πp2
= [[T1, T2, T3]e31 | e21],

Πp3
= [(e31e

T
31 − I)[TT

1 , TT
2 , TT

3 ]e21 | e31].

Since we used one digital camera to capture these images, we can safely assume that only

the focal length in the camera’s intrinsic parameters was changed during taking the pictures.

Then, we employ the self-calibration method [41] to recover a 3D homography H and obtain

a metric 3D construction of the sparse corresponding points, where the metric camera matrix

Πmi
= Πpi

H. The metric camera matrix Πmi
also can be represented as:

Πmi
= Ki[Ri | Riti]

= Ki[Rz(φi)Ry(θi)Rx(ψi) | Riti],

where Ri and ti are the rotation and translation components of the camera’s external param-

eters. Each rotation matrix Ri can be decomposed into three components Rz(φi), Ry(θi),

1In order to remove lens distortion, a precise calibration pattern is usually required.
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Figure 6.8: Augmenting 3D objects in tri-view morphing. Top: three original images with the

augmented object (“Bunny” model from Stanford University). The 3D model is accurately

augmented on the top of the book. Middle: a series of synthesized virtual views with the

augmented object can maintain geometric correctness in the morphing procedure. We also

generate the shadow of model and cast it on the book by assuming a light source. The

bottom image is an enlarged result.
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and Rx(ψi). Ki is intrinsic parameter of camera, Πmi
, such that

Πi =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

fi 0 0

0 fi 0

0 0 1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

,

where fi is the focal length of camera i.

Therefore, the parameters of the new virtual camera can be easily linearly interpolated

by multiplying the coefficient λ = (λ1, λ2, λ3) respectively.

Ks = λ1K1 + λ2K2 + λ3K3,

ts = λ1t1 + λ2t2 + λ3t3,

φs = λ1φ1 + λ2φ2 + λ3φ3,

θs = λ1θ1 + λ2θ2 + λ3θ3,

ψs = λ1ψ1 + λ2ψ2 + λ3ψ3,

The new camera matrix is given by

Πms
= Ks[Rz(φs)Ry(θs)Rx(ψs) | Rsts].

This new camera model is guaranteed to move on the trifocal plane due to the linear

interpolation of the translation components of the cameras. Based on this new camera

matrix Πms
, we use OpenGL to render the 3D object and augment the object into the view

generated from the same viewpoint. In Figure 6.8, we augment a 3D “Bunny” model on

the top of the book. In order to generate the shadow, we simply recover a plane of book
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using sparse 3D points reconstructed from self-calibration method. Then, after assuming an

approximate light source, the shadow is generated and projected on this plane and “Bunny”

model by multiple pass rendering.

6.6 APPLICATIONS AND RESULTS

The tri-view morphing framework can be extended into different applications such as 4D

video synthesis [110], multi-view morphing, dynamic tri-view morphing [106], automatic

target recognition [108]. In this section, we demonstrate the first three applications and

illustrate examples for each one. In our experiments, all of the static reference images were

captured by a hand held Olympus digital camera.

6.6.1 4D VIDEO SYNTHESIS

Our tri-view morphing algorithm can be used for either static scenes or dynamic scenes with

rigid objects. If the scene contains a non-rigid object with a large deformation, it is difficult

to segment the object into several rigid parts as discussed in [105]. In order to navigate

through a real dynamic scene, we can set up several static uncalibrated video cameras to

capture the scene over time. For each time, Ti, using the tri-view morphing algorithm, we

can morph multiple frames and navigate through the virtual scene. Furthermore, we can
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Figure 6.9: 4D video synthesis. A dynamic scene is captured by three video cameras. For

each time Ti, tri-view morphing can be used to generate a virtual video camera Cs to navigate

through the scene.

generate a moving camera to navigate through a 4D space (3D Euclidean space + 1D time

space), which is called 4D video synthesis as shown in Figure 6.9.

Vedula, et. al. [96] proposed view interpolation over spatio-temporal domain, which is

similar to our application. In their application, 14-17 fully calibrated cameras (with small

baseline) were used on the one side of the actor/actress to capture the events. They used

voxel coloring, 3D scene flow, and ray-casting algorithm to synthesize the novel view over

these original image sequences. In order to simplify the rendering procedure, they removed

the background layer and only rendered the actor/actress layers.
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Figure 6.10: 4D video synthesis for car collision. The first row is the images captured at

time T1 by three video cameras. The second row is the images captured at T2 by these video

cameras. All of the original cameras were fixed during the video capture. The last two rows

show images synthesized by a virtual moving video camera to navigate through the dynamic

event of a car collision.

In our 4D video synthesis, we only use three uncalibrated wide baseline video cameras to

acquire original image sequences, and blend the foreground (moving objects) and background
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simultaneously during the view interpolation. Our approach can be implemented in three

steps. First, the video frames amongst the three cameras are synchronized. For each time,

Ti, we get three images taken at the same time. Second, applying the tri-view morphing

algorithm, we compute dense disparity between each pair of images and generate an arbitrary

novel view in this trifocal plane. Third, if the trajectory for the motion of the virtual camera

is specified, we can even link the frames over time Ti and generate a moving video camera

instead of the original static video cameras.

Figure 6.10 shows a 4D video synthesis for a video depicting collision of a car with a box.

We placed three video cameras at three different locations and in different orientations to

record a car collision event. The car was controlled by a remote controller to impact the

box. For each video camera, we obtained 26 frames. The first frame of each camera was used

to determine the trifocal plane using the algorithm proposed in this thesis. Next, for each

time Ti, disparity maps were computed between rectified images using our trinocular stereo

algorithm. After an arbitrary trajectory for a virtual moving video camera is specified, a

novel dynamic video is synthesized. A few images of video for one specified trajectory are

shown in the second row of Figure 6.10.
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Figure 6.11: Four view morphing. A virtual camera Cs can seamlessly navigate the scene

covered by four cameras over two triangles.

6.6.2 MULTI-VIEW MORPHING USING TRIANGLE TESSEL-

LATION

If a scene is captured by more than three cameras (the cameras do not necessarily have to

lie in the same plane), we can use triangle tessellation to group each triple of neighboring

cameras and generate a new view to seamlessly navigate through the scene. Figure 6.11 shows

a triangle tessellation for four view morphing. The four cameras are grouped into two triples

(C1, C2, C3) and (C4, C3, C2). In Section 6.4, we introduced barycentric blending schemes

to blend a new view, which can make a seamless connection over the triangle boundaries.

Figure 6.12 shows the morphing results using four images of a skateboarding doll. These

four images were acquired by a hand held digital camera without any camera calibration. The

surface of the doll is quite complicated. It is difficult to model it using a 3D textured model
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(a) (b) (c) (d)

Figure 6.12: Four view morphing of a doll. (a-d) are four original uncalibrated images taken

by a hand held camera. The second row shows a series of synthesized virtual views.

employing only these four images. We tessellated the four views into two triangles as shown

in Figure 6.11, and generated novel views using the view independent blending scheme. In

this case, a novel camera generates a continuous trajectory, which passes through the triangle

boundaries, resulting in a seamless navigation.

Figure 6.13 shows the morphing results using four images of a Mickey Mouse (copyright

of Disney). We put Mickey Mouse, a remote control and a star in the scene to increase the
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(a) (b) (c) (d)

Figure 6.13: Four view morphing for Mickey Mouse. (a-d) are four original uncalibrated

images taken by a hand held camera. The second row shows a series of synthesized virtual

views.

variety of material properties (metal, plastic, and cloth, etc.). Since Mickey Mouse has a big

nose, it occluded large area of the face (eye or mouth) in different views, and there are some

small artifacts around the nose on the rendering images.

6.6.3 DYNAMIC TRI-VIEW MORPHING

Our dynamic tri-view morphing is focused on a dynamic scene containing only rigid moving

objects, which may rotate or translate. Xiao et. al. [105] have shown that novel views

can be generated for such dynamic scenes by using a separate fundamental matrix for each
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(f) (g) (h) (i) (j)

Figure 6.14: A typical dynamic tri-view morphing scenario. (a), (b) and (c) are three

uncalibrated wide-baseline reference images. (d) and (e) are segmentation results of the first

frame. (f-h) are the background images corresponding to the three original views after filling

in the gaps occupied by the car. (i) and (j) are morphing results of the car and background

layers respectively. The last row shows the virtual views obtained after compositing the car

and background layers.

rigid object (layer) based on the relative motion between two views. In this thesis, we

extend this idea to dynamic tri-view morphing. Our algorithm consists of three main steps:

segmentation, tri-view morphing for each layer and multiple layer blending.
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Figure 6.14 shows a dynamic scene with a moving car. Three reference images were taken

at different times and at different positions and orientations while the car was moving. We

put an eye-drops tube in the scene to introduce a transparent material. Since the moving

object (car) and the background (the rest of the image) have different epipolar geometries,

we segment the scene into two layers: background (Figure 6.14.e) and car (Figure 6.14.d).

Next, we compute a homography to fill in the hole in Figure 6.14.e using the pixels from

the other two images, in order to obtain the background image (Figure 6.14.f) for the first

frame. Then, the background (Figure 6.14.i) and car (Figure 6.14.j) are blended separately

by the tri-view morphing algorithm. Finally, these two images are composited together and

the final results are obtained as shown in the last row of Figure 6.14. As a result, the car is

moving along its own trajectory during the scene navigation.

Note: The true strength of the proposed approach can only be realized by looking at a

video sequence. The high resolution video sequences of the above experiments are available

on our web site [37].

6.7 SUMMARY

Using our proposed image-based approach, we can interactively navigate through a scene

based on only three wide-baseline uncalibrated images without the explicit use of a 3D model.

Based on the decomposition of the affine matrix, a large number of corresponding points

among the original images are automatically recovered to determine an accurate trifocal
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geometric relationship between three reference images. The disparity maps are computed

to construct the blending functions using our feature-based trinocular-stereo algorithm. An

arbitrary novel view located in the trifocal plane is blended to obtain a photo-realistic image,

which can be correctly augmented by 3D objects after camera self-calibration.

We demonstrated three applications of tri-view morphing: 4D video synthesis, multi-view

morphing, and dynamic view morphing. All of the applications are useful for filling in gaps

in multiple images, movie-making, video compression, etc. Our results successfully show

that even using few images (3-4), we can generate visually realistic images to navigate the

virtual environment, where the virtual objects can interact with the 3D scene.

One limitation of our work is that our navigation currently is restricted in a 2D space

constructed by three images. Even though an arbitrary novel view at any position can be

synthesized from two or three images as claimed by Avidan [83], it usually cannot preserve

the good-quality rendering results due to texture missing from the new viewpoint. Hence,

the novel view along the baseline of two images or along the tri-focal plane of three images

can avoid this problem and can provide the higher quality results. In order to navigate a

3D volume and obtain a realistic visual effect, four images captured by the non-coplanar

cameras are minimal requirements. In the future, we will investigate this area and extend

our method to 3D volume navigation. On the other hand, if the strong specular reflections

are present in the images, it is hard to determine disparities only by the stereo algorithm

without feature marks. How to remove the specular reflection and obtain stable disparity is

another direction with good research potential.
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CHAPTER 7

CONCLUSION

In this dissertation, we successfully showed that using the sparse images, we can efficiently

synthesize a virtual scene by using an image-based approach without the use of 3D model.

We developed two powerful tools for the preliminary steps: first is the two-stage, wide

baseline matching algorithm that can recover feature corresponding points and obtain epipo-

lar geometry implied in the images; second is the layer-based video segmentation algorithm

which makes it possible to accurately extract layers or objects from a video sequence. After

the preliminary steps, we can estimate density correspondences by using stereo algorithms

under projective geometry. Finally, based on the estimated disparity maps or depth, a final

synthetic view is correctly blended by a linear interpolation scheme.

This work addresses the following problems in different areas: wide baseline matching,

layer-based video segmentation, dynamic view synthesis with non-rigid objects, tri-view and

multi-view synthesis, 4D video synthesis. However, all of these problems are closely related

and demonstrate the important fact that image based rendering technique will be useful and

attractive if we successfully resolve the related vision problems.
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APPENDIX A

PREWARPING
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The purpose of the prewarping procedure is to warp the three reference images into the

trifocal plane and to obtain rectified images, Î1, Î2, and Î3, which are used to compute dense

disparity maps. This procedure is implemented in three steps.

Note that NE1 = e12×e13 in camera C1, NE2 = e23×e21 in camera C2, and NE3 = e31×e32

in camera C3.

First, we rotate the original images to a plane parallel to the trifocal plane. Let R1, R2,

and R3 be the rotation matrices for images I1, I2, and I3 respectively.

R−1
1 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

rT
11

rT
12

rT
13

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, R−1
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⎢

⎢

⎢

⎢
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⎢

⎣
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rT
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⎥

⎥
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where r11 = e12

|e12|
, r13 = NE1

|NE1|
, r12 = r11 × r13, r21 = −e21

|e21|
, r23 = −NE2

|NE2|
, r22 = r21 × r23,

r31 = e31

|e31|
, r33 = −NE3

|NE3|
, r32 = r31 × r33. After this step, all of the epipoles are projected onto

infinity, and the epipolar lines passing through e12 and e21 are rotated so they are parallel

to the horizontal. Now the new F12 can be represented as:

F̃12 = R2F12R
−1
1 =

⎡

⎢

⎢

⎢
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⎢

⎢

⎣

0 0 0
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⎥
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⎥
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⎦

.

The image Î2 is adjusted by vertical scaling and translation by a matrix T [75, 73]. The

prewarping homographies for images I1, I2 are H1 = R1, H2 = TR−1
2 respectively. Next,

we rotate Î3 by an angle φ and adjust the image by a scaling and shearing matrix Q, which
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guarantees that the sum of the three internal angles between projected epipoles equals 180◦.

The images Î1 and Î2 are equivalent to the corresponding rectified pair Î12 and Î21.

Similarly, we can rotate images to make different epipolar lines (passing eij and eji)

horizontal and get the other two corresponding rectified pairs, Î23 and Î32, Î31 and Î13.
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APPENDIX B

POSTWARPING
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The postwarping procedure deals with the reprojection of the morphing results into a

proper final position. In the original view morphing algorithm, this step was implemented

by manually determining the final position of four control points or performing linear inter-

polation (which usually causes shrinking [73, 105]).

If the cameras are self-calibrated using the computed correspondences and the metric

sparse 3D points are recovered (the case for augmenting 3D objects), the position of these

points in the final view can be computed by transforming 3D points using the new inter-

polated camera matrix. Then, the reprojection can be implemented by simply finding a

homography between the morphed image and the final view.

For the uncalibrated camera case, we can use the least distortion method [110, 105, 1] to

approximate the final postwarping shape position to obtain smooth views transformation.

First, we automatically select 5 corresponding points such that one is close to the centroid,

and the other four points are located in four different directions near the image boundary in

original images I1, I2 and I3 as shown in Figure B.1. Then, based on the assumption that

the centroid of the scene pcs moves following the linear combination of pc1, pc2, and pc3,

pcs =
3

∑

i=1

λipci,

where pci is the center point position in image Ii (Figure B.1). In the 5-point scheme, the

triangulation T includes 4 triangles ti (i = 1 · · · 4). The intermediate postwarping position

(blue lines in Figure B.1.d) can be obtained by minimizing Eq. B.1 by the least squares
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method.

εV =
∑

ti∈T

‖ A{ti} − B{ti} ‖2, (B.1)

where A{ti} is an ideal shape of triangle ti obtained by the least distortion method over three

images, B{ti} is an actual shape of the triangle ti, and V is a set of the five points.
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(a) (b)

(c) (d)

Figure B.1: 5-point postwarping. 5 corresponding points are selected to construct four

triangles in reference images (a-c). (d) compares an intermediate shape generated by the

least distortion method (blue) with linear method (red).
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