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ABSTRACT

Image-capable interprocessor links often require the

use of specialized communications protocols due to the large

amounts of data that can be transmitted and the high speeds

at which the data can be transferred. Without a set of gen

eralized image-capable communications rules, these protocols

are commonly customized to each interprocessor link applica

tion. The image-capable interprocessor link communications

protocol described in this paper (IPLIMP) has been designed

to limit the need for such customization at a low level. In

order to accomplish this, IPLIMP provides simple methods for

synchronizing and controlling link operations, sending and

receiving data, downloading additional protocol layers, and

communicating with higher level services. By providing this

basic set of functions with minimized overhead, IPLIMP can

be used as a fundamental building block for numerous image-

capable interprocessor link applications. In this manner, a

common basis for image communications is developed, thereby

ensuring at least a low level degree of compatibility.
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1 INTRODUCTION TO IMAGE-CAPABLE COMMUNICATIONS

The concern for how image information is transferred

from place to place has grown with the increasing importance

of image processing. Disciplines such as astronomy, defense

systems technology, graphics, geophysics, medical and X-ray

technology, and photographic science, rely upon the ability

to communicate digital image data effectively. Despite the

increased focus on image-capable communications, there has

hitherto been little progress toward the development of a

basic set of image-capable communications rules. Without a

set of generalized communications guidelines, image-capable

interfaces have had to be customized [1]. This customiza

tion poses problems for systems development and integration.

For instance, the effort needed to develop one image-capable

interface may have to be duplicated during the subsequent

development of similar interfaces. Also, systems that have

been designed independently are often difficult to integrate

together, although they may be functionally compatible, due

to incompatibilities between their communications protocols.

Hence, customized interface designs may be quite useless for

developing additional interface applications or integrating

with similar systems.

Before describing some of the preceding customized

approaches to developing image-capable interfaces, a brief

introduction to this area of communications is needed. In

order to provide the appropriate background, the first sec-



tion of this chapter presents interfaces in terms of inter

processor links and protocols. Next, image-capable link re

quirements are covered in section 1.2. Section 1.3 then in

troduces image-capable protocols and the customization prob

lems from a historical perspective. In chapter 2, a general

purpose image-capable interprocessor link communications

protocol is presented as a possible solution to the problems

associated with protocol customization. Finally, chapter 3

describes actual implementations of the generalized protocol

in support of image-capable interprocessor communications.

1.1 INTERPROCESSOR LINKS AND PROTOCOLS

Whenever two processors are interfaced together, an

interprocessor link is formed that loosely couples the sys

tems by providing a mechanism for the transfer of data and

control information. Typically, interprocessor links are

constructed by connecting two or more systems to some type

of communications medium through system interface modules,

which operate under the independent control of their host

processors. Though the processors are interfaced together,

their system independence requires the implementation of a

governing set of rules and conventions to ensure reliable

communications over the link. Such a set of procedures and

formats, which are mutually agreed upon for the purpose of

providing communications, are collectively referred to as a

protocol [14]. Often, in order to increase flexibility and



simplify design, protocols are layered together. Regardless

of how control is organized, protocols, which apply to both

the hardware interface and the controlling software, must be

designed to maintain communications in support of the speed,

efficiency, and service reqirements of the link.

For example, protocols are sometimes required to in

clude downloading services for transferring and controlling

software modules across a link. Such functionality is nec

essary for those systems that are incapable of archiving ad

ditional protocol layers or applications. Without download

protocols, these systems would not be able to function. Un

fortunately, as is the case with most link services, down

loading results in additional communications overhead. This

overhead originates from the extra control messages and/or

header bits needed to distinguish the data and control asso

ciated with a particular service from the other information

being sent across the link. Therefore, as link services are

added, overhead increases, which may adversely impact system

performance and prevent the fulfillment of all link require

ments .

1.2 IMAGE-CAPABLE LINK REQUIREMENTS

As shown in table 1-1, there are three main require

ments for supporting image-capable interprocessor link com

munications [9,12]. First, the number of records transmit

ted per image must be accommodated. This number can be



quite large, as an image may consist of a consecutive stream

of thousands of equally sized records. Second, the size of

image records must be handled. Again, this can be a signif

icant amount, since each image record may be on the order of

thousands of bytes in size. Third, the speed at which image

data is to be transferred must be supported. While transfer

speeds are typically on the order of millions of bits per

second, rates can be obtained that are thousands of times

higher. Often these rates are sustained by some real time

device, such as an image scanner that continually produces a

stream of unbuffered data, or a drum printer that requires

continuous input of digital data. Thus, an image-capable

interprocessor link can potentially be required to support

the transmission of millions of bits of image information at

some real time data rate.

IMAGE-CAPABLE COMMUNICATIONS REQUIREMENTS

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

+ +

+ 1. LARGE NUMBER RECORDS - Thousands of records per image +

+ +

+ 2. LARGE RECORD SIZE - Thousands of bytes per record +

+ +

+ 3. REAL TIME SPEED - Millions of bits per second +

+ +

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

Table 1-1

Along with these three main requirements, an image-

capable interprocessor link is also typically required to

support any of a number of link services. Such services in-



elude remote image access, downloading, image security, com

pression, and a variety of other functions. Though various

systems have successfully fulfilled the image-capable commu

nications and service requirements, they have not yet imple

mented a generalized interprocessor link protocol for image

communications. In fact, most imaging equipment has been

customized in order to meet specific device requirements and

functionality [1]. Such customization is not only wasteful,

but it hinders the transportability of devices and the in-

terconnectability of systems [1,9].

1.3 HISTORICAL PERSPECTIVES

Over the last ten years, engineers at Eastman Kodak

Company have successfully implemented numerous image-capable

interfaces [2,3,4,5,6,16]. Oftentimes, these interfaces

have been constructed using customized data channels, elec

trical circuitry, and control software- The Dicomed D47 Im

age Recorder, the Dicomed D48 Image Recorder, the Optronics

Colormation C-4500, and several custom-made devices, have

been interfaced to computers at Kodak. Though image commu

nications were realized, the inherent interface customiza

tion has resulted in a great deal of unnecessary effort to

be expended in repeatedly performing similar work.

in 1984, Elms, Nelson, and Rothlauf (Picker Inter

national) developed an image transfer interface standard in

an attempt to ease the effort required to implement image



communications systems [9]. The imaging equipment inter

face they described consisted of a serial RS-232-C control

channel and a high speed 16-bit parallel direct memory ac

cess (DMA) data channel for connecting any imaging equipment

device to a network interface. Details of their protocol

standard included 4096-byte fixed length data records, a

specified 32 Mbps data capacity, ASCII control commands and

responses, control channel protocol, data channel protocol,

electrical layout, and an image header specification. In

deed, this image transfer interface standard addressed many

low level protocol requirements for image communications.

Also in 1984, Philips Medical Systems publicized a

proposed standard product interface for digital medical im

aging equipment [1]. This proposed interface consisted of

three protocol layers designed to connect imaging equipment

together or to networks. Physical and data link layers were

organized to provide combined support for reliable network-

independent communications over an interprocessor link.

Above these two lower layers, a communications package layer

was positioned to act as an interface to imaging devices or

to client systems. Basic functions, including initializa

tion, resource management, communication information presen

tation, and message transmission and reception, were speci

fied to promote the exchange of image information. These

communications package functions were designed to handle

messages in a standard format consisting of (1) a fixed com

munications section for indicating message priority, size,



source, and destination; (2) a fixed command section for

specifying a unique object and action, which give meaning to

the data and instructions for its use; and (3) a variable

data section for conveying user information. In this man

ner, the proposed standard product interface provided a gen

eral mechanism for connecting imaging equipment.

Similarly, in 1985, the ACR-NEMA Digital Imaging and

Communication Standard was developed as a layered architec

ture for connecting imaging equipment together and to net

works [11]. A physical layer was specified, including cable

pinouts for 16-bit parallel data transfer and asynchronous

control. Though the hardware was targeted to produce only

17 errant bits per billion transferred at 8 MBps over a cab

le length of 15 meters, other physical systems were permit

ted. Flow control and error checking were handled by a data

link-media access layer, which also encapsulated each data

block with frame number, sequence check, and frame descrip

tor words. Above this layer, a network/transport layer di

vided messages into data blocks consisting of a sequence

number word, a block descriptor word, and a maximum of 2048

words of data. A fourth layer, the session layer, handled

primitive requests, responses, and commands to support the

higher level presentation and application layers. As in the

previously discussed standards, the connection of imaging

equipment was readily facilitated by this protocol.

Though any of the above mentioned protocol standards

would certainly help reduce the time needed to interface new



equipment, they are all too restrictive to be widely used as

a basis for image communication. By placing constraints on

physical connections, the Picker International and ACR-NEMA

standards exclude numerous image-capable interfaces. Also,

both of these standards limit their flexibility by restrict

ing the size of records transmitted across an interprocessor

link. By fixing or maximizing record sizes, these standards

cannot accommodate all systems requiring an integral number

of image lines per record, or systems that cannot tolerate

the reassembly time needed to reconstruct image sections.

Although the Philips standard does not have these restric

tions, it does require the addition of control information

to each record. As in the ACR-NEMA standard, the Philips

standard adds overhead to each record, which may cause the

protocol to fail to meet speed and throughput requirements.

Furthermore, the added control information may not even be

necessary in many imaging systems. Finally, none of these

standards specifically address the problem of initiating and

controlling operations on various types of imaging systems.

Hence, what might be more useful is a less restrictive, more

flexible, image-capable protocol that can keep device inter

faces regular, eliminate customization of control software,

and support interprocessor communications at a low level.



2 A GENERAL PROTOCOL FOR IMAGE-CAPABLE INTERPROCESSOR LINKS

The following material presents a general purpose,

flexible, image-capable interprocessor link communications

protocol that may be used as a foundation for image-capable

communications. This protocol, hence forth known as IPLIMP,

an acronym for Interprocessor Link Image Mode Protocol, was

designed to limit the customization needed to implement im

age communications systems. In attempting to do so, IPLIMP

does not provide routing, flow control, process naming, or

other networking functions. Instead, IPLIMP is limited in

scope to the low level services required by interfaces de

siring image-capable communications. As such, IPLIMP is

concerned with the control and operation of a particular set

of image-capable interprocessor link architectures.

2.1 CHARACTERISTICS

In order to serve as a foundation for image-capable

communications, IPLIMP was designed to be adaptable to most

interface architectures. Regardless of the application, the

use of IPLIMP for low level link control will not signifi

cantly decrease the performance of any underlying protocol

layers. That is, IPLIMP will not degrade the performance of

the physical devices or software modules it directs. This

adaptability is possible since IPLIMP was organized to mini

mize overhead while maintaining flexibility. The various



characteristics of IPLIMP that permit its application to nu

merous image-capable systems are listed below in table 2-1.

Of course, the image-capable communications requirements

listed in table 1-1 have also been addressed by IPLIMP.

IPLIMP CHARACTERISTICS

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

+ +

+ 1. DOES NOT SEGMENT MESSAGES +

+ +

+ 2. DOES NOT INTERNALLY BUFFER MESSAGES +

+ +

+ 3. DOES NOT ENCAPSULATE MESSAGES +

+ +

+ 4. PROVIDES SIMPLE ERROR DETECTION AND REPORTING +

+ +

+ 5. REQUIRES UNDERLYING SEGREGATION OF CONTROL AND DATA +

+ +

+ 6. REQUIRES UNDERLYING INDICATION WHEN READY FOR DATA +

+ +

+ 7. FACILITATES USER SPECIFIED TIME OUTS +

+ +

+ 8. ACCOMMODATES VARIABLE MESSAGE LENGTHS +

+ +

+ 9. HANDLES AN ARBITRARY NUMBER OF RECORDS +

+ +

+ 10. OPERATES INDEPENDENTLY OF UNDERLYING SPEED +

+ +

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

Table 2-1

IPLIMP limits overhead by omitting many potential

low level communications features in favor of economized

functionality and increased dependence upon the underlying

layers. For instance, IPLIMP does not use message segmenta

tion, which could be included to adjust record sizes between

layers [13]. Segmentation, or framing, consists of breaking

streams of data into packets or frames before transmission.

10



Following their reception, the packets are reassembled into

the original data stream. This division and reconstruction

of messages adds overhead to communications in a number of

manners. First, segmentation requires the use of additional

buffers to manipulate the data. However, moving data from

one memory location to another takes time. Second, if there

is a minimum delay incurred by each transmission, the total

minimum delay for a series of packet transmissions will be

greater than that of a single message transmission. Third,

the processing time needed to divide and reassemble messages

can be considerable. Finally, control information is often

added to packets for transmission, which increases overhead.

Apart from segmentation, internal message buffering

can also be used for throttling throughput. This buffering

can be quite costly, both in terms of time and memory ex

pense, especially when handling large image records. Simi

larly, the addition of control information by message encap

sulation can be used independently of segmentation. While

being useful for distinguishing message types and ensuring

data integrity, message encapsulation increases overhead

since the additional data must be transmitted, processed,

and possibly buffered. As with segmentation, internal mes

sage buffering and message encapsulation were not included

in IPLIMP in order to limit overhead.

Another characteristic of IPLIMP that helps reduce

overhead is the manner in which it handles errors. Typical

error handling schemes involve the detection, correction,

11



and reporting of errors. Such error handling functions re

quire adding redundant data and coded information to each

message. As stated before, overhead is increased by adding

information to messages. Overhead also increases if mes

sages are retransmitted when errors are detected. IPLIMP,

however, simply monitors whatever operational information is

provided by the underlying layers, and returns appropriate

messages to the system and users. This simple approach to

error handling ensures that the system and users are aware

of any problems so that they may act accordingly. Further

more, the system, users, and underlying layers can utilize

checksums, error correction codes, or any additional error

handling mechanism deemed necessary. In this manner, IPLIMP

operates independently of whatever error handling services

are needed by the particular link. Thus, IPLIMP avoids the

overhead associated with error handling schemes while allow

ing a variety of systems to build upon it.

As well as monitoring the return of operational in

formation, IPLIMP requires notification when the underlying

layers are ready to receive data. This notification can oc

cur when the peer IPLIMP layer is ready, or when the under

lying layers themselves are ready (i.e., when underlying

buffers are available). Also, IPLIMP expects the underlying

protocols to segregate interface control information from

user data. This segregation can be accomplished by multi

channel interfaces, programmable hardware links, or underly

ing encapsulation protocols. Rather than performing these

12



services, IPLIMP provides streamlined functionality with

minimized overhead. Thus, IPLIMP can either take advantage

of physical systems that offer these services directly, or

utilize additional protocol layers designed to provide these

functions. In fact, these characteristics delimit the set

of interprocessor link architectures that IPLIMP can sup

port. Serial programmed I/O interfaces with separate data

and control channels, DRll-w-compatible parallel DMA inter

faces, and various interprocessor links with appropriately

designed protocol layers are some of the architectures suit

able for IPLIMP control.

Besides limiting overhead, IPLIMP characteristically

supports image-capable communications in a flexible manner.

First, IPLIMP allows users to specify their own timeout in

tervals since all imaging equipment interfaces are not oper

ated within the same time constraints. Next, IPLIMP permits

users to transmit variable size records, as imaging systems

have varying formats and record sizes. Finally, IPLIMP does

not limit the number of records that a user transmits or the

speed at which data is transferred. By providing such a de

gree of flexibility for its users, IPLIMP can be adapted to

numerous image-capable applications.

Both flexibility and minimized overhead characterize

the manner in which IPLIMP is able to support image communi

cations systems. This support is made possible by providing

a set of fundamental low level image-capable communications

functions and services. Since systems are not equally able

13



to tolerate the overhead associated with each communications

feature, IPLIMP operations were streamlined to provide only

the bare essentials for interprocessor link control. Full

image-capable support can then be achieved by implementing

IPLIMP functions and services as a basis for communications,

and supplementing them with additional features, as dictated

by the requirements of the interface to be supported.

2.2 OPERATIONS

The complete set of IPLIMP functions and services

used to support image-capable interprocessor link communica

tions are listed below in table 2-2. The following material

describes the operation of each IPLIMP feature, while a more

detailed specification is given in appendix B. In order to

understand better the operational description, a conceptual

model of IPLIMP is shown in figure 2-1, depicting how IPLIMP

might be integrated into a system.

IPLIMP FUNCTIONS AND SERVICES

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

+ +

+ 1. ASSOCIATE/DISSOCIATE FUNCTIONS +

+ +

+ 2. SEND/RECEIVE FUNCTIONS +

+ +

+ 3. SEND COMMAND FUNCTIONS AND COMMAND HANDLING SERVICES +

+ +

+ 4. INITIALIZATION AND DOWNLOADING/LOADING SERVICES +

+ +

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++-H-

Table 2-2

14



IPLIMP MODEL

SYSTEM A SYSTEM B

++++++++++++++++++ ++++++++++++++++++

+ + + +

+ USER PROCESS + + USER PROCESS +

+ + + +

++++++++++++++++++ ++++++++++++++++++

+ + + + + + .

. ...+ SEND + RECEIVE +. .+ SEND + RECEIVE +....

IPLIMP

*

++++++++++
*

+ + *

+ EXEC ********

+ +

++++++++++

+ -

+

*

*

*

*

*

*

*

*

+ + +

++++++++++++++++++

* *

* *

* * ++++++++++++++

* * + +

* * + LOADER +

* * + +

* * ++++++++++++++

* * *

* * *

++++++++++++++
*

+ + *

+ IPLIMP +****

+ +

++++++++++++++

* *

*

* ++++++++++

* + +

******** EXEC +

+ +

++++++++++

+ PHYSICAL LAYER +

+ +

++++++++++++++++++

*

*

*

*

*

*

*

*

++++ H

+ +

- + PHYSICAL LAYER +

+ +

++++++++++++++++++

CONNECTIONS:
***** = INTERNAL

= PHYSICAL

= VIRTUAL

Figure 2-1
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As detailed in section 1.1, interprocessor links are

formed by interfacing processors together over some physical

channel. This channel is depicted as a physical connection

between physical layers in the IPLIMP model in figure 2-1.

It is these physical layers and connections that provide the

raw communications facilities needed to transmit information

between systems. By making this raw functionality available

for use within the constraints of the host operating system

executive, higher level protocols can be designed to affect

interprocessor communications. However, the raw communica

tions functions provided by the specialized hardware and

software within the physical layer are not necessarily the

same on every system. One purpose of IPLIMP is to remedy

this problem by presenting a uniform set of low level func

tions and services to higher level applications.

In order to do this, each IPLIMP implementation must

access the particular physical layer and executive functions

available on the given processor. In other words, each im

plementation of IPLIMP is entirely system dependent. Fur

thermore, as described in section 2.1, IPLIMP requires that

the underlying modules be capable of segregating control in

formation from data, as well as indicating when they are

ready to receive data. In this manner, IPLIMP can be inter

nally connected only to those systems possessing character

istics which make IPLIMP control feasible.

Once IPLIMP has been installed on a system, it forms

a virtual connection with the IPLIMP module on its peer sys-

16



tem. That is, though IPLIMP modules are not physically con

nected across an interprocessor link, they are connected via

the underlying physical layers. Hence, IPLIMP modules are

able to exchange data by communicating with the underlying

physical layers which are physically connected. In order to

form such a virtual connection, a module on one system must

have a peer, which is a corresponding module at the same

level on the opposite side of the link. These modules then

communicate by internally connecting to the underlying lay

ers and executing appropriate lower level functions. For

example, downloader and loader modules also form a virtual

connection across an interprocessor link. In this case, the

downloader is the module that transmits applications or ad

ditional protocol layers to its peer module (the loader).

On the other hand, the loader receives transmitted load data

from across a link and stores it in its processor memory.

As shown in the IPLIMP model in figure 2-1, the downloader

and loader modules can connect to their respective IPLIMP

modules, then communicate by calling IPLIMP functions. Sim

ilarly, user processes can form a virtual connection across

an interprocessor link by associating with IPLIMP and uti

lizing IPLIMP functions to transfer data. The protocol used

to accomplish the exchange of data between peers is prede

termined, and mutually agreed upon, by the corresponding

peer modules on each system.

Before peer processes can communicate across a link

by using IPLIMP functions, they must become associated with

17



the IPLIMP module on their host system. An association, or

internal connection, is a defined pathway for communications

between service modules on a system. When modules become

associated, they open a bidirectional line of communication,

so that the underlying protocol can send information to the

higher level module, as well as complete functions requested

by the higher level protocol. IPLIMP provides associate and

dissociate functions so that a downloader, loader, user pro

cess, or some other higher level module can establish and

close such a line of communication to IPLIMP. However, only

one process or module can be associated with IPLIMP at any

given time, so there is no sharing of IPLIMP capabilities.

When issuing the IPLIMP associate function to com

mence communication with IPLIMP, the higher level protocol

identifies send and receive processes to IPLIMP so that they

may be notified whenever the peer system needs them. In

this manner, a logical connection is formed between IPLIMP

and the higher level protocol, allowing IPLIMP to notify the

associated sender and receiver as needed. Such notification

may take place in a number of manners. Generating a soft

ware interrupt, setting a semaphore, and making an entry in

to an event queue are all possible ways to inform a process

that it is being asked to communicate. The method used by

IPLIMP is entirely system dependent.

Conversely, the dissociate function is used by the

associated protocol layer to erase the inter-layer pathway,

thereby terminating its logical connection to IPLIMP. Once

18



IPLIMP is dissociated from a higher level protocol, it is

free to be associated with other processes. While it is not

associated with a sender and receiver, IPLIMP can pass con

trol information across the interprocessor link. However,

IPLIMP is unable to honor requests by its peer system to ex

change data without a line of communication to a higher pro

tocol layer.

The associate and dissociate functions provide the

ability to open and close lines of communication to IPLIMP,

thereby enabling more flexible interaction with IPLIMP. Af

ter a line of communication has been established, associated

processes access specific IPLIMP functions to exchange data

across an interprocessor link. For example, when an associ

ated sender wishes to send a block of data across the link,

it invokes the send function, specifying a buffer address, a

buffer size, and a timeout period for the operation to com

plete within. Following its initiation, the IPLIMP send

function starts a timer for half the user specified timeout

period and waits for the lower level protocol to signal that

the peer receiver is ready. Once the ready indication is

received, the specified buffer is sent directly across the

link. If the timer fires before the ready indication is re

ceived or the operation is completed, IPLIMP starts a timer

for the remaining timeout period and sends a "ready to
send"

command word to the peer system. If a "clear to
send"

com

mand word is received, IPLIMP can proceed to wait for the

receiver ready indication and restart the data transmission.

19



If the entire specified timeout period expires without ob

taining the "clear to
send"

command word, receiving the

ready indication, and completing the data transfer, then

IPLIMP returns a timeout error to the sender process.

Similarly, when the associated receiver wishes to

read a block of data from across the link, it issues the re

ceive function, specifying a buffer address, a buffer size,

and a timeout period for the operation to complete within.

Once invoked, the IPLIMP receive function starts a timer for

half the user specified timeout period, indicates its readi

ness to receive data, and attempts to fill the user buffer

area with data from across the link. If the timer fires be

fore the operation is completed, IPLIMP starts another timer

for the remaining timeout period and sends a "ready to re

ceive"

command word to the peer system. After the peer re

sponds with a "clear to
receive"

command word, IPLIMP pro

ceeds to restart the data reception. If the entire speci

fied timeout period expires without obtaining the "clear to

receive"

command word and completing the data transfer, then

IPLIMP returns a timeout error to the receiver process.

As described above, both send and receive functions

use command words to attempt to initiate data communications

without letting the full timeout period elapse. The use of

such command words, however, is not restricted to the inter

nal operation of IPLIMP. In fact, IPLIMP permits the com

plete asynchronous control of an interprocessor link through

a combination of internal and user specified command words.
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These control commands are well-defined 16-bit values which

have been divided into the following groups: Internal Com

mand Protocol (ICP), Utility Command Protocol (UCP), Status

Response Protocol (SRP), and Status Exchange Protocol (SEP).

By grouping the command words in this manner, interprocessor

link control is organized into functional categories, each

of which addresses a particular area of IPLIMP operations.

For example, IPLIMP uses ICP commands to maintain

internal control. The commands used by the send and receive

functions to wake up the peer system and grant clearance to

transfer data are ICP commands. Additional ICP commands are

used to indicate when a sender or receiver is not present in

response to peer ready commands. Finally, ICP command words

are defined for aborting operations, initiating a status ex

change using SRP and SEP commands, and flagging illegal com

mands. Thus, there is an ICP command word available to help

regulate every facet of internal IPLIMP communications.

The next group of IPLIMP command words was designed

to be used as input to the send command function available

for higher level protocols to control IPLIMP operations ex

ternally. When an associated process wishes to transmit

control information across the link, it issues the send com

mand function, passing IPLIMP the UCP command word to be

sent and a timeout period, if appropriate, for a response.

For instance, UCP command words are defined to allow higher

level protocols to wake up their peer send and receive pro

cesses. Though IPLIMP may attempt to wake up an adjacent
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user process during the execution of a send or receive func

tion, an IPLIMP user may try to notify its peer process even

before it initiates a data transfer. in this manner, IPLIMP

users can synchronize their interaction without having to

wait for valuable timeout time to elapse. Accompanying the

two commands to notify adjacent processes are UCP commands

for requesting to download an adjacent system, requesting a

load module from an adjacent system, and giving the go ahead

to send a data block containing further control information.

By using the send command function to transmit the various

UCP commands, higher level protocols can exert external con

trol over IPLIMP operations and solicit IPLIMP activity on

the peer system.

The remaining two command groups are used internally

by IPLIMP to complete the exchange of status initiated by an

ICP status request command. A status exchange protocol is

used by IPLIMP to obtain information about the operating

characteristics of the adjacent system. When IPLIMP first

connects to the underlying protocol layers, it attempts to

send a status request to its peer. In response to the ICP

status request, the peer IPLIMP module sends back an SRP

command word containing the system status. Similarly, the

initiating IPLIMP module returns an SEP command word, in or

der to exchange status, following the reception of an SRP

command word. This transfer of status information is needed

to convey specific system characteristics before enabling

full interprocessor communications.
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If IPLIMP did not provide such a mechanism for ex

changing status, each system would have to make assumptions

about the other, which could ultimately lead to a complete

communication failure. For example, suppose a link has been

operational for quite some time and one of the systems is

powered down, then replaced by a processor with different

characteristics (i.e., a loadable microcomputer is replaced

by a multiuser multitasking minicomputer). Once the new

system is powered up, the adjacent system must be informed

of its capabilities before inappropriately attempting system

downloads or remote control. Not only can functions fail,

but others may never be tried, simply because one system may

underestimate the capabilities of the other. Furthermore,

imagine if one processor disables communication while the

adjacent system is off-line, but is never informed of the

availability of the link when the adjacent processor resumes

operation. IPLIMP avoids these sticky situations by initi

ating the simple exchange of SRP and SEP command words while

synchronizing operations, immediately upon its connection to

the lower level protocols.

IPLIMP'

s implementation of SRP and SEP commands for

communication synchronization is derived from the three-way

handshake technique designed to handle delayed or lost mes

sages and acknowledgements [19,20]. A three-way handshake

usually consists of a series of three messages in which each

successive message contains response data, a message number,

and the number of the message being acknowledged. Since the
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messages in the series must be acknowledged sequentially,

any message containing an acknowledgement number that is out

of order can be handled without confusion. In addition to

acknowledging messages by number, the three-way handshake

strictly defines message content, so that once the data ex

change is initiated, it will either be completed or rejected

within the next two transfers. Thus, a synchronized data

exchange is achieved without deadlocks, infinite loops, loss

of data, or similar problems associated with invalid message

sequences. Although IPLIMP does not employ a message num

bering scheme, the SRP and SEP commands are structured to

provide a reliable three-step exchange of status, regardless

of which system initiates the exchange or when it is re

quested.

Though the preceeding discussion of the four IPLIMP

command groups has left their physical values to be revealed

in the appendix, it is important to note that it is the def

inition of these command groups, the values chosen, and the

ways in which they are handled that provide some of the key

distinguishing points of IPLIMP. Even the manner in which

IPLIMP relies upon lower level protocols to segregate these

command words from normal user data contrasts with typical

link control techniques. However, once identified, control

commands are handled by IPLIMP as they would be by most link

protocols. Unlike data that is communicated via the send

and receive functions, reception of a command word is more

of an asynchronous event. Since the lower levels take care
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of identifying the command words, IPLIMP supplies a command

handler to which the lower level protocols pass commands as

they are received. Once activated, the command word handler

checks command validity, performs any required IPLIMP opera

tions, and returns information, if necessary, by sending an

appropriate ICP command word. As with any control protocol,

the command handler must execute as quickly and efficiently

as possible in order to ensure that critical functions are

immediately completed.

For instance, the "request to
download"

and "request

for
load"

UCP command words serve to initiate IPLIMP down

loading/loading services. These services may be required by

a system that needs a load module to function properly- In

order to facilitate the downloading of a system, the IPLIMP

command handler quickly engages the downloading/loading ser

vices upon the valid reception of one of these commands. A

download protocol is then used to handle the communication

between a downloader process on the system sending the load

module and a loader process on the system receiving the load

module. Though somewhat higher level in functionality, such

a download protocol is defined as an integral component of

IPLIMP- As illustrated above in figure 2-1, this download

protocol resides at an intermediate level between normal us

er processes and IPLIMP itself. Therefore, since the down

load protocol is so closely associated with IPLIMP, it seems

to fit logically within the IPLIMP specification. In fact,

Digital Equipment Corporation designed the Maintenance Oper-
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ation Protocol (MOP) to provide similar lower level services

for DECNET [7] .

The IPLIMP download protocol was defined to support

systems that cannot archive their own user applications. It

is worth noticing, however, that the implementation of these

downloading services is completely optional and dependent

upon the functionality desired by the systems using the in

terprocessor link. For instance, if a system requires the

ability to be loaded across the link, then it needs a loader

process that adheres to the prescribed download protocol.

On the other hand, if a system is relied upon to transmit

loads across the link, then it needs the corresponding
down-

loader module. In either case, the IPLIMP download protocol

describes a methodology for loading systems across an inter

processor link.

A downloader process is either activated by the lo

cal system when it wants to send a load module to a peer or

by IPLIMP upon reception of a UCP "request for
load"

command

word. If a downloader has been activated by IPLIMP, it must

issue the send command function to transmit a UCP "send con

trol
block"

command word, which signals the peer loader pro

cess to continue. Next, the downloader issues the receive

function to read a filename block ( FNB ) from the loader. An

FNB is a 64-byte block containing an ASCII character string

which is used to specify a load module. Such a specifica

tion may be represented differently from system to system

due to the disparity between file systems. If the down-
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loader was instead activated by the local system, the file

specification for the load module must be passed internally

to the downloader process. Conversely, a loader process is

either activated by the local system when it wants to obtain

a load module from a peer or by IPLIMP upon receiving a UCP

"request to
download"

command word. If loader operation was

initiated by the local system, it issues the send command

function to transmit a UCP "request for
load"

command word

across the link. When the downloader replies with the UCP

"send control
block"

command, the loader issues the send

function to send the FNB. Finally, the loader hibernates,

waiting to be awakened by IPLIMP upon receiving a "request

to
download"

command. The downloader sends this command on

ly after it has located the file containing the load module

(whether specified by the local system or an FNB), and it is

ready to begin downloading data. At this point, the down

load protocol continues as if the downloading system had re

quested to download its peer.

Before the actual downloading can begin, however,

the systems involved must exchange critical information de

scribing the pending load. This handshake is initiated when

the downloader issues the send function to transmit a load

control block (LCB) to the peer loader. An LCB is a 16-byte

block containing four 32-bit fields, each representing a 32-

bit integer value stored low-order bit first. The first

field (load address) specifies the memory location where the

load module is to be stored. The next field (load size)

27



contains the length of the load module in bytes. The third

LCB field (fragment size) is the size in bytes of the frag

ments that will be transferred across the link in succession

until loading is completed. The size of the last fragment

may be somewhat less than this size if there is not enough

load module data remaining to form a full fragment. The

last LCB field (transfer address) specifies the memory loca

tion where the execution of the load module begins. These

four LCB fields are filled from information obtained by the

downloader from the load module file- Once the loader has

received the LCB, the data is examined and an LCB acknowl

edgement (LCB ACK) is created to approve or reject the down

load request. An LCB ACK is 2 bytes in length with bits set

to represent reasons for download rejection, such as illegal

load address, illegal load size, illegal fragment size, or

illegal transfer address. Following the successful exchange

of an LCB and an LCB ACK, with loader approval, downloading

may proceed. The load module is then transmitted from the

downloader to the peer loader, fragment by fragment, through

the use of the send and receive functions.

Though IPLIMP details have been saved for specifica

tion in appendix B, the operation of IPLIMP functions and

services has now been presented. According to the IPLIMP

characteristics, such operation should be capable of provid

ing a basis for image-capable communications over an inter

processor link. By using the IPLIMP specification as a

quide for protocol development, systems may be constructed
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to accommodate the transfer of images. By adhering to the

IPLIMP specification more rigorously, systems will assure

themselves of a degree of low level compatibility.

2 . 3 STANDARDS

As described above, by utilizing IPLIMP, systems can

expect to maintain low level image-capable communications

compatibility with other IPLIMP compliant systems. However,

IPLIMP is just one of many available communications proto

cols, each of which has been optimized for a particular set

of applications. Undoubtedly, this situation poses problems

for connecting systems that do not adhere to the same commu

nications guidelines. In fact, the growing number of pro

prietary protocols has prompted the push for the development

of standard communications rules. The steps taken in this

direction have been divided along two paths: acceptance of

"de
facto"

standards and use of the International Standards

Organization (ISO) proposals [10].

Since it will be difficult to arrive at a consensus

as to what proprietary protocol is the "de
facto"

standard

for communications, it might be more reasonable to adhere to

a standard methodology for designing systems. Tanenbaum ar

gues that using a layered design reduces complexity by asso

ciating groups of functions with particular levels of con

trol, thereby creating a modular architecture which can be

easily modified or adapted to at any level [20]. To provide
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such a standard, ISO has developed the Open Systems Inter

connect (OSI) reference model which describes a general lay

ered communications architecture [13,21]. As established

communications protocols such as SNA and DECNET have begun

to adapt themselves to this model, support for ISO standards

has increased [17,18]. Due to the growing importance of the

ISO OSI reference model, it is imperative to recognize how

IPLIMP either fits, or does not fit, into the standard lay

ered structure of the model.

The ISO OSI reference model provides a framework for

the development of communications architectures as a basis

for simplifying the interconnection of systems [15]. Acting

as a communications standard, the ISO OSI model offers a set

of guidelines for classification of layers in terms of func

tionality at seven distinct levels [13]. As shown in figure

2-2, the three lowest layers (physical, data link, and net

work) specify an interface chain across a communications

subnet, while the remaining four layers (transport, session,

presentation, and application) define an end-to-end system

interface. According to the OSI model, the subnet consists

of a series of intermediate relaying systems which use only

the lower layers of functionality in order to route informa

tion between the end nodes [13]. This exemplifies how ISO

OSI based systems implement whatever layers, or functions

within layers, they needed to meet specified communications

requirements. The functions that ISO has grouped together

for each OSI layer have been listed in table 2-3.
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Figure 2-2
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LAYER

1 - PHYSICAL

2 - DATA LINK

3 - NETWORK

ISO OSI PROTOCOL LAYERS

+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

. ++++++++++++++++++++++++ +++++++++++++++++++++++++++

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

4 - TRANSPORT

5 - SESSION

6 - PRESENTATION

7 - APPLICATION

FUNCTIONS

-

physical characteristics

(electrical & mechanical)
- voltage & time specs

-

signalling requirements

-

connection type
- number of connections

- link interconnection & control

- synchronization

-

physical error handling
- data encapsulation/framing
- bit/character stuffing
- flow control

- message segmentation

-

subnet to host interface

(datagram service vs.

virtual circuits)
-

routing
- subnet flow control

-

accounting services

- congestion prevention

- deadlock prevention

- connection multiplexing
- end-to-end flow control

- connection establishment

- connection termination

- process naming

- system access verification

- management services

- crash recovery
- synchronization services

- transport error handling

-

security (data encryption)

- data compression

- terminal handling
- file transfer

- user defined protocols

Table 2-3
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Of the functions listed in table 2-3, those that are

assigned to the data link layer are most closely associated

with the services that are performed by IPLIMP. However, as

indicated in table 2-1, IPLIMP does not perform such data

link functions as segmentation or encapsulation. Further

more, IPLIMP relies on some lower level protocol to provide

services such as data and control segregation. The ISO OSI

model, on the other hand, accommodates message segregation

with data link framing services or specialized physical sig

nalling. While the ISO OSI model does not directly address

the problem of image capable communications in any of its

layers, IPLIMP describes a basic set of data link functions

that can support the transfer of images. Therefore, though

it does not support every ISO OSI data link function, IPLIMP

can be treated as a data link protocol. In that regard,

IPLIMP can be combined with other data link functions, if

necessary, to characterize the data link protocol for a

given application. In a similar fashion, additional layers

can be added to the customized data link layer in order to

characterize an entire communications architecture. In this

manner, IPLIMP is compatible with the ISO OSI layered archi

tecture at the data link level. Similar comparisons have

also been made by prior image capable interprocessor link

protocols, indicating that a low level link protocol can be

applied to full network communications under ISO OSI guide

lines [1,9,11].
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3 IMPLEMENTATION DESCRIPTIONS

By using IPLIMP as a basis for communications, sev

eral systems have been able to support image-capable opera

tions successfully. In fact, three interprocessor link con

figurations were implemented in order to verify IPLIMP capa

bilities. In each of these three prototypes, IPLIMP was em

ployed as a control facility for DRll-W compatible interface

hardware. DRll-W-type interfaces were selected because they

possess the underlying features required for IPLIMP support.

Among the DRll-W characteristics that can help accommodate

the adaptation of IPLIMP are DMA parallel data transmission,

asynchronous control word transmission, error checking, and

status bit notification when the peer receiver is ready for

data. The actual interfaces, which were provided by Eastman

Kodak Company's Digital Technology Research Lab, were manu

factured by Digital Equipment Corporation as standard off-

the-shelf communications components.

3.1 AN INTRAPROCESSOR LINK

The first IPLIMP compliant system, which is shown in

figure 3-1, was created by connecting together two DRll-W

16-bit parallel DMA interface cards that plugged into the

same PDP-11/34 minicomputer. The initial implementation was

centered around a DRll-W device driver written for the RSX-

11M operating system running on the PDP-11/34. While normal
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RSX-llM driver mechanisms were used to provide a callable

set of IPLIMP functions, a method for aborting IPLIMP opera

tions, and an internal IPLIMP command word handler, special

code was written to synchronize the timing of IPLIMP events

and to set local event flags for notifying user processes

[8]. The driver code was written in the PDP-11 assembly

language (MACRO-11), since it is the language best suited

for writing efficient RSX-llM system level software.

AN INTRAPROCESSOR LINK

++++++++++++++++++++++++++++++++++

+ + + +

+ + + +

+ DRll-W + PDPll/34 + DRll-W +

+ + + +

+ + + +

++++++++++++++++++++++++++++++++++

Figure 3-1

Though the driver code was written in MACRO-11, a

test program was written in FORTRAN-77 to demonstrate that

higher level programming languages can utilize the MACRO-11

coded driver functions. In order to exercise the intrapro-

cessor link and verify IPLIMP functionality, the test pro

gram allowed users to select various combinations of send

and receive wait states to perform a loopback test across

the link. This loopback test consisted of creating records,

sending data across the link, comparing the data received
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with those sent, sending data back, recomparing, and compil

ing results. Use of this loopback test was important during

the development of the IPLIMP specification as well as the

DRll-W device driver.

Though the intraprocessor link configuration and its

associated software were vital during the initial stages of

development of the IPLIMP specification, they did not exer

cise every IPLIMP function and feature. However, it was in

part due to the fact that it did not require complete IPLIMP

support that the intraprocessor link was chosen as the first

IPLIMP prototype. By utilizing a single processor for de

velopment and testing, the bulk of the IPLIMP protocol was

implemented and verified with approximately half the effort

of that needed for conventional multi-processor interproces

sor link communications systems. Also, since there was no

requirement for transferring additional protocol layers be

tween processors, there was no need to employ IPLIMP down

loading/loading services. Thus, this first step toward pro

ving IPLIMP functionality was accomplished by keeping both

hardware and software interfacing, debugging, and modifica

tion as simple as possible.

3.2 INTERPROCESSOR LINK #1

The second step toward proving IPLIMP functionality

was to support an interprocessor link between two systems,

using the full set of IPLIMP features. This was achieved by
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expanding upon the initial device driver and test program

written for the first prototype. In order to minimize the

time needed to develop the second prototype, as much of the

first prototype was used as possible. This was accomplished

by connecting a third DRll-W interface card on the PDP-11/34

to a compatible DRVll-WA interface module on an SBC-11/21

(FALCON) microcomputer, as shown in figure 3-2 below. In

this manner, the second prototype was able to utilize the

initial RSX-llM implementation of IPLIMP, leaving the bulk

of the development to the FALCON system. Originally, the

FALCON used a DRVll-B interface module to communicate with

the PDP-11/34, but since the DRVll-B needed hardware modifi

cations in order to work properly, the more compact, fully

functional DRVll-WA was installed.

INTERPROCESSOR LINK #1

+++++++++++++++++++++++

+ + +

+ + +

+ PDPll/34 + DRll-W +

+ + +.

+ + +

+++++++++++++++++++++++

Figure 3-2

+ DRVll-WA + SBC11/21 +

.+ + +

+ + +

+++++++++++++++++++++++

The development required for the FALCON system con

sisted mainly of writing a ROM-resident executive based on

IPLIMP in MACRO-11. This executive included a loader module

for obtaining
applications software that could not be stored

on the FALCON. Thus, a corresponding downloader utility was
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required for the PDP-11/34 which could be activated either

by the DRll-W driver upon receiving a load request from the

FALCON, or by a preloader utility upon accepting a download

command from a terminal. A test procedure, similar in func

tionality to that of the loopback link test, was written in

FORTRAN-77 for the PDP-11/34, while a downloadable peer pro

cess was written in MACRO-11 for the FALCON.

3.3 INTERPROCESSOR LINK #2

Comprehensive verification of IPLIMP functionality

was completed on a third prototype which featured a third

type of CPU and another interprocessor link combination.

The final IPLIMP compliant prototype, shown in figure 3-3,

was formed by connecting a DRVll-WA interface board residing

on a Q-BUS based PDP-11/23 microcomputer to another DRVll-WA

interface on a second FALCON system. As with the previous

interprocessor link implementation, the DRVll-B interface

originally used on the FALCON was replaced with a DRVll-WA.

Since the PDP-11/23 microcomputer operated under RSX-llM,

IPLIMP support was obtainable by adding conditional-code to

the DRll-W driver for DRVll-WA interface control. Aside

from what resulted in minor additions to the DRll-W driver,

identical software was used on both the second and third

IPLIMP prototype interprocessor links. Thus, by using the

UNIBUS based PDP-11/34 and the Q-BUS based PDP-11/23 and

FALCON systems, UNIBUS to UNIBUS (intraprocessor link),

38



UNIBUS to Q-BUS (interprocessor link #1), and Q-BUS to Q-BUS

(interprocessor link #2) image-capable communications sys

tems were designed to operate under IPLIMP control.

INTERPROCESSOR LINK #3

+++++++++++++++++++-1-+++ -H I I I I I I t I I I I I I I I I I I I I I I-

+ + + + + +

+ + +- + + +

+ PDP11/23 + DRVll-WA + + DRVll-WA + SBC11/21 +

+ + + + + +

+ + + + + +

+++++++++++++++++++++++ -l l l I I I I I I I I t I I i l l l I I I l-

Figure 3-3
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4 CONCLUSIONS

IPLIMP, an image-capable interprocessor link commu

nications protocol, has been designed to provide flexibility

with a minimal amount of overhead. At a level comparable to

the ISO OSI data link layer, IPLIMP defines the basic set of

functions and services needed to facilitate image communica

tions over an interprocessor link. Use of such a protocol

may help to improve the development of imaging systems. For

example, following the development of the second prototype

system described in chapter 3, little modification was nec

essary when changing processors to form the third prototype.

Since this is a simple case, imagine if instead of replacing

a FALCON host, an image digitizing unit was used to replace

the FALCON. In this case, the image digitizer would have to

be designed to follow IPLIMP, as was the FALCON, and test

procedures would have to be designed to support the compari

son of data sent by the digitizer when scanning a known im

age. Similar changes would be expected if changing from the

image digitizer to an image printer or display unit. Notice

that neither situation requires modification to the IPLIMP

layer. Compare this, however, to the customization required

to develop the Kodak interfaces mentioned in chapter 1. The

same device changes made to a previously customized system

would necessitate the development of new interface control

protocols, user utilities, and test procedures, due to the

tailoring of interfaces to specific device needs rather than
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designing links for general image transfer functionality.

Thus, with IPLIMP, there is a potential for reduced

design complexity and customization, as less attention needs

to be paid to the host when interfacing new devices. At

this point, several avenues may be explored to achieve the

full benefit of IPLIMP services. First, DRll-W-compatible

IPLIMP implementations could be developed for additional op

erating systems in order to build a base of common IPLIMP

support for imaging devices. In fact, a VMS implementation

is already nearing completion, while IPLIMP development has

recently been initiated for a Motorola VMEbus system. Sec

ond, IPLIMP support could be provided for additional physi

cal subsystems such as a simple dual-node base band channel

or a fiber optic link (uni-fiber or multi-fiber). Building

upon this base of IPLIMP support, routing and flow control

protocols could be added to support complete image-capable

network services. Of course, consideration must be given to

image-capable communications requirements if such protocols

are developed. Finally, work could be done to support image

communications over topologies such as broadcast channels or

rings. Here, specialized priority schemes might help main

tain the flow of critical image information to/from highly

volatile devices, while non-critical nodes are delayed.

Regardless of the avenue taken, IPLIMP can be em

ployed as a basis for image-capable communications. For low

level interprocessor link applications, IPLIMP defines a

flexible protocol adaptable to various speed requirements on
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several hardware architectures. With a common basis for im

age communications, imaging subsystems become more trans

portable. For higher level communications between multiple

imaging systems, IPLIMP provides a callable set of functions

to affect the transfer of images between adjacent points.

If higher level image capable protocols can be designed, a

complete architecture for image communications applications

can be developed. At a low level, IPLIMP provides a poten

tial starting point for this work.
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APPENDIX A GLOSSARY

ASSOCIATE: To form a logical connection between commu

nications modules on the same system.

DISSOCIATE: To terminate a logical connection between

communications modules on the same system.

DOWNLOADER: A module that transmits operational data to

its peer loader module over a communications

system. The transmitted data is typically
used to continue execution on the processor

which is being loaded.

DOWNLOAD PROTOCOL: The rules and regulations governing
the transfer of data between a down-

loader and a loader over a communi

cations system.

ENCAPSULATION: The process of adding control information to

units of data being transmitted over a com

munications system.

FRAMING: See SEGMENTATION,

HEADER: The added control information transmitted with the

original data after encapsulation.

IMAGE: A visible entity, or the data used to create such an

entity, i.e., digital information.

IMAGE CAPABLE: Able to communicate images or large amounts

of data at speeds consistent with the image

generator .

INTERFACE: A connection between communications modules,

Usually, however, the physical connection

between processors, or the hardware modules

used to form such a connection.
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INTERNAL CONNECTION: A logical link or association formed

between modules on the same system.

INTERPROCESSOR LINK: A communications system that allows

the transfer of information between

two otherwise separate processors.

INTRAPROCESSOR LINK: A communications system that allows

the transfer of information between

different locations within the same

processor .

LOADER: A module that receives operational data from its

peer downloader module over a communications system.

The transmitted data is typically used for further

execution by the processor receiving the load.

PEERS: Modules residing at the same level on opposite ends

of a communications link.

PHYSICAL CONNECTION: An actual link between otherwise

separate processors that enables the

raw exchange of communications data.

PROTOCOL: A set of rules, formats, and/or procedures

that defines the interaction between modules

in a communications system.

SEGMENTATION: The process of dividing units of information

to be transferred into smaller units before

actual transmission.

THREE-WAY HANDSHAKE: A technique for handling delayed or

lost messages and their respective

acknowledgements. Based on the use

of numbered messages and defined re

sponses in a three message sequence

VIRTUAL CONNECTION: A link between modules on separate

systems that relies on the physical

link created at some lower level.
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APPENDIX B IPLIMP ALGORITHMIC SPECIFICATION

The complete set of IPLIMP functions is presented in

this appendix, modelled in the form of a general algorithmic

notation. The pseudo-code, along with the associated data

structure definitions and value assignments, is intended to

serve as the primary specification for any implementation of

IPLIMP. Although this model is presented in a form which is

optimized for clarity of presentation, actual IPLIMP imple

mentations will undoubtedly exhibit more complexity, since

they must adapt to any architectural constraints imposed by

the particular interprocessor interfaces. Within this con

text, it is important to realize that adhering to the struc

ture of this model is not mandatory for achieving a correct

IPLIMP implementation. Instead, the structure of this model

is useful only as an aide to understanding the required be

havioral aspects of the internally and externally initiated

IPLIMP functions. Furthermore, the use of the algorithmic

notation for this model does not imply that IPLIMP must be

implemented in software. Therefore, an actual IPLIMP imple

mentation may be a complex structure consisting of software,

firmware, and/or hardware modules.

As an aide to following this IPLIMP model, a number

of conventions are listed below in tables B-l, B-2 , and B-3.

The various symbols and keywords described below are not re

quired IPLIMP mnemonics, though they do provide a consistent

terminology for describing functions, data, and operations.
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PARAMETRIC CONVENTIONS

++++++++++++++++++++++++++++++++++++++++++

+ +

+ +

+ PARAMI .descriptor - A logical, system dependent value +

+ used as input to a function. +

+ +

+ +

+ PARAMO. descriptor - A logical, system dependent value +

+ used as output from a function or +

+ as a status indicator following a +

+ function call. +

+ +

+ +

+ ICP. descriptor - A physical, system independent value +

+ that is transferred across an inter- +

+ processor link for IPLIMP operations +

+ control. +

+ +

+ +

+ UCP. descriptor - A physical, system independent value +

+ that the IPLIMP user sends to IPLIMP +

+ to transfer across an interprocessor +

+ link for IPLIMP operations control. +

+ +

+ +

+ STATUS_RESPONSE.modifier - A physical, system dependent +

+ value that is transferred +

+ across an interprocessor +

+ link as an answer to a stat- +

+ us request and as a request +

+ for a status exchange. +

+ +

+ +

+ STATUS_EXCHANGE.modifier
- A physical, system dependent +

+ value that is transferred +

+ across an interprocessor +

+ link as an answer to a stat- +

+ us response. +

+

+

+

+

+

+

+ descriptor = An identifier specifying a unique +

value. +

+

+

modifier = An identifier specifying a modified +

+
or partially system dependent value. +

+

+

Table B-l
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FUNCTIONAL CONVENTIONS

+++++++++++++++++++++++++++++++++++++++++++

+ +

+ +

+ Primitive . function - A primitive function or service +

+ provided by IPLIMP to an IPLIMP +

+ user or higher level protocol. +

+ +

+ +

+ System. function - A system function or service accessed +

+ by IPLIMP. +

+ +

+ +

+ Sublevel . function - A lower level function or service +

+ accessed by IPLIMP. +

+ +

+ +

+ function = An identifier specifying a unique +

+ service. +

+ +

+ +

++++++++++++++++++++++++++++++++++++++++++++

Table B-2

OPERATIONAL CONVENTIONS

+++++++++++++++++++++++++++++++++++++++++++++++

+ +

+ +

+ wait
- Specifies a set of wait conditions and suspends +

+ execution until at least one of them is met. A +

+ suspended state can be superseded by the occur- +

+ rence of an event which causes IPLIMP to termi- +

+ nate execution at the wait point, continuing at +

+ some other location. +

+ +

+ +

+ execute
- Specifies a function which must be executed +

+ before continuing with the next instruction. +

+
+

+
+

+
"state"

- A logical condition flag used to describe the +

+ state of internal IPLIMP operations. +

+
+

+
+

Table B-3
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B.l CONTROL COMMANDS AND STATUS CODES

CONTROL COMMAND AND STATUS PROTOCOLS

+++++++++++++++++++++++++++++++++++++++++++++

+ +

+ 16 BIT COMMANDS PROTOCOL +

+ +

+ +

+ +

+ 000000 - 037777 INTERNAL COMMAND PROTOCOL (ICP) +

+ +

+ +

+ 040000 - 077777 UTILITY COMMAND PROTOCOL (UCP) +

+ +

+ +

+ 100000 - 137777 STATUS RESPONSE PROTOCOL (SRP) +

+ +

+ +

+ 140000 - 177777 STATUS EXCHANGE PROTOCOL (SEP) +

+ +

++++++++++++++++++++++++++++++++++++++++++++++++++

SRP & SEP STATUS CODE BIT DEFINITIONS

+++++++++++++++++++++++++++++++++++++++++++++

+ +

+ BIT MASK MEANING +

+

+

+

000001 Downloader_Resident +

+

+

000002 Loader_Resident +

+

+

+

+

+

+

+

+

+

+

+

+ 000004-020000 RESERVED +

+
+

+

+

+

+

+

+

+

040000 status_Exchange_Flag +

+

+

100000 valid_Status_Flag +

+
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UCP COMMAND CODE DEFINITIONS

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
+

+
+ COMMAND CODE DEFINITION +

+

+

+ 040001 UCP.Notify_Adjacent_Receiver +

+

+ 040002 UCP.Notify_Adjacent_Sender +

+

+

+

+

+

+

+

+

+

+

+

+ 040004 UCP. Load Request +

+

+

+

+

+ 040010 UCP. Download Request +

+
+

+

+

+

+ 040020 UCP.Send_Control Block +

+
+

+
+

+ 040040 RESERVED +

+

+

+ 040100 RESERVED +

+ +

+ +

+ 040200 RESERVED +

+ +

+ +

+ 040400 RESERVED +

+ +

+ +

+ 041000 RESERVED +

+ +

+ +

+ 042000 RESERVED +

+ +

+ +

+ 044000 RESERVED +

+ +

+ +

+ 050000 RESERVED +

+ +

+ +

+ 060000 RESERVED +

+ +

+ +

+ 040000-077777 ILLEGAL (UNLESS DEFINED ABOVE) +

+ +

+++++++++++++++++++++++++++++++++++++++++++++++
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ICP COMMAND CODE DEFINITIONS

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

+

+ COMMAND CODE DEFINITION

+

+

++

+

+

+

+

000001 ICP. Ready To_Send

+

+

+

+

+

+

+

000002 ICP. Ready To Receive

+

+

+

+

+

+

000004 ICP.Clear To_Send

+

+

+

+

+

+

000010 ICP. Clear To Receive

+

+

+

+

+

+

000020 ICP.Receiver Not_Present

+

+

+

+

+

+

000040 ICP. Sender Not_Present

+

+

+

+

+

+

000100 ICP.Abort_l/0

+

+

+

+

+

+

000200 ICP .
Status_Request

+

+

+

+

+

+

000400
ICP.Invalid_Function

+

+

+

+

+

+

001000 RESERVED

+

+

+

+

+

+

002000 RESERVED

+

+

+

+

+

+

004000 RESERVED

+

+

+

+

+

+

010000
RESERVED

+

+

+

+

+ 020000
RESERVED

+

+

+

+

+
000000-

-037777
ILLEGAL (UNLESS DEFINED

+

ABOVE ) +

+

+

4-+ -I--I-+++++++++ -M
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B.2 ASSOCIATE FUNCTION

Primitive .ASSOCIATE

( PARAMI . Send_Process_Access_Information,
PARAMI . Receive_Process_Access_Information,
PARAMO. Status.modifier) :

1 ) if "IPLIMP IN
USE"

then return PARAMO. Status .Already_Associated

2) if "INVALID
INPUT"

then return PARAMO. Status . Bad_Parameters

3) set S_ACCESS = PARAMI . Send_Process_Access_Information

4) set R_ACCESS = PARAMI .Receive_Process_Access_Information

5) mark "IPLIMP IN
USE"

6) return PARAMO. Status . Success

B.3 DISSOCIATE FUNCTION

Primitive. DISSOCIATE

(PARAMO. Status.modifier) :

1) if "IPLIMP NOT IN
USE"

then return PARAMO. Status .Not_Associated

2) reset S_ACCESS

3) reset R_ACCESS

4) mark "IPLIMP NOT IN
USE"

5) return PARAMO. Status . Success
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B.4 RECEIVE FUNCTION

Primitive .RECEIVE

( PARAMI.Buffer_Address,
PARAMI.Buffer_Size,
PARAMI . Timeout_Count ,
PARAMO. Status.modifier) :

1) if "IPLIMP NOT IN
USE"

then return PARAMO. Status .Not_Associated

2) if "LINK
DOWN"

or
"INITIALIZING"

then return PARAMO. Status . Link_Not_Ready

3) if "INVALID
INPUT"

then return PARAMO. Status .Bad_Parameters

4) set TIMER = (1/2) * (PARAMI .Timeout_Count)

5) execute Sublevel . Receive_Block ( PARAMI .Buffer_Address ,

PARAMI .Buffer_Size)

NOTE: The sublevel protocol must handle whatever

ready indication is needed by the peer system.

6) wait {"RECEIVE
DONE"

, "RECEPTION ERROR", "TIME UP"}

7) if "RECEIVE
DONE"

then return PARAMO. Status . Success

else if "RECEPTION
ERROR"

then return PARAMO. Status .Receive_Error

8) if "PHASE 2 IN
PROGRESS"

then return PARAMO. Status . Timeout_Error

else mark "PHASE 2 IN
PROGRESS"

9) set TIMER = (1/2) * ( PARAMI. Timeout_Count)

10) execute Sublevel . Send_Control ( ICP.Ready_To_Receive )

11) wait { (ICP.Sender_Not_Present) ,
"TIME UP",

( iCP.Clear_To_Receive) }

12) if ( ICP.Sender_Not_Present)

then return PARAMO. Status . Sender_Not_Present

else if "TIME
UP"

then return PARAMO. Status . Timeout_Error

else continue at (5)
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B.5 SEND FUNCTION

Primitive. SEND

( PARAMI.Buffer_Address,
PARAMI

.Buffer_Size,

PARAMI . Timeout_Count ,
PARAMO. Status.modifier) :

1) if "IPLIMP NOT IN
USE"

then return PARAMO. Status .Not_Associated

2) if "LINK
DOWN"

or
"INITIALIZING"

then return PARAMO. Status . Link_Not_Ready

3) if "INVALID INPUT"

then return PARAMO. Status . Bad_Parameters

4) set TIMER = (1/2) * (PARAMI .Timeout_Count)

5) wait {"RECEIVER READY", "TIME UP"}

6) if "TIME
UP"

then continue at (10)

7) execute Sublevel .Transmit_Block ( PARAMI . Buffer_Address ,

PARAMI .Buffer_Size)

8) wait {"TRANSMIT DONE", "TRANSMIT ERROR", "TIME UP"}

9) if "TRANSMIT
DONE"

then return PARAMO. Status . Success

else if "TRANSMIT
ERROR"

then return PARAMO. Status . Send_Error

10) if "PHASE 2 IN
PROGRESS"

then return PARAMO. Status .Timeout_Error

else mark "PHASE 2 IN
PROGRESS"

11) set TIMER = (1/2) * (PARAMI .Timeout_Count)

12) execute Sublevel . Send_Control( ICP. Ready_To_Send)

13) wait { (lCP.Receiver_Not_Present) ,"TIME UP",

( lCP.Clear_To_Send) }

14) if ( ICP.Receiver_Not_Present)

then return STATUS .Receiver_Not_Present

else if "TIME
UP"

then return STATUS .Timeout_Error

else continue at (5)
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B.6 SEND COMMAND FUNCTION

Primitive . SEND_COMMAND

( PARAMI . Command ,

PARAMI . Timeout_Count ,
PARAMO. Status.modifier) :

1) if "IPLIMP NOT IN
USE"

then return PARAMO. Status .Not_Associated

2) if "LINK DOWN"

or
"INITIALIZING"

then return PARAMO. Status
.Link_Not_Ready

3) if "INVALID INPUT"

then return PARAMO. Status .Bad_Parameters

4) case PARAMI .Command:

UCP.Send_Control_Block then continue at (SCl.l)

UCP.Notify_Adjacent_Receiver then continue at (SC2.1)

UCP.Notify_Adjacent_Sender then continue at (SC3.1)

UCP.Load_Request then continue at (SC4.1)

UCP.Download_Request then continue at (SC5.1)

else return PARAMO. Status . lllegal_Command

SCl.l) execute Sublevel . Send_Control ( PARAMI
.Command)

SCI. 2) return PARAMO. Status . Success

SC2.1) set TIMER = ( PARAMI .Timeout_Count)

SC2.2) execute Sublevel . Send_Control ( PARAMI . Command )

SC2.3) wait { ( ICP.Receiver_Not_Present ) , "TIME
UP"

,

( ICP.Clear_To_Send) }

SC2.4) if ( ICP.Receiver_Not_Present)

then return PARAMO. Status .Receiver_Not_Present

else if "TIME
UP"

then return PARAMO. Status .Timeout_Error

else return PARAMO. Status . Success
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SC3.1) set TIMER = (PARAMI
.Timeout_Count)

SC3.2) execute Sublevel . Send_Control ( PARAMI . Command)

SC3.3) wait {( ICP . Sender_Not_Present ), "TIME UP",

( ICP.Clear_To_Receive ) }

SC3.4) if (ICP.Sender_Not_Present)
then return PARAMO. Status . Sender_Not_Present

else if "TIME
UP"

then return PARAMO. Status . Timeout_Error

else return PARAMO. Status . Success

SC4.1) if P_STATUS indicates "PEER DOWNLOADER NOT
RESIDENT"

then return PARAMO. Status . Command_Not_Supported

SC4.2) if "LOADER NOT
RESIDENT"

then return PARAMO. Status . Command_Not_Suppor ted

SC4.3) set TIMER = (PARAMI .Timeout_Count)

SC4.4) execute Sublevel . Send_Control ( PARAMI . Command )

SC4.5) wait {"TIME
UP"

, ( UCP . Send_Control_Block ) }

SC4.6) if "TIME
UP"

then return PARAMO. Status .Timeout_Er ror

else return PARAMO. Status . Success

SC5.1) if P STATUS indicates "PEER LOADER NOT
RESIDENT"

tHen return PARAMO. Status .Command_Not_Suppor ted

SC5.2) if "DOWNLOADER NOT
RESIDENT"

then return PARAMO. Status .Command_Not_Suppor ted

SC5.3) set TIMER = ( PARAMI .
Timeout_Count )

SC5.4) execute Sublevel .
Send_Control ( PARAMI . Command)

SC5.5) wait { "TIME
UP"

, ( UCP .
Send_Control_Block ) }

SC5.6) if "TIME
UP"

then return PARAMO. Status .Timeout_Error

else return PARAMO. Status . Success
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B.7 COMMAND HANDLING PROCESS

Command Handler:

1) wait { ( P_COMMAND ) }

2) case P_COMMAND:

ICP.Ready_To_Send then execute ( CH2 . 1 )

ICP.Ready_To_Receive then execute (CH3.1)

ICP.Clear_To_Send then execute (CH4.1)

ICP.Clear_To_Receive then execute (CH5.1)

ICP.Receiver_Not_Present then execute (CH4.1)

ICP.Sender_Not_Present then execute (CH5.1)

ICP.Abort_I/0 then execute ( CHl . 1 )

ICP.Status_Request then execute (CHll.l)

ICP. Invalid_Function then execute ( CH6 . 1 )

UCP.Notify_Adjacent_Receiver then execute (CH2.1)

UCP.Notify_Adjacent_Sender then execute (CH3.1)

UCP.Load_Request then execute ( CH7 . 1 )

UCP.Download_Request then execute ( CH8 . 1 )

UCP. Send_Control_Block then execute (CH9.1)

STATUS_RESPONSE.modifier then execute (CH13.1)

STATUS_EXCHANGE.modifier then execute (CH12.1)

else execute CH10.1

3) continue at (1)

CHl.l) if "SEND/RECEIVE/SEND COMMAND PRIMITIVE IN
PROGRESS"

then execute System.Abort_Primitive

CHl. 2) return to caller
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CH2.1) if "IPLIMP IN
USE"

then continue at ( CH2 . 4 )

CH2.2) execute Sublevel . Send_Control

( ICP.Receiver_Not_Present)

CH2.3) return to caller

CH2.4) execute System. Notify_Process ( R_ACCESS )

CH2.5) execute Sublevel . Send_Control ( ICP . Clear_To_Send;

CH2.6) continue at (CH2.3)

CH3.1) if "IPLIMP IN
USE"

then continue at (CH3.4)

CH3.2) execute Sublevel . Send_Control

( ICP. Sender_Not_Present )

CH3.3) return to caller

CH3.4) execute System.Notify_Process ( S_ACCESS )

CH3.5) execute Sublevel . Send_Control ( ICP . Clear_To_Receive )

CH3.6) continue at (CH3.3)

CH4.1) if not "WAITING FOR ( ICP . Clear_To_Send )
"

then continue at (CH10.1)

CH4.2) execute System.Wake_Up_Waiting_Primitive

CH4.3) return to caller

CH5.1) if not "WAITING FOR ( ICP . Clear_To_Receive )
"

then continue at (CH10.1)

CH5.2) execute System.Wake_Up_Waiting_Primitive

CH5.3) return to caller
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CH6 . 1 ) execute System. Error_Report

("Invalid Function Flagged By Peer")

CH6 . 2 ) return to caller

CH7.1) if P_STATUS indicates "PEER LOADER NOT
RESIDENT"

then continue at (CH10.1)

CH7.2) if "DOWNLOADER NOT
RESIDENT"

then continue at (CH10.1)

CH7.3) execute System.Activate ( DOWNLOADER, DNL . 1 )

CH7 . 4 ) return to caller

CH8.1) if P_STATUS indicates "PEER DOWNLOADER NOT
RESIDENT"

then continue at (CH10.1)

CH8.2) if "LOADER NOT
RESIDENT"

then continue at (CH10.1)

CH8.3) if "LOADER
WAITING"

then execute System.Wake_Up_Waiting_Process

else execute System.Activate ( LOADER, LDR. 8 )

CH8.4) return to caller

CH9.1) if not "WAITING FOR ( UCP . Send_Control_Block )
"

then continue at (CH10.1)

CH9.2) execute System.Wake_Up_Waiting_Primitive

CH9.3) return to caller

CH10.1) execute Sublevel .
Send_Control ( ICP . Invalid_Function)

CH10.2) execute System. Error_Report

("Peer Function Is Invalid")

CH10.3) return to caller
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CH11.1) if "WAITING FOR STATUS
RESPONSE"

then continue at (CHll.2)

else if "WAITING FOR STATUS
EXCHANGE"

then continue at (CHll.2)
else if "WAITING FOR LINK

UP"

then continue at (CHll.4)
else continue at (CH11.6)

CHll.2) execute Sublevel . Send_Control

( STATUS_RESPONSE . modi fie r )

CHll.3) return to caller

CHll.4) clear "WAITING FOR LINK
UP"

CH11.5) reset TIMER

CH11.6) set "WAITING FOR STATUS
EXCHANGE"

CH11.7) execute Sublevel . Send_Control

( STATUS_RESPONSE.modif ier )

CH11.8) set TIMER = "RETRY
TIME"

CH11.9) wait {"TIME UP"}

CH11.10) if "LINK
UP"

then continue at (CHll.7)

else continue at (Link Initializer)

CH12.1) if "INVALID STATUS
MODIFIER"

then continue at (CH10.1)

CH12.2) set P_STATUS = STATUS_EXCHANGE .modi f ier

CH12.3) if "WAITING FOR LINK
UP"

then continue at (CH12.4)

else if "WAITING FOR STATUS
EXCHANGE"

then continue at (CH12.6)

else continue at (CH12.8)

CH12.4) Clear "WAITING FOR LINK
UP"

CH12.5) continue at (CH12.7)

CH12.6) Clear "WAITING FOR STATUS
EXCHANGE"

CH12.7) reset TIMER

CH12.8) return to caller
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CH13.1) if "INVALID STATUS
MODIFIER"

then continue at (CH10.1)

CH13.2) set P_STATUS = STATUS_RESPONSE .modifier

CH13.3) execute Sublevel . Send_Control

( STATUS_EXCHANGE . modi f i e r )

CH13.4) if "WAITING FOR LINK
UP"

then continue at (CH13.5)
else if "WAITING FOR STATUS

RESPONSE"

then continue at (CH13.7)
else continue at (CH13.9)

CH13.5) clear "WAITING FOR LINK
UP"

CH13.6) continue at (CH13.8)

CH13.7) Clear "WAITING FOR STATUS
RESPONSE"

CH13.8) reset TIMER

CH13.9) return to caller

B.8 LINK INITIALIZATION PROCESS

Link Initializer:

1) execute Sublevel .
Enable_Communications

2) if "LINK
UP"

then continue at (6)

else set "WAITING FOR LINK
UP"

3) set TIMER = "RETRY
TIME"

4) wait {"TIME UP"}

5) continue at (2)

6) clear "WAITING FOR LINK
UP"

7) set "WAITING FOR STATUS
RESPONSE"

8) execute Sublevel .
Send_Control ( ICP. Status_Request )

9) continue at (3)
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B.9 DOWNLOAD PROTOCOL DATA STRUCTURES AND PROCESSES

LOAD CONTROL BLOCK

+++++++++++++++++++++++++++++++++++++++++++++++

+ +

+ LOAD ADDRESS (4 bytes) +

+ +

+++++++++++++++++++++++++++++++++++++++++++++

+ +

+ LOAD SIZE (4 bytes) +

+ +

++++++++++++++++++++++++++++++++++++++++

+ +

+ FRAGMENT SIZE (4 bytes) +

+ +

+++++++++++++++++++++++++++++++++++++

+ +

+ TRANSFER ADDRESS (4 bytes) +

+ +

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

LCB ACK BIT DEFINITIONS

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

+ +

+ BIT MASK MEANING +

+ +

+ +

+ +

+ 000001 ILLEGAL LOAD ADDRESS +

+ +

+ +

+ 000002 ILLEGAL LOAD SIZE +

+ +

+ +

+ 000004 ILLEGAL FRAGMENT SIZE +

+ +

+ +

+ 000010 ILLEGAL TRANSFER ADDRESS +

+ +

+ +

+ 000020-100000 RESERVED +

+ +

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
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Loader

NOTE: The following LOADER and DOWNLOADER algorithms

assume successful execution of each primitive IPLIMP

function. An actual implementation should check the

output status parameter for successful completion as

each function terminates. Also, local variables and

constants are represented using mnemonics. For in

stance, the two symbols Load_Control_Block_Addr and

Load Control_Block_Size are determined by the local

LCB d~ata structure for each algorithm.

LDR.l) execute Primitive .ASSOCIATE ( Dummy . PARAMI ,

Dummy. PARAMI ,

Dummy . PARAMO )

LDR.2) execute Primitive . SEND_COMMAND( UCP . Load_Request ,

Dummy . PARAMO )

LDR.3) execute Primitive . SEND( Filename_Block_Addr ,

Filename_Block_Size ,

Timeout_Count ,

Dummy . PARAMO )

LDR.4) execute Primitive . DISSOCIATE( Dummy . PARAMO)

LDR.5) set TIMER = "RESPONSE
TIME"

LDR.6) wait {"TIME
UP"

, (UCP.Download_Request) }

LDR.7) if "TIME
UP"

then continue at (LDR.17)

LDR.8) if "WAITING FOR ( UCP . Download_Request )
"

then reset TIMER

LDR.9) execute Primitive ,ASSOCIATE( Dummy . PARAMI ,

Dummy .PARAMI ,

Dummy . PARAMO )

LDR.10) execute Primitive . SEND_COMMAND

(UCP.Send_Control_Block)

LDR.ll) execute Primitive .RECEIVE(
Load_Control_Block_Addr ,

Load_Control_Block_Size ,

Timeout_Count ,

Dummy . PARAMO )

LDR.12) initialize ( Fragment_Addr , Fragment_Size ,

Fragment_Count, Last_Fragment_Size )

LDR.13) if "INITIALIZED PARAMETERS
VALID"

then continue at (LDR.18)
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Loader Continued:

LDR.14) flag appropriate LCB_ACK NAK bits

LDR.15) execute Primitive . SEND ( LCB_ACK_Addr ,

LCB_ACK_Size,

Timeout_Count ,

Dummy . PARAMO )

LDR.16) execute Primitive . DISSOCIATE ( Dummy . PARAMO)

LDR.17) terminate Loader process

LDR.18) clear LCB_ACK NAK bits

LDR.19) execute Primitive . SEND( LCB_ACK_Addr ,

LCB_ACK_Size,

Timeout_Count ,

Dummy . PARAMO )

LDR.20) if Fragment_Count = 1

then set Fragment_Size = Last_Fragment_Size

else if Fragment_Count = 0

then continue at (LDR.17)

LDR.21) execute Primitive .RECEIVE( Fragment_Addr ,

Fragment_Size ,

Timeout_Count ,

Dummy . PARAMO )

LDR.22) update ( Fragment_Count , Fragment_Addr )

LDR.23) continue at (LDR.20)

Downloader :

DNL.l) execute Primitive .ASSOCIATE ( Dummy . PARAMI ,

Dummy . PARAMI ,

Dummy . PARAMO )

DNL.2) execute Primitive . SEND_COMMAND

( UCP . Send_Cont rol_Block ,

Dummy . PARAMO )

DNL.3) execute Primitive .RECEIVE( Filename_Block_Addr ,

Filename_Block_Size ,

Timeout_Count ,

Dummy . PARAMO )

DNL.4) continue at (DNL.6)
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Downloader Continued:

DNL.5) execute Primitive .ASSOCIATE( Dummy . PARAMI ,

Dummy .PARAMI ,

Dummy . PARAMO )

DNL.6) execute Primitive . SEND_COMMAND( UCP.Download_Request ,

Dummy . PARAMO )

DNL.7) initialize ( Fragment_Addr , Fragment_Size ,

F ragmen t_Count , Last_Fragment_Size )

DNL.8) execute Primitive . SEND( Load_Control_Block_Addr ,

Load_Control_Block_Size ,

Timeout_Count ,

Dummy . PARAMO )

DNL.9) execute Primitive .RECEIVE ( LCB_ACK_Addr ,

LCB_ACK_Size,

Timeout_Count ,

Dummy . PARAMO )

DNL.10) if "LCB
ACKNOWLEDGED"

then continue at (DNL.13)

DNL.ll) execute Primitive ,DISS0CIATE( Dummy . PARAMO)

DNL.12) terminate Downloader process

DNL.13) if Fragment_Count = 1

then set Fragment_Size = Last_Fragment_Size

else if Fragment_Count = 0

then continue at (DNL.12)

DNL.14) execute Primitive .SEND(
Fragment_Addr ,

Fragment_Size ,

Timeout_Count ,

Dummy . PARAMO )

DNL.15) update ( Fragment_Count , Fragment_Addr )

DNL.16) continue at (DNL.13)

NOTE: There are two entry points for both the LOADER

and the DOWNLOADER. (LDR.l) is entered by a user on

his own system to obtain a load module from a peer

system. (LDR.8) is entered by IPLIMP to finish pro

cessing a download request received from a peer sys

tem that wishes to transmit a load module. (DNL.5)

is entered by a user on his own system to transmit a

load module to a peer system. (DNL.l) is entered by
IPLIMP to finish processing a load request from a

peer system that wishes to receive a load module.
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