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Abstract

Image captioning models typically follow an encoder-decoder architecture which
uses abstract image feature vectors as input to the encoder. One of the most
successful algorithms uses feature vectors extracted from the region proposals
obtained from an object detector. In this work we introduce the Object Relation
Transformer, that builds upon this approach by explicitly incorporating information
about the spatial relationship between input detected objects through geometric
attention. Quantitative and qualitative results demonstrate the importance of such
geometric attention for image captioning, leading to improvements on all common
captioning metrics on the MS-COCO dataset. Code is available at https://
github.com/yahoo/object_relation_transformer.

1 Introduction

Image captioning—the task of providing a natural language description of the content within an
image—lies at the intersection of computer vision and natural language processing. As both of
these research areas are highly active and have experienced many recent advances, progress in
image captioning has naturally followed suit. On the computer vision side, improved convolutional
neural network and object detection architectures have contributed to improved image captioning
systems. On the natural language processing side, more sophisticated sequential models, such as
attention-based recurrent neural networks, have similarly resulted in more accurate caption generation.

Inspired by neural machine translation, most conventional image captioning systems utilize an
encoder-decoder framework, in which an input image is encoded into an intermediate representation
of the information contained within the image, and subsequently decoded into a descriptive text
sequence. This encoding can consist of a single feature vector output of a CNN (as in [25]), or
multiple visual features obtained from different regions within the image. In the latter case, the
regions can be uniformly sampled (e.g., [26]), or guided by an object detector (e.g., [2]) which has
been shown to yield improved performance.

While these detection based encoders represent the state-of-the art, at present they do not utilize
information about the spatial relationships between the detected objects, such as relative position and
size. This information can often be critical to understanding the content within an image, however,
and is used by humans when reasoning about the physical world. Relative position, for example,
can aid in distinguishing “a girl riding a horse” from “a girl standing beside a horse”. Similarly,
relative size can help differentiate between “a woman playing the guitar” and “a woman playing the
ukelele”. Incorporating spatial relationships has been shown to improve the performance of object
detection itself, as demonstrated in [9]. Furthermore, in machine translation encoders, positional
relationships are often encoded, in particular in the case of the Transformer [23], an attention-based
encoder architecture. The use of relative positions and sizes of detected objects, then, should be of
benefit to image captioning visual encoders as well, as evidenced in Figure 1.
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Figure 1: A visualization of self-attention in our proposed Object Relation Transformer. The
transparency of the detected object and its bounding box is proportional to the attention weight with
respect to the chair outlined in red. Our model strongly correlates this chair with the companion
chair to the left, the beach beneath them, and the umbrella above them, relationships displayed in the
generated caption.

Figure 2: Overview of Object Relation Transformer architecture. The Bounding Box Relational
Encoding diagram describes the changes made to the Transformer architecture

In this work, we propose and demonstrate the use of object spatial relationship modeling for image
captioning, specifically within the Transformer encoder-decoder architecture. This is achieved by
incorporating the object relation module of [9] within the Transformer encoder. The contributions of
this paper are as follows:

• We introduce the Object Relation Transformer, an encoder-decoder architecture designed
specifically for image captioning, that incorporates information about the spatial relation-
ships between input detected objects through geometric attention.

• We quantitatively demonstrate the usefulness of geometric attention through both baseline
comparison and an ablation study on the MS-COCO dataset.

• Lastly, we qualitatively show that geometric attention can result in improved captions that
demonstrate enhanced spatial awareness.
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2 Related Work

Many early neural models for image captioning [17, 12, 5, 25] encoded visual information using
a single feature vector representing the image as a whole, and hence did not utilize information
about objects and their spatial relationships. Karpathy and Fei-Fei in [11], as a notable exception
to this global representation approach, extracted features from multiple image regions based on an
R-CNN object detector [7] and generated separate captions for the regions. As a separate caption
was generated for each region, however, the spatial relationship between the detected objects was
not modeled. This is also true of their follow-on dense captioning work [10], which presented an
end-to-end approach for obtaining captions relating to different regions within an image. Fang et al.
in [6] generated image descriptions by first detecting words associated with different regions within
the image. The spatial association was made by applying a fully convolutional neural network to the
image and generating spatial response maps for the target words. Here again, the authors did not
explicitly model any relationships between the spatial regions.

A family of attention based approaches [26, 30, 28] to image captioning have also been proposed that
seek to ground the words in the predicted caption to regions in the image. As the visual attention is
often derived from higher convolutional layers of a CNN, the spatial localization is limited and often
not semantically meaningful. Most similar to our work, Anderson et al. in [2] addressed this limitation
of typical attention models by combining a “bottom-up” attention model with a “top-down” LSTM.
The bottom-up attention acts on mean-pooled convolutional features obtained from the proposed
regions of interest of a Faster R-CNN object detector [20]. The top-down LSTM is a two-layer LSTM
in which the first layer acts as a visual attention model that attends to the relevant detections for the
current token and the second layers is a language LSTM that generates the next token. The authors
demonstrated state-of-the-art performance for both visual question answering and image captioning
using this approach, indicating the benefits of combining features derived from object detection
with visual attention. Again, spatial information—which we propose in this work via geometric
attention—was not utilized. Geometric attention was first introduced by Hu et al. for object detection
in [9]. There, the authors used bounding box coordinates and sizes to infer the importance of the
relationship of pairs of objects, the assumption being that if two bounding boxes are closer and more
similar in size to each other, then their relationship is stronger.

The most successful subsequent work followed the above paradigm of obtaining image features with
an object detector, and generating captions through an attention LSTM. As a way of adding global
context, Yao et al. in [29] introduced two Graph Convolutional Networks: a semantic relationship
graph, and a spatial relationship graph that classifies the relationship between two boxes into 11
classes, such as “inside”, “cover”, or “overlap”. In contrast, our approach directly utilizes the size
ratio and difference of the bounding box coordinates, implicitly encoding and generalizing the
aforementioned relationships. Yang et al. in [27] similarly leveraged graph structures, extracting
object image features into an image scene graph. In addition, they used a semantic scene graph (i.e.,
a graph of objects, their relationships, and their attributes) autoencoder on caption text to embed a
language inductive bias in a dictionary that is shared with the image scene graph. While this model
may learn typical spatial relationships found in text, it is inherently unable to capture the visual
geometry specific to a given image. The use of self-critical reinforcement learning for sentence
generation [21] has also proven to be important for state-of-the-art captioning approaches, such as
those above. Liu et al. in [15] proposed an alternative reinforcement learning approach over a visual
policy that, in effect, acts as an attention mechanism to combine features from the image regions
provided by an object detector. The visual policy, however, does not utilize spatial information about
these image regions.

Recent developments in NLP, namely the Transformer architecture [23] have led to significant
performance improvements for various tasks such as translation [23], text generation [4], and language
understanding [19]. In [22], the Transformer was applied to the task of image captioning. The authors
explored extracting a single global image feature from the image as well as uniformly sampling
features by dividing the image into 8x8 partitions. In the latter case, the feature vectors were fed
in a sequence to the Transformer encoder. In this paper we propose to improve upon this uniform
sampling by adopting the bottom-up approach of [2]. The Transformer architecture is particularly
well suited as a bottom-up visual encoder for captioning since it does not have a notion of order for its
inputs, unlike an RNN. It can, however, successfully model sequential data with the use of positional
encoding, which we apply to the decoded tokens in the caption text. Rather than encode an order to
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objects, our Object Relation Transformer seeks to encode how two objects are spatially related to
each other and weight them accordingly.

3 Proposed Approach

Figure 2 shows an overview of the proposed image captioning algorithm. We first use an object
detector to extract appearance and geometry features from all the detected objects in the image,
as described in Section 3.1. Thereafter, we use the Object Relation Transformer to generate the
caption text. Section 3.2 describes how we use the Transformer architecture [23] in general for image
captioning. Section 3.3 explains our novel addition of box relational encoding to the encoder layer of
the Transformer.

3.1 Object Detection

Following [2], we use Faster R-CNN [20] with ResNet-101 [8] as the base CNN for object detection
and feature extraction. Using intermediate feature maps from the ResNet-101 as inputs, a Region
Proposal Network (RPN) generates bounding boxes for object proposals. Using non-maximum
suppression, overlapping bounding boxes with an intersection-over-union (IoU) exceeding a threshold
of 0.7 are discarded. A region-of-interest (RoI) pooling layer is then used to convert all remaining
bounding boxes to the same spatial size (e.g. 14× 14× 2048). Additional CNN layers are applied
to predict class labels and bounding box refinements for each box proposal. We further discard all
bounding boxes where the class prediction probability is below a threshold of 0.2. Finally, we apply
mean-pooling over the spatial dimension to generate a 2048-dimensional feature vector for each
object bounding box. These feature vectors are then used as inputs to the Transformer model.

3.2 Standard Transformer Model

The Transformer [23] model consists of an encoder and a decoder, both of which are composed of a
stack of layers (in our case 6). For image captioning, our architecture uses the feature vectors from
the object detector as inputs and generates a sequence of words (i.e., the image caption) as outputs.

Every image feature vector is first processed through an input embedding layer, which consists of a
fully-connected layer to reduce the dimension from 2048 to dmodel = 512 followed by a ReLU and a
dropout layer. The embedded feature vectors are then used as input tokens to the first encoder layer
of the Transformer model. We denote xn as the n-th token of a set of N tokens. For encoder layers 2
to 6, we use the output tokens of the previous encoder layer as the input to the current layer.

Each encoder layer consists of a multi-head self-attention layer followed by a small feed-forward
neural network. The self-attention layer itself consists of 8 identical heads. Each attention head first
calculates the queries Q, keys K and values V for the N tokens as follows

Q = XWQ,K = XWK , V = XWV , (1)

where X contains all the input vectors x1...xN stacked into a matrix and WQ, WK , and WV are
learned projection matrices.

The attention weights for the appearance features are then computed according to

ΩA =
QKT

√
dk

(2)

where ΩA is an N × N attention weight matrix, whose elements ωmn
A are the attention weights

between the m-th and n-th token. Following the implementation of [23], we choose a constant scaling
factor of dk = 64, which is the dimension of the key, query, and value vectors. The output of the
head is then calculated as

head(X) = self-attention(Q,K, V ) = softmax(ΩA)V (3)

Equations 1 to 3 are calculated for every head independently. The output of all 8 heads are then
concatenated to one output vector and multiplied with a learned projection matrix WO, i.e.,

MultiHead(Q,K, V ) = Concat(head1, . . . , headh)WO (4)
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The next component of the encoder layer is the point-wise feed-forward network (FFN), which is
applied to each output of the attention layer

FFN(x) = max(0, xW1 + b1)W2 + b2 (5)

where W1,b1 and W2,b2 are the weights and biases of two fully connected layers. In addition,
skip-connections and layer-norm are applied to the outputs of the self-attention and the feed-forward
layer.

The decoder then uses the generated tokens from the last encoder layer as input to generate the caption
text. Since the dimensions of the output tokens of the Transformer encoder are identical to the tokens
used in the original Transformer implementation, we make no modifications on the decoder side. We
refer the reader to the original publication [23] for a detailed explanation of the decoder.

3.3 Object Relation Transformer

In our proposed model, we incorporate relative geometry by modifying the attention weight matrix
ΩA in Equation 2. We multiply the appearance based attention weights ωmn

A of two objects m and
n, by a learned function of their relative position and size. We use the same function that was first
introduced in [9] to improve the classification and non-maximum suppression stages of a Faster
R-CNN object detector.

First we calculate a displacement vector λ(m,n) for bounding boxes m and n from their geometry
features (xm, ym, wm, hm) and (xn, yn, wn, hn) (center coordinates, widths, and heights) as

λ(m,n) =

(

log

( |xm − xn|
wm

)

, log

( |ym − yn|
hm

)

, log

(

wn

wm

)

, log

(

hn

hm

))

, (6)

The geometric attention weights are then calculated as

ωmn
G = ReLU (Emb(λ)WG) (7)

where Emb(·) calculates a high-dimensional embedding following the functions PEpos described in
[23], where sinusoid functions are computed for each value of λ(m,n). In addition, we multiply the
embedding with the learned vector WG to project down to a scalar and apply the ReLU non-linearity.
The geometric attention weights ωmn

G are then incorporated into the attention mechanism according
to

ωmn =
ωmn
G exp(ωmn

A )
∑N

l=1
ωml
G exp(ωml

A )
(8)

where ωmn
A are the appearance based attention weights from Equation 2 and ωmn are the new

combined attention weights.

The output of the head can be calculated as

head(X) = self-attention(Q,K, V ) = ΩV (9)

where Ω is the N ×N matrix whose elements are given by ωmn.

The Bounding Box Relational Encoding diagram in Figure 2 shows the multi-head self-attention layer
of the Object Relation Transformer. Equations 6 to 9 are represented with the Relation boxes.

4 Implementation Details

Our algorithm was developed in PyTorch using the image captioning implementation in [16] as our
basis. We ran our experiments on NVIDIA Tesla V100 GPUs. Our best performing model was
pre-trained for 30 epochs with a softmax cross-entropy loss using the ADAM optimizer with learning
rate defined as in the original Transformer paper, with 20000 warmup steps, and a batch size of 10.
We trained for an additional 30 epochs using self-critical reinforcement learning [21] optimizing for
CIDEr-D score, and did early-stopping for best performance on the validation set (which contains
5000 images). On a single GPU the training with cross-entropy loss and the self-critical training take
about 1 day and 3.5 days, respectively.
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Table 1: Comparative analysis to existing state-of-the-art approaches. The model denoted as Ours
refers to the Object Relation Transformer fine-tuned using self-critical training and generating
captions using beam search with beam size 5.

Algorithm CIDEr-D SPICE BLEU-1 BLEU-4 METEOR ROUGE-L

Att2all [21] 114 - - 34.2 26.7 55.7
Up-Down [2] 120.1 21.4 79.8 36.3 27.7 56.9

Visual-policy[15] 126.3 21.6 – 38.6 28.3 58.5

GCN-LSTM [29]1 127.6 22.0 80.5 38.2 28.5 58.3
SGAE [27] 127.8 22.1 80.8 38.4 28.4 58.6

Ours 128.3 22.6 80.5 38.6 28.7 58.4

The models compared in sections 5.3-5.6 are evaluated after training for 30 epochs with standard
cross-entropy loss, using ADAM optimization with the above learning rate schedule, and with batch
size 15. The evaluation in those sections for the best performing models was obtained setting beam
size to 2, in consistency with other research on image captioning optimization [21] (appendix A).
Only in Table 1, for a fair comparison with other models in the literature, we present our result with
the same beam size of 5 that other works have used to communicate their performance.

5 Experimental Evaluation

5.1 Dataset and Metrics

We trained and evaluated our algorithm on the Microsoft COCO (MS-COCO) 2014 Captions
dataset [14]. We report results on the Karpathy validation and test splits [11], which are com-
monly used in other image captioning publications. The dataset contains 113K training images with
5 human annotated captions for each image. The Karpathy test and validation sets contain 5K images
each. We evaluate our models using the CIDEr-D [24], SPICE [1], BLEU [18], METEOR [3], and
ROUGE-L [13] metrics. While it has been shown experimentally that BLEU and ROUGE have lower
correlation with human judgments than the other metrics [1, 24], the common practice in the image
captioning literature is to report all the aforementioned metrics.

5.2 Comparative Analysis

We compare our proposed algorithm against the best results from a single model1 of the self-critical
sequence training (Att2all) [21] the Bottom-up Top-down (Up-Down) [2] baseline, and the three best
to date image captioning models [15, 29, 27]. Table 1 shows the metrics for the test split as reported
by the authors. Following the implementation of [2], we fine-tune our model using the self-critical
training optimized for CIDEr-D score [21] and apply beam search with beam size 5, achieving a 6.8%
relative improvement over the Up-Down baseline, as well as the state-of-the-art for the captioning
specific metrics CIDEr-D, SPICE, as well as METEOR, and BLEU-4.

5.3 Positional Encoding

Our proposed geometric attention can be seen as a replacement for the positional encoding of the
original Transformer network. While objects do not have an inherent notion of order, there do exist
some simpler analogues to positional encoding, such as ordering by object size, or left-to-right or
top-to-bottom based on bounding box coordinates. We provide a comparison between our geometric
attention and these object orderings in Table 2. For box size, we simply calculate the area of each
bounding box and order from largest to smallest. For left-to-right we order bounding boxes according
to the x-coordinate of their centroids. Analogous ordering is performed for top-to-bottom using the
centroid y-coordinate. Based on the CIDEr-D scores shown, adding such an artificial ordering to the
detected objects decreases the performance. We observed similar decreases in performance across all
other metrics (SPICE, BLEU, METEOR and ROUGE-L).

1Some publications include results obtained from an ensemble of models. Specifically, the ensemble of two
distinct graph convolution networks in GCN-LSTM [29] achieves a superior CIDEr-D score to our stand-alone
model.
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Table 2: Positional Encoding Comparison (models trained with softmax cross-entropy for 30 epochs)

Positional Encoding CIDEr-D

no encoding 111.0
positional encoding (ordered by box size) 108.7
positional encoding (ordered left-to-right) 110.2

positional encoding (ordered top-to-bottom) 109.1
geometric attention 112.6

Table 3: Ablation Study. All metrics are reported for the validation and the test split, after training
with softmax cross-entropy for 30 epochs. The Transformer (Transf) and the Object Relational
Transformer (ObjRel Transf) is described in detail in Section 3

Algorithm CIDEr-D SPICE BLEU-1 BLEU-4 METEOR ROUGE-L

Up-Down + LSTM
val 105.6 19.7 75.5 32.9 26.5 55.6
test 106.6 19.9 75.6 32.9 26.5 55.4

Up-Down + Transf
val 110.5 20.8 75.2 33.3 27.6 55.8
test 111.0 20.9 75.0 32.8 27.5 55.6

Up-Down + ObjRel Transf
val 113.2 21.0 76.1 34.4 27.7 56.4
test 112.6 20.8 75.6 33.5 27.6 56.0

Up-Down + ObjRel Transf val 114.7 21.1 76.5 35.5 27.9 56.6
+ Beamsize 2 test 115.4 21.2 76.6 35.5 28.0 56.6

5.4 Ablation Study

Table 3 shows the results for our ablation study. We show the Bottom-Up and Top-Down algorithm [2]
as our baseline algorithm. The second row replaces the LSTM with a Transformer network. The third
row includes the proposed geometric attention. The last row includes beam search with beam size
2. The contribution of the Object Relation Transformer is small for METEOR, but significant for
CIDEr-D and the BLEU metrics. Overall we can see the most improvements on the CIDEr-D and
BLEU-4 scores.

5.5 Geometric Improvement

In order to demonstrate the advantages of the geometric attention layer, we performed a more detailed
comparison of the Object Relation Transformer against the Standard Transformer. For each of the
considered metrics, we performed a two-tailed t-test with paired samples in order to determine
whether the difference caused by adding the geometric attention was statistically significant. The
metrics were first computed for each individual image in the test set for each of the two Transformer
models, so that we are able to run the paired tests. In addition to the standard evaluation metrics, we
also report metrics obtained from SPICE by splitting up the tuples of the scene graphs according
to different semantic subcategories. For each subcategory, we are able to compute precision, recall,
and F-scores. The measures we report are the F-scores computed by taking only the tuples in each
subcategory. More specifically, we report SPICE scores for: Object, Relation, Attribute, Color, Count,
and Size [1]. Note that for a given image, not all SPICE subcategory scores might be available. For
example, if the reference captions for a given image have no mention of color, then the SPICE Color
score is not defined and therefore we omit that image from that particular analysis. In spite of this,
each subcategory analyzed had at least 1000 samples. For this experiment, we did not use self-critical
training for either Transformer and they were both run with a beam size of 2.

The metrics computed over the 5000 images of the test set are shown in Tables 4 and 5. We first
note that for all of the metrics, the Object Relation Transformer presents higher scores than the
Standard Transformer. The score difference was statistically significant (using a significance level
α = 0.05) for CIDEr-D, BLEU-1, ROUGE-L (Table 4), Relation, and Count (Table 5). The significant
improvements in CIDEr-D and Relation are in line with our expectation that adding the geometric
attention layer would help the model in determining the correct relationships between objects. In
addition, it is interesting to see a significant improvement in the Count subcategory of SPICE, from
11.30 to 17.51. Though image captioning methods in general show a large deficit in Count scores
when compared with humans [1], we are able to show a significant improvement by adding explicit
positional information. Some examples illustrating these improvements are presented in Section 5.6.
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Table 4: Comparison of different captioning metrics for the Standard Transformer and our proposed
Object Relation Transformer (denoted Ours below), trained with softmax cross-entropy for 30 epochs.
The table shows that the Object Relation Transformer has significantly higher CIDEr-D, BLEU-1 and
ROUGE-L scores. The p-values come from two-tailed t-tests using paired samples. Values marked in
bold were considered significant at α = 0.05.

Algorithm CIDEr-D SPICE BLEU-1 BLEU-4 METEOR ROUGE-L

Standard Transformer 113.21 21.04 75.60 34.58 27.79 56.02
Ours 115.37 21.24 76.63 35.49 27.98 56.58

p-value 0.01 0.15 <0.001 0.051 0.24 0.01

Table 5: Breakdown of SPICE metrics for the Standard Transformer and our proposed Object Relation
Transformer (denoted Ours below), trained with softmax cross-entropy for 30 epochs. The table
shows that the Object Relation Transformer has significantly higher Relation and Count scores. The
p-values come from two-tailed t-tests using paired samples. Values marked in bold were considered
significant at α = 0.05.

Algorithm
SPICE

All Object Relation Attribute Color Count Size

Standard Transformer 21.04 37.83 5.88 11.31 14.88 11.30 5.82
Ours 21.24 37.92 6.31 11.37 15.49 17.51 6.38

p-value 0.15 0.64 0.01 0.81 0.35 <0.001 0.34

5.6 Qualitative Analysis

To illustrate the advantages of the Object Relation Transformer relative to the Standard Transformer,
we present example images with the corresponding captions generated by each model. The captions
presented were generated using the following setup: both the Object Relation Transformer and the
Standard Transformer were trained without self-critical training and both were run with a beam size
of 2 on the 5000 images of the test set. We chose examples for which there were was a marked
improvement in the score of the Object Relation Transformer relative to the Standard Transformer.
This was done for the Relation and Count subcategories of SPICE scores. The example images
and captions are presented in Tables 6 and 7. The images in Table 6 illustrate an improvement in
determining when a relationship between objects should be expressed, as well as in determining what
that relationship should be. An example of correctly determining that a relationship should exist is
shown in the third image of Table 6, where the two chairs are actually related to the umbrella by
being underneath it. In addition, an example where the Object Relation Transformer correctly infers
the type of relationship between objects is shown in the first image of Table 6, where the man in fact
is not on the motorcycle, but is working on it. The examples in Table 7 specifically illustrate the
Object Relation Transformer’s marked ability to better count objects.

Table 6: Example images and captions for which the SPICE Relation metric for Object Relation
Transformer shows an improvement over the metric for the Standard Transformer.

Standard: a man on a

motorcycle on the road

a couple of bears stand-

ing on top of a rock

two chairs and an um-

brella on a beach

a laptop computer sitting

on top of a wooden desk

Ours: a man is work-

ing on a motorcycle in

a parking lot

two brown bears stand-

ing next to each other on

a rock

two beach chairs under

an umbrella on the beach

a desk with a laptop and

a keyboard
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Table 7: Example images and captions for which the SPICE Count metric for the Object Relation
Transformer shows an improvement over the metric for the Standard Transformer.

Standard: a large bird

is standing in a cage

a little girl sitting on top

of a giraffe

a group of young men

riding skateboards down

a sidewalk

three children are sitting

on a bunk bed

Ours: two large birds

standing in a fenced in

area

a giraffe with two kids

sitting on it

two young men riding

skateboards down a side-

walk

two young children are

sitting on the bunk beds

In order to better understand the failure modes of our model, we manually reviewed a set of generated
captions. We used our best performing model—the Object Relation Transformer trained with self-
critical reinforcement learning—with a beam size of 5 to generate captions for 100 randomly sampled
images from the MS-COCO’s test set. For each generated caption, we described the errors and
then grouped them into distinct failure modes. An error was counted each time a term was wrong,
extraneous, or missing. All errors were then tallied up, with each image being able to contribute with
multiple errors. There were a total of 62 observed errors, which were grouped into 4 categories: 58%
of the errors pertained to objects or things, 21% to relations, 16% to attributes, and 5% to syntax.
Note that while these failure modes are very similar to the semantic subcategories from SPICE, we
were not explicitly aiming to adhere to those. In addition, one general pattern that stood out were
the errors in identifying rare or unusual objects. Some examples of unusual objects that were not
correctly identified include: parking meter, clothing mannequin, umbrella hat, tractor, and masking
tape. This issue is also noticeable, even if to a lesser degree, in rare relations and attributes. Another
interesting observation was that the generated captions tend to be less descriptive and less discursive
than the ground truth captions. The above results and observations can be used to help prioritize
future efforts in image captioning.

6 Conclusion

We have presented the Object Relation Transformer, a modification of the conventional Transformer,
specifically adapted to the task of image captioning. The proposed Transformer encodes 2D position
and size relationships between detected objects in images, building upon the bottom-up and top-
down image captioning approach. Our results on the MS-COCO dataset demonstrate that the
Transformer does indeed benefit from incorporating spatial relationship information, most evidently
when comparing the relevant sub-metrics of the SPICE captioning metric. We have also presented
qualitative examples of how incorporating this information can yield captioning results demonstrating
better spatial awareness.

At present, our model only takes into account geometric information in the encoder phase. As a
next step, we intend to incorporate geometric attention in our decoder cross-attention layers between
objects and words. We aim to do this by explicitly associating decoded words with object bounding
boxes. This should lead to additional performance gains as well as improved interpretability of the
model.
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