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Abstract

Automatically generating a natural language description

of an image has attracted interests recently both because

of its importance in practical applications and because

it connects two major artificial intelligence fields: com-

puter vision and natural language processing. Existing

approaches are either top-down, which start from a gist of

an image and convert it into words, or bottom-up, which

come up with words describing various aspects of an image

and then combine them. In this paper, we propose a new

algorithm that combines both approaches through a model

of semantic attention. Our algorithm learns to selectively

attend to semantic concept proposals and fuse them into

hidden states and outputs of recurrent neural networks.

The selection and fusion form a feedback connecting the

top-down and bottom-up computation. We evaluate our

algorithm on two public benchmarks: Microsoft COCO and

Flickr30K. Experimental results show that our algorithm

significantly outperforms the state-of-the-art approaches

consistently across different evaluation metrics.

1. Introduction

Automatically generating a natural language description

of an image, a problem known as image captioning, has

recently received a lot of attention in Computer Vision. The

problem is interesting not only because it has important

practical applications, such as helping visually impaired

people see, but also because it is regarded as a grand

challenge for image understanding which is a core problem

in Computer Vision. Generating a meaningful natural

language description of an image requires a level of image

understanding that goes well beyond image classification

and object detection. The problem is also interesting in that

it connects Computer Vision with Natural Language Pro-

cessing which are two major fields in Artificial Intelligence.
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Figure 1. Top: an overview of the proposed framework. Given

an image, we use a convolutional neural network to extract a top-

down visual feature and at the same time detect visual concepts

(regions, objects, attributes, etc.). We employ a semantic attention

model to combine the visual feature with visual concepts in a re-

current neural network that generates the image caption. Bottom:

We show the changes of the attention weights for several candidate

concepts with respect to the recurrent neural network iterations.

There are two general paradigms in existing image cap-

tioning approaches: top-down and bottom-up. The top-

down paradigm [4, 35, 26, 16, 8, 37, 25] starts from a “gist”

of an image and converts it into words, while the bottom-up

one [12, 19, 23, 9, 20, 11, 22] first comes up with words

describing various aspects of an image and then combines

them. Language models are employed in both paradigms

to form coherent sentences. The state-of-the-art is the top-

down paradigm where there is an end-to-end formulation

from an image to a sentence based on recurrent neural

networks and all the parameters of the recurrent network

can be learned from training data. One of the limitations

of the top-down paradigm is that it is hard to attend to

fine details which may be important in terms of describing

the image. Bottom-up approaches do not suffer from this

problem as they are free to operate on any image resolution.

However, they suffer from other problems such as there

lacks an end-to-end formulation for the process going from

individual aspects to sentences. There leaves an interesting
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question: Is it possible to combine the advantages of these

two paradigms? This naturally leads to feedback which is

the key to combine top-down and bottom-up information.

Visual attention [17, 30] is an important mechanism in

the visual system of primates and humans. It is a feed-

back process that selectively maps a representation from

the early stages in the visual cortex into a more central

non-topographic representation that contains the properties

of only particular regions or objects in the scene. This

selective mapping allows the brain to focus computational

resources on an object at a time, guided by low-level image

properties. The visual attention mechanism also plays an

important role in natural language descriptions of images

biased towards semantics. In particular, people do not

describe everything in an image. Instead, they tend to

talk more about semantically more important regions and

objects in an image.

In this paper, we propose a new image captioning ap-

proach that combines the top-down and bottom-up ap-

proaches through a semantic attention model. Please refer

to Figure 1 for an overview of our algorithm. Our definition

for semantic attention in image captioning is the ability

to provide a detailed, coherent description of semantically

important objects that are needed exactly when they are

needed. In particular, our semantic attention model has the

following properties: 1) able to attend to a semantically

important concept or region of interest in an image, 2)

able to weight the relative strength of attention paid on

multiple concepts, and 3) able to switch attention among

concepts dynamically according to task status. Specifically,

we detect semantic concepts or attributes as candidates for

attention using a bottom-up approach, and employ a top-

down visual feature to guide where and when attention

should be activated. Our model is built on top of a Recurrent

Neural Network (RNN), whose initial state captures global

information from the top-down feature. As the RNN state

transits, it gets feedback and interaction from the bottom-

up attributes via an attention mechanism enforced on both

network state and output nodes. This feedback allows the

algorithm to not only predict more accurately new words,

but also lead to more robust inference of the semantic gap

between existing predictions and image content.

1.1. Main contributions

The main contribution of this paper is a new image cap-

tioning algorithm that is based on a novel semantic attention

model. Our attention model naturally combines the visual

information in both top-down and bottom-up approaches

in the framework of recurrent neural networks. Our algo-

rithm yields significantly better performance compared to

the state-of-the-art approaches. For instance, on Microsoft

COCO and Flickr 30K, our algorithm outperforms compet-

ing methods consistently across different evaluation metrics

(Bleu-1,2,3,4, Meteor, and Cider). We also conduct an

extensive study to compare different attribute detectors and

attention schemes.

It is worth pointing out that [37] also considered using

attention for image captioning. There are several important

differences between our work and [37]. First, in [37]

attention is modeled spatially at a fixed resolution. At every

recurrent iteration, the algorithm computes a set of attention

weights corresponding to pre-defined spatial locations. In-

stead, we can use concepts from anywhere at any resolution

in the image. Indeed, we can even use concepts that do

not have direct visual presence in the image. Second, in

our work there is a feedback process that combines top-

down information (the global visual feature) with bottom-

up concepts which does not exist in [37]. Third, in [37] uses

pretrained feature at a particular spatial location. Instead,

we use word features that correspond to detected visual

concepts. This way, we can leverage external image data for

training visual concepts and external text data for learning

semantics between words.

2. Related work

There is a growing body of literature on image caption-

ing which can be generally divided into two categories:

top-down and bottom-up. Bottom-up approaches are the

“classical” ones, which start with visual concepts, objects,

attributes, words and phrases, and combine them into sen-

tences using language models. [12] and [19] detect concepts

and use templates to obtain sentences, while [23] pieces

together detected concepts. [9] and [20] use more powerful

language models. [11] and [22] are the latest attempts along

this direction and they achieve close to the state-of-the-art

performance on various image captioning benchmarks.

Top-down approaches are the “modern” ones, which for-

mulate image captioning as a machine translation problem

[31, 2, 5, 36]. Instead of translating between different lan-

guages, these approaches translate from a visual represen-

tation to a language counterpart. The visual representation

comes from a convolutional neural network which is often

pretrained for image classification on large-scale datasets

[18]. Translation is accomplished through recurrent neural

networks based language models. The main advantage of

this approach is that the entire system can be trained from

end to end, i.e., all the parameters can be learned from

data. Representative works include [35, 26, 16, 8, 37, 25].

The differences of the various approaches often lie in what

kind of recurrent neural networks are used. Top-down

approaches represent the state-of-the-art in this problem.

Visual attention is known in Psychology and Neuro-

science for long but is only recently studied in Computer

Vision and related areas. In terms of models, [21, 33]

approach it with Boltzmann machines while [28] does

with recurrent neural networks. In terms of applications,
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Figure 2. The framework of the proposed image captioning sys-

tem. Visual features of CNN responses v and attribute detec-

tions {Ai} are injected into RNN (dashed arrows) and get fused

together through a feedback loop (blue arrows). Attention on

attributes is enforced by both input model φ and output model ϕ.

[6] studies it for image tracking, [1] studies it for image

recognition of multiple objects, and [15] uses for image

generation. Finally, as we discuss in Section 1, we are not

the first to consider it for image captioning. In [37], Xu et

al., propose a spatial attention model for image captioning.

3. Semantic attention for image captioning

3.1. Overall framework

We extract both top-down and bottom-up features from

an input image. First, we use the intermediate filer re-

sponses from a classification Convolutional Neural Net-

work (CNN) to build a global visual description denoted

by v. In addition, we run a set of attribute detectors to get a

list of visual attributes or concepts {Ai} that are most likely

to appear in the image. Each attribute Ai corresponds to an

entry in our vocabulary set or dictionary Y . The design of

attribute detectors will be discussed in Section 4.

All the visual features are fed into a Recurrent Neural

Network (RNN) for caption generation. As the hidden state

ht ∈ R
n in RNN evolves over time t, the t-th word Yt

in the caption is drawn from the dictionary Y according to

a probability vector pt ∈ R
|Y| controlled by the state ht.

The generated word Yt will be fed back into RNN in the

next time step as part of the network input xt+1 ∈ R
m,

which drives the state transition from ht to ht+1. The

visual information from v and {Ai} serves as as an external

guide for RNN in generating xt and pt, which is specified

by input and output models φ and ϕ. The whole model

architecture is illustrated in Figure 2.

Different from previous image captioning methods, our

model has a unique way to utilize and combine different

sources of visual information. The CNN image feature v

is only used in the initial input node x0, which is expected

to give RNN a quick overview of the image content. Once

the RNN state is initialized to encompass the overall visual

context, it is able to select specific items from {Ai} for task-

related processing in the subsequent time steps. Specifi-

cally, the main working flow of our system is governed by

the following equations:

x0 = φ0(v) = W x,vv (1)

ht = RNN(ht−1,xt) (2)

Yt ∼ pt = ϕ(ht, {Ai}) (3)

xt = φ(Yt−1, {Ai}), t > 0, (4)

where a linear embedding model is used in Eq. (1) with

weight W x,v . For conciseness, we omit all the bias terms of

linear transformations in the paper. The input and output at-

tention models in Eq. (3) and (4) are designed to adaptively

attend to certain cognitive cues in {Ai} based on the current

model status, so that the extracted visual information will

be most relevant to the parsing of existing words and the

prediction of future word. Eq. (2) to (4) are recursively

applied, through which the attended attributes are fed back

to state ht and integrated with the global information from

v. The design of Eq. (3) and (4) is discussed below.

3.2. Input attention model

In the input attention model φ for t>0, a score αi
t is

assigned to each detected attribute Ai based on its relevance

with the previous predicted word Yt−1. Since both Yt−1

and Ai correspond to an entry in dictionary Y , they can be

encoded with one-hot representations in R
|Y| space, which

we denote as yt−1 and yi respectively. As a common

approach to model relevance in vector space, a bilinear

function is used to evaluate αi
t:

αi
t ∝ exp

(

yT
t−1Ũyi

)

, (5)

where the exponent is taken to normalize over all the {Ai}
in a softmax fashion. The matrix Ũ ∈ R

|Y|×|Y| contains

a huge number of parameters for any Y with a reasonable

vocabulary size. To reduce parameter size, we can first

project the one-hot representations into a low dimensional

word vector space with Word2Vec [27] or Glove [29]. Let

the word embedding matrix be E ∈ R
d×|Y| with d ≪ |Y|;

Eq. (5) becomes

αi
t ∝ exp

(

yT
t−1E

TUEyi
)

, (6)

where U is a d× d matrix.

Once calculated, the attention scores are used to mod-

ulate the strength of attention on different attributes. The

weighted sum of all attributes is mapped from word em-

bedding space to the input space of xt together with the

previous word:

xt = W x,Y
(

Eyt−1 + diag(wx,A)
∑

i

αi
tEyi

)

, (7)
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where W x,Y ∈ R
m×d is the projection matrix, diag(w)

denotes a diagonal matrix constructed with vector w, and

wx,A ∈ R
d models the relative importance of visual

attributes in each dimension of the word space.

3.3. Output attention model

The output attention model ϕ is designed similarly as the

input attention model. However, a different set of attention

scores are calculated since visual concepts may be attended

in different orders during the analysis and synthesis pro-

cesses of a single sentence. With all the information useful

for predicting Yt captured by the current state ht, the score

βi
t for each attribute Ai is measured with respect to ht:

βi
t ∝ exp

(

hT
t V σ(Eyi)

)

, (8)

where V ∈ R
n×d is the bilinear parameter matrix. σ

denotes the activation function connecting input node to

hidden state in RNN, which is used here to ensure the same

nonlinear transform is applied to the two feature vectors

before they are compared.

Again, {βi
t} are used to modulate the attention on all

the attributes, and the weighted sum of their activations is

used as a compliment to ht in determining the distribution

pt. Specifically, the distribution is generated by a linear

transform followed by a softmax normalization:

pt ∝ exp
(

ETW Y,h(ht + diag(wY,A)
∑

i

βi
tσ(Eyi))

)

,

(9)

where W Y,h ∈ R
d×n is the projection matrix and wY,A ∈

R
n models the relative importance of visual attributes in

each dimension of the RNN state space. The ET term

is inspired by the transposed weight sharing trick [25] for

parameter reduction.

3.4. Model learning

The training data for each image consist of input image

features v, {Ai} and output caption words sequence {Yt}.

Our goal is to learn all the attention model parameters

ΘA = {U ,V ,W ∗,∗,w∗,∗} jointly with all RNN param-

eters ΘR by minimizing a loss function over training set.

The loss of one training example is defined as the total

negative log-likelihood of all the words combined with

regularization terms on attention scores {αi
t} and {βi

t}:

min
ΘA,ΘR

−
∑

t

log p(Yt) + g(α) + g(β), (10)

where α and β are attention score matrices with their (t, i)-
th entries being αi

t and βi
t . The regularization function g

is used to enforce the completeness of attention paid to

every attribute in {Ai} as well as the sparsity of attention

at any particular time step. This is done by minimizing the

vase flowers bathroom table glass sink blue  
small white clear

k-NN

sitting table small many little glass different 
flowers vase shown

Multi-label Ranking

vase flowers table glass sitting kitchen water 
room white filled

FCN

Figure 3. An example of top 10 detected visual attributes on an

image using different approaches.

following matrix norms of α (same for β):

g(α) =‖α‖1,p + ‖αT ‖q,1

=[
∑

i

[
∑

t

αi
t]
p]1/p +

∑

t

[
∑

i

(αi
t)

q]1/q, (11)

where the first term with p>1 penalizes excessive attention

paid to any single attribute Ai accumulated over the en-

tire sentence, and the second term with 0<q<1 penalizes

diverted attention to multiple attributes at any particular

time. We use a stochastic gradient descent algorithm with

an adaptive learning rate to optimize Eq. (10).

4. Visual attribute prediction

The prediction of visual attributes {Ai} is a key com-

ponent of our model in both training and testing. We pro-

pose two approaches for predicting attributes from an input

image. First, we explore a non-parametric method based

on nearest neighbor image retrieval from a large collection

of images with rich and unstructured textual metadata such

as tags and captions. The attributes for a query image

can be obtained by transferring the text information from

the retrieved images with similar visual appearances. The

second approach is to directly predict visual attributes from

the input image using a parametric model. This is mo-

tivated by the recent success of deep learning models on

visual recognition tasks [10, 18]. The unique challenge for

attribute detection is that usually there are more than one

visual concepts presented in an image, and therefore we are

faced with a multi-label problem instead of a multi-class

problem. Note that the two approaches to obtain attributes

are complementary to each other and can be used jointly.

Figure 3 shows an example of visual attributes predicted for

an image using different methods.

4.1. Non­parametric attribute prediction

Thanks to the popularity of social media, there is a

growing number of images with weak labels, tags, titles

and descriptions available on Internet. It has been shown

that these weakly annotated images can be exploited to learn

visual concepts [38], text-image embedding [14] and image

captions [7]. One of the fundamental assumptions is that

similar images are likely to share similar and correlated
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annotations. Therefore, it is possible to discover useful

annotations and descriptions from visual neighbors in a

large-scale image dataset.

We extract key words as the visual attributes for our

model from a large image dataset. For fair comparison with

other existing work, we only do nearest neighbor search

on our training set to retrieve similar ones to test images.

It is expected that the attribute prediction accuracy can be

further improved by using a larger web-scale database. We

use the GoogleNet feature [32] to evaluate image distances,

and employ simple Term-Frequency (TF) to select the most

frequent words in the ground-truth captions of the retrieved

training images. In this way, we are able to build a list of

words for each image as the detected visual attributes.

4.2. Parametric attribute prediction

In addition to retrieved attributes, we also train para-

metric models to extract visual attributes. We first build a

set of fixed visual attributes by selecting the most common

words from the captions in the training data. The resulting

attributes are treated as a set of predefined categories and

can be learned as in a conventional classification problem.

The advance of deep learning has enabled image analysis

to go beyond the category level. In this paper we mainly

investigate two state-of-the-art deep learning models for

attribute prediction: using a ranking loss as objective func-

tion to learn a multi-label classifier as in [13], and using a

Fully Convolutional Network (FCN) [24] to learn attributes

from local patches as in [11]. Both two methods produce

a relevance score between an image and a visual attribute,

which can be used to select the top ranked attributes as input

to our captioning model. Alternatives may exist which can

potentially yield better results than the above two models,

which is not in the scope of this work.

5. Experiments

We perform extensive experiments to evaluate the pro-

posed models. We report all the results using Microsoft

COCO caption evaluation tool1, including BLEU, Meteor,

Rouge-L and CIDEr [3]. We will first briefly discuss the

datasets and settings used in the experiments. Next, we

compare and analyze the results of the proposed model with

other state-of-the-art models on image captioning.

5.1. Datasets and settings

We choose the popular Flickr30k and MS-COCO to

evaluate the performance of our models. Flickr30k has a

total of 31, 783 images. MS-COCO is more challenging,

which has 123, 287 images. Each image is given at least

five captions by different AMT workers. To make the

1https://github.com/tylin/coco-caption

results comparable to others, we use the publicly avail-

able splits2 of training, testing and validating sets for both

Flickr30k and MS-COCO. We also follow the publicly

available code [16] to preprocess the captions (i.e. building

dictionaries, tokenizing the captions).

Our captioning system is implemented based on a Long

Short-Term Memory (LSTM) network [35]. We set n =
m = 512 for the input and hidden layers, and use tanh
as nonlinear activation function σ. We use Glove feature

representation [29] with d = 300 dimensions as our word

embedding E.

The image feature v is extracted from the last 1024-

dimensional convolutional layer of the GoogleNet [32]

CNN model. Our attribute detectors are trained for the

same set of visual concepts as in [11] for Microsoft COCO

dataset. We build and train another independent set of

attribute detectors for Flickr30k following the steps in [11]

on its training split. The top 10 attributes with highest

detection scores are selected to form the set {Ai} in our

best attention model setting. An attribute set of such size

can maintain a good tradeoff between precision and recall.

In training, we use RMSProp [34] algorithm to do model

updating with a mini-batch size of 256. The regularization

parameters are set as p = 2, q = 0.5 in (11). In testing, a

caption is formed by drawing words from RNN until a spe-

cial end word is reached. All our results are obtained with

the ensemble of 5 identical models trained with different

initializations, which is a common strategy adopted in other

work [35].

In the following experiments, we evaluate different ways

to obtain visual attributes as described in Section 4, includ-

ing one non-parametric method (k-NN) and two parametric

models trained with ranking-loss (RK) and fully-connected

network (FCN). Besides the attention model (ATT) de-

scribed in Section 3, two fusion-based methods to utilize

the detected attributes {Ai} are tested by simply taking the

element-wise max (MAX) or concatenation (CON) of the

embedded attribute vectors {Eyi}. The combined attribute

vector is used in the same framework and applied at each

time step.

5.2. Performance on MS­COCO

Note that the overall captioning performance will be af-

fected by the employed visual attributes generation method.

Therefore, we first assume ground truth visual attributes are

given and evaluate different ways (CON, MAX, ATT) to

select these attributes. This will indicate the performance

limit of exploiting visual attributes for captioning. To

be more specific, we select the most common words as

visual attributes from their ground-truth captions to help the

generation of captions. Table 1 shows the performance of

the three models using the ground-truth visual attributes.

2https://github.com/karpathy/neuraltalk
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Dataset Model B-1 B-2 B-3 B-4 METEOR ROUGE-L CIDEr

Flickr30k

Ours-GT-ATT 0.824 0.679 0.534 0.412 0.269 0.588 0.949

Ours-GT-MAX 0.719 0.542 0.396 0.283 0.230 0.529 0.747

Ours-GT-CON 0.708 0.534 0.388 0.276 0.222 0.516 0.685

MS-COCO

Ours-GT-ATT 0.910 0.786 0.654 0.534 0.341 0.667 1.685

Ours-GT-MAX 0.790 0.635 0.494 0.379 0.279 0.580 1.161

Ours-GT-CON 0.766 0.617 0.484 0.377 0.279 0.582 1.237

Table 1. Performance of the proposed models using the ground-truth visual attributes on MS-COCO and Flickr30k.

Flickr30k MS-COCO

Model B-1 B-2 B-3 B-4 METEOR B-1 B-2 B-3 B-4 METEOR

Google NIC [35] 0.663 0.423 0.277 0.183 – 0.666 0.451 0.304 0.203 –

m-RNN [26] 0.60 0.41 0.28 0.19 – 0.67 0.49 0.35 0.25 –

LRCN [8] 0.587 0.39 0.25 0.165 – 0.628 0.442 0.304 0.21 –

MSR/CMU [4] – – – 0.126 0.164 – – – 0.19 0.204

Toronto [37] 0.669 0.439 0.296 0.199 0.185 0.718 0.504 0.357 0.250 0.230

Ours-CON-k-NN 0.619 0.426 0.291 0.197 0.179 0.675 0.503 0.373 0.279 0.227

Ours-CON-RK 0.623 0.432 0.295 0.200 0.179 0.647 0.472 0.338 0.237 0.204

Ours-CON-FCN 0.639 0.447 0.309 0.213 0.188 0.700 0.532 0.398 0.300 0.238

Ours-MAX-k-NN 0.622 0.426 0.287 0.193 0.178 0.673 0.501 0.371 0.279 0.227

Ours-MAX-RK 0.623 0.429 0.294 0.202 0.178 0.655 0.478 0.344 0.245 0.208

Ours-MAX-FCN 0.633 0.444 0.306 0.21 0.181 0.699 0.530 0.398 0.301 0.240

Ours-ATT-k-NN 0.618 0.428 0.290 0.195 0.172 0.676 0.505 0.375 0.281 0.227

Ours-ATT-RK 0.617 0.424 0.286 0.193 0.177 0.679 0.506 0.375 0.282 0.231

Ours-ATT-FCN 0.647 0.460 0.324 0.230 0.189 0.709 0.537 0.402 0.304 0.243

Table 2. Performance in terms of BLEU-1,2,3,4 and METER compared with other state-of-the-art methods. For those competing methods,

we extract their performance from their latest version of paper. The numbers in bold face are the best known results and (–) indicates

unknown scores.

These results can be considered as the upper bound of the

proposed models, which suggest that all of the proposed

models (ATT, MAX and CON) can significantly improve

the performance of image captioning system, if given visual

attributes of high quality.

Now we evaluate the complete pipeline with both at-

tribute detection and selection. The right half of Table 2

shows the performance of the proposed model on the valida-

tion set of MS-COCO. In particular, our proposed attention

model outperforms all the other state-of-the-art methods in

most of the metrics, which are commonly used together for

fair and overall performance measurement. Note that B-1

is related to single word accuracy, the performance gap of

B-1 between our model and [37] may be due to different

preprocessing for word vocabularies.

In Table 2, the entries with prefix “Ours” show the

performance of our method configured with different com-

binations of attribute detection and selection methods. In

general, attention model ATT with attributes predicted by

FCN model yields better performance than other combina-

tions over all benchmarks.

For attribute fusion methods MAX and CON, we find

using the top 3 attributes gives the best performance. Due

to the lack of attention scheme, too many keywords may

increase the parameters for CON and may reduce the dis-

tinction among different groups of keywords for MAX.

Both models have comparable performance. The results

also suggest that FCN gives more robust visual attributes.

MAX and CON can also outperform the state-of-the-art

models in most evaluation metrics using visual attributes

predicted by FCN. Attention models (ATT) on FCN visual

attributes show the best performance among all the pro-

posed models. On the other hand, visual attributes predicted

by ranking loss (RK) based model seem to have even worse

performance than k-NN. This is possible due to the lack

of local features in training the ranking loss based attribute

detectors.

Performance on MS-COCO 2014 test server We also

evaluate our best model, Ours-ATT-FCN, on the MS COCO

Image Captioning Challenge sets c5 and c40 by uploading

results to the official test server. In this way, we could

compare our method to all the latest state-of-the-art meth-

ods. Despite the popularity of this contest, our method

has held the top 1 position by many metrics at the time

of submission. Table 3 lists the performance of our model

and other leading methods. Besides the absolute scores,
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Alg
B-1 B-2 B-3 B-4 METEOR ROUGE-L CIDEr

c5 c40 c5 c40 c5 c40 c5 c40 c5 c40 c5 c40 c5 c40

ATT 0.7311 0.92 0.5651 0.8152 0.4241 0.7092 0.3161 0.5992 0.2503 0.3354 0.5351 0.6821 0.9431 0.9581
OV 0.7136 0.8953 0.5426 0.8024 0.4074 0.6944 0.3092 0.5873 0.2541 0.3461 0.5302 0.6821 0.9431 0.9462
MSR Cap 0.7155 0.9071 0.5435 0.8191 0.4074 0.7101 0.3083 0.6011 0.2484 0.3392 0.5264 0.6803 0.9313 0.9373
mRNN 0.7164 0.8906 0.5454 0.7986 0.4046 0.6876 0.2996 0.5756 0.2429 0.3258 0.5216 0.6666 0.9174 0.9354

Table 3. Performance of the proposed attention model on the online MS-COCO testing server (https://www.codalab.org/

competitions/3221#results), comparing with other three leading methods. The subscripts indicate the current ranking of the

individual algorithms with respect to the evaluation metrics. ATT refers to our entry, OV refers to the entry of OriolVinyals, MSR Cap

refers to MSR Captivator, and mRNN refers to mRNN share.JMao.
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Figure 4. Examples of attention weights changes along with the generation of captions. Second row: input attention weights α. Third

row: output attention weights β. The X-axis shows the generated caption for each image and the Y -axis is the weight. We only show the

change of weights on three top visual attributes for each example.

we provide the rank of our model among all competing

methods for each metric. By comparing with two other

leading methods, we can see that our method achieves better

ranking across different metrics. All the results are up-to-

date at time of submission.

5.3. Performance on Flickr30k

We now report the performance on Flickr30k dataset.

Similarly, we first train and test our models by using

the ground-truth visual attributes to get an upper-bound

performance. The obtained results are listed in Table 1.

Clearly, with correct visual attributes, our model is able

to improve caption results by a large margin comparing

to other methods in Table 2. We then conduct the full

evaluation. As shown in Table 2, the performance of our

models are consistent with that on MS-COCO, and Ours-

ATT-FCN achieves significantly better results over all com-

peting methods in all metrics, except B-1 score, for which

we have discussed potential causes in previous section.

5.4. Visualization of attended attributes

We now provide some representative captioning exam-

ples in Figure 4 for better understanding of our model. For

each example, Figure 4 contains the generated captions for

several images with the input attention weights αi
t and the

output attention weights βi
t plotted at each time step. The

generated caption sentences are shown under the horizontal

time axis of the curve plots, and each word is positioned

at the time step it is generated. For visual simplicity, we

only show the attention weights of top attributes from the

generated sentence. As captions are being generated, the at-

tention weights at both input and output layers vary properly

as sentence context changes, while the distinction between

their weights shows the underlying attention mechanisms

are different. In general, the activations of both α and

β have strong correlation with the words generated. For

example, in the Figure 4(a), the attention on “swimming”

peaks after “ducks” is generated for both α and β. In

Figure 4(d), the concept of “motorcycle” attracts strong

attention for both α and β. The β peaks twice during the

captioning process, one after “photo of” and the other after

“riding a”, and both peaks reasonably align with current

contexts. It is also observed that, as the output attention

weight, β correlates with output words more closely; while

the input weights α are allocated more on background

context such as the “plate” in Figure 4(b) and the “group”

in Figure 4(c). This temporal analysis offers an intuitive

perspective on our visual attributes attention model.
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Google NIC

Top-5 visual 
attributes

ATT-FCN

a white plate 
topped with a 
variety of food.

a plate with a 
sandwich and 
french fries.

plate broccoli 
fries food 
french

a baby with a 
toothbrush in 
its mouth.

a baby is eating 
a piece of 
paper.

teeth brushing 
toothbrush 
holding baby

a traffic light is 
on a city street.

a street with 
cars and a 
clock tower.

street sign cars 
clock traffic

a yellow and 
black train on a 
track.

a train traveling 
down tracks 
next to a 
building.

train tracks 
clock tower 
down

a close up of a 
plate of food on 
a table.

a table topped 
with a cake 
with candles on 
it.

a teddy bear 
sitting on top of 
a chair .

a white teddy 
bear sitting 
next to a 
stuffed animal .

a person is 
holding colorful 
umbrella.

a black 
umbrella sitting 
on top of a 
sandy beach .

a woman is 
holding a cell 
phone in her 
hand .

a woman 
holding a pair 
of scissors in 
her hands .

cake table plate 
sitting birthday

teddy cat bear 
stuffed white

umbrella beach 
water sitting 
boat

woman 
bathroom her 
scissors man

Figure 5. Qualitative analysis on impact of visual attributes. The left six examples (green solid box) shows that the visual attributes help

generate more accurate captions. The right two examples (red dashed box) indicate that incorrect visual attributes may mislead the model.

5.5. Analysis of attention model

Alg B-1 B-2 B-3 B-4 MT RG CD

Input 0.88 0.75 0.62 0.50 0.33 0.65 1.56

Output 0.89 0.76 0.62 0.50 0.33 0.65 1.58

Full 0.91 0.79 0.65 0.53 0.34 0.67 1.68

Table 4. The performance of different models with input attention

(first row), output attention (second row), and both attentions

(third row) using the ground-truth visual attributes on MS-COCO

validation dataset. We use abbreviations MT, RG and CD to stand

for METEOR, ROUGE-L and CIDEr respectively.

As described in Section 3.2 and Section 3.3, our frame-

work employs attention at both input and output layers to

the RNN module. We evaluate the effect of each of the

individual attention modules on the final performance by

turning off one of the attention modules while keeping the

other one in our ATT-FCN model. The two model variants

are trained on MS-COCO dataset using the ground-truth

visual attributes, and compared in Table 4. The performance

of using output attention is slightly better than only using

input attention on some metrics. However, the combination

of this two attentions improves the performance by several

percents on almost every metric. This can be attributed

to that fact that attention mechanisms at input and output

layers are not the same, and each of them attend to different

aspects of visual attributes. Therefore, combining them may

help provide a richer interpretation of the context and thus

lead to improved performance.

5.6. The role of visual attributes

We also conduct a qualitative analysis on the role of

visual attributes in caption generation. We compare our at-

tention model (ATT) with Google NIC, which corresponds

to the LSTM model used in our framework. Figure 5 shows

several examples. We can find that visual attributes can

help our model to generate better captions, as shown by

the examples in the green box. However, irrelevant visual

attributes may disrupt the model to attend on incorrect

concepts. For example, in the left example in the red

dashed box, “clock” distracts our model to the clock tower

in background from the main objects in foreground. In the

rightmost example, and “tower” may be the culprit of the

word “building” in the predicted caption.

6. Conclusion

In this work, we proposed a novel method for the task

of image captioning, which achieves state-of-the-art per-

formance across popular standard benchmarks. Different

from previous work, our method combines top-down and

bottom-up strategies to extract richer information from an

image, and couples them with a RNN that can selectively

attend on rich semantic attributes detected from the image.

Our method, therefore, exploits not only an overview under-

standing of input image, but also abundant fine-grain visual

semantic aspects. The real power of our model lies in its

ability to attend on these aspects and seamlessly fuse global

and local information for better caption. For next steps,

we plan to experiment with phrase-based visual attribute

with its distributed representations, as well as exploring new

models for our proposed semantic attention mechanism.
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