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Abstract. This paper studies the model of minimizing total variation with an
L1-norm fidelity term for decomposing a real image into the sum of cartoon and
texture. This model is also analyzed and shown to be able to select features of an
image according to their scales.

1 Introduction

Let f be an observed image which contains texture and/or noise. Texture is charac-
terized as repeated and meaningful structure of small patterns. Noise is characterized
as uncorrelated random patterns. The rest of an image, which is calledcartoon, con-
tains object hues and sharp edges (boundaries). Thus an imagef can be decomposed as
f = u + v, whereu represents image cartoon andv is texture and/or noise. A general
way to obtain this decomposition using the variational approach is to solve the problem
min {∫ |Du| | ‖u−f‖B ≤ σ}, whereDu denotes the generalized derivative ofu and
‖ · ‖B is a norm (or semi-norm). The total variation ofu, which is

∫ |Du|, is minimized
to regularizeu while keep edges like object boundaries off in u (i.e. allow discontinu-
ities inu). The fidelity term‖t(u, f)‖B ≤ σ forcesu to be close tof . Among the recent
total variation-based cartoon-texture decomposition models, Meyer [13] and Haddad &
Meyer [10] proposed to use theG-norm, Vese & Osher [21] approximated theG-norm
by thediv(Lp)-norm, Osher & Sole & Vese [18] proposed to use theH−1-norm, Lieu
& Vese [12] proposed to use the more generalH−s-norm, and Le & Vese [11] proposed
to use thediv(BMO)-norm. In addition, Alliney [2–4], Nikolova [14–16], and Chan
& Esedoglu [8] used theL1-norm together with total variation. In this paper, we study
the TV-L1 model.

The rest of the paper is organized as follows. In Section 2 we define certain fun-
damental function spaces and norms. In Section 3 we present and analyze the TV-L1

model. In particular, we relate the level sets of the input to the solution of the TV-L1

model using a geometric argument and discuss the scale-selection and morphologically
invariant properties of this model. The proofs of the lemmas, theorems, and corollar-
ies are given in the technical report [22]. In Section 4 we briefly give the second-order
cone programming (SOCP) formulation of this model. Numerical results illustrating the
properties of the model are given in Section 5.



2 Preliminaries

Let u ∈ L1, and define the total variation ofu as

‖Du‖ := sup
{∫

udiv(g) dx :
g ∈ C1

0 (Rn;Rn),
|g(x)|l2 ≤ 1 ∀x ∈ Rn

}
,

and theBV -norm ofu as‖u‖BV := ‖u‖L1 + ‖Du‖, whereC1
0 (Rn;Rn) denotes the

set of continuously differentiable vector-valued functions that vanish at infinity. The Ba-
nach space of functions with bounded variation is defined asBV :=

{
u ∈ L1 : ‖u‖BV < ∞}

and is equipped with the‖ · ‖BV -norm.‖Du‖ is often written in a less mathematically
strict form

∫ |∇u|.
‖Du‖ andBV (Ω) limited toΩ are defined in analogy usingg ∈ C1

0 (Ω;Rn).
Sets inRn with finite perimeter are often referred to asBV sets. The perimeter of

a setS is defined byPer(S) := ‖D1S‖, where1S is the indicator function ofS.
Next, we define the spaceG [13]. Let G denote the Banach space consisting of all

generalized functionsv(x) defined onRn that can be written as

v = div(g), g = [gi]i=1,...,n ∈ L∞(Rn;Rn), (1)

and equipped with the norm‖v‖G defined as the infimum of allL∞ norms of the func-
tions|g(x)|l2 over all decompositions (1) ofv. In short,‖v‖G := inf{‖ |g(x)|l2 ‖L∞ :
v = div(g)}.

G is the dual of the closed subspaceBV of BV , whereBV := {u ∈ BV : |Du| ∈
L1} [13]. We note that finite difference approximations to functions inBV and inBV
are the same. For the definition and properties ofG(Ω), whereΩ ⊂ Rn, see [6].

It follows from the definitions of theBV andG spaces that

∫
u v =

∫
u∇ · g = −

∫
Du · g ≤ ‖Du‖‖v‖G, (2)

holds for anyu ∈ BV with a compact support andv ∈ G. We say(u, v) is anextremal
pair if (2) holds with equality.

3 The TV-L1 model.

The TV-L1 model is define as a variational problem

min
u∈BV

TV L1λ(u) = min
u∈BV

∫

Ω

|∇u|+ λ

∫
|f − u|. (3)

Although this model appears to be simple, it is very different to the ROF model [19]: it
has the important property of being able to separate out features of a certain scale in an
image as we shall show in the next section.



4 Analysis of the TV-L1 model

In this section we first relate the parameterλ to theG-norm of the texture outputv,
then we focus on the TV-L1 geometry and discuss the properties of the TV-L1 model
for scale-based feature selection in subsection 3.1.

Meyer [13] recently showed that theG space, which is equipped with theG-norm,
contains functions with high oscillations. He characterized the solutionu of the ROF
model using theG-norm: given any inputf defined onRn, u satisfies‖f−u‖G = 1

2λ if
λ > (2‖f‖G)−1, andu vanishes (i.e.,u ≡ 0) if 0 ≤ λ ≤ (2‖f‖G)−1. We can interpret
this result as follows. First, no matter how regularf is,u is always different tof as long
asf 6≡ 0. This is a major limitation of the ROF model, but it can be relaxed by applying
the ROF model iteratively [17] or use the inverse TV flow [7]. Second, the texture/noise
outputv has itsG-norm given bymin{ 1

2λ , ‖f‖G}. Therefore, the oscillating signal with
G-norm less than1

2λ is removed by the ROF model. A similar characterization is given
below for the TV-L1 model in Theorems 1 and 2.

In order to use theG-norm, we first consider the approximate TV-L1 model in which
a perturbationε has been added to the fidelity term‖f −u‖L1 to make it differentiable:

min
u∈BV (Ω)

∫

Ω

|∇u|+ λ

∫

Ω

√
(f − u)2 + ε, (4)

where the image supportΩ is assumed to be compact. SinceTV L1λ,ε(u) is strictly
convex, problem (4) has a unique solutionuλ,ε.

Theorem 1. The solutionuλ,ε(= f−vλ,ε) ∈ BV (Ω) of the approximate TV-L1 model
satisfies

‖signε(vλ,ε)‖G ≤ 1/λ,

wheresignε(·) is defined point-wise bysignε(g)(x) := g(x)/
√
|g(x)|2 + ε for any

functiong.
Moreover, if‖signε(f)‖G ≤ 1/λ, uλ,ε ≡ 0 is the solution of the approximate TV-L1

model.
If ‖signε(f)‖G > 1/λ, then there exists an optimal solutionuλ,ε satisfying

– ‖signε(vλ,ε)‖G = 1/λ;
–

∫
uλ,ε signε(vλ,ε) = ‖Duλ,ε‖/λ, i.e.,uλ,ε andsignε(vλ,ε) form an extremal pair.

Next, we relate the solution of the perturbed TV-L1 model to the solution of the (unper-
turbed) TV-L1 model.

Theorem 2. Assuming the TV-L1 model (3) using parameterλ has a unique solution
uλ, then the solution of approximate TV-L1 model (4) using the same parameterλ
satisfies

lim
ε↓0+

‖uλ,ε − uλ‖L1 = 0, lim
ε↓0+

‖vλ,ε − vλ‖L1 = 0.

We note that Chan and Esedoglu [8] proved that (4) has a unique solution for almost all
λ’s with respect to the Lebesgue measure.

In the above two theorems, forε small enough, the value ofsignε(v)(x) can be
close tosign(v)(x) even for smallv(x). In contrast to‖v‖G = min{ 1

2λ , ‖f‖G} for the



solutionv of the ROF model, Theorems 1 and 2 suggest that the solutionv of the TV-L1

model can be much smaller. In other words, the TV-L1 may not always remove some
oscillating signal fromf and erode the structure. This is supported by the following
analytic example from [8]: iff equal to the disk signalBr, which has radiusr and unit
height, then the solutionuλ of the TV-L1 model is0 if 0 < λ < 2/r, f if λ > 2/r,
andcf for any c ∈ [0, 1] if λ = 2/r. Clearly, depending onλ, either 0 or the input
f minimizes the TV-L1 functional. This example also demonstrates the ability of the
model to select the disk feature by its “scale”r/2. The next subsection focuses on this
scale-based selection.

4.1 TV-L1 Geometry

To use the TV-L1 model to separate large-scale and small-scale features, we are often
interested in an appropriateλ that will allow us to extract geometric features of a given
scale. For general input, the TV-L1 model, which has only one scalar parameterλ,
returns images combining many features. Therefore, we are interested in determining a
λ that gives the whole targeted features with the least unwanted features in the output.

For simplicity, we assumeΩ = R2 in this section. Our analysis starts with the
decomposition off using level sets and relies on the co-area formula (5) [?] and “layer
cake” formula (6) [8], below. Then, we derive a TV-L1 solution formula (9), in which
u∗ is built slice by slice. Each slice is then characterized by feature scales using theG-
value, which extends theG-norm, and theslopesin Theorem 3, below. Last, we relate
the developed properties to real-world applications. In the following we letU(g, µ) :=
{x ∈ Dom(g) : g(x) > µ} denote the (upper) level set of a functiong at levelµ.

The co-area formula [?] for functions of bounded variation is
∫
|Du| =

∫ ∞

−∞
Per(U(u, µ)) dµ. (5)

Using (5), Chan and Esedoglu [8] showed that theTV L1λ functional can be represented
as an integral over the perimeter and weighted areas of certain level sets by the following
“layer cake” formula:

TV L1λ(u) =
∫∞
−∞(Per(U(u, µ))

+λ |U(u, µ)\U(f, µ)|+ λ |U(f, µ)\U(u, µ)|)dµ,
(6)

where|S| for a setS returns the area ofS. Therefore, an optimal solutionuλ to the TV-
L1 model can be obtained by minimizing the right-hand side of (6). We are interested
in finding au∗ such thatU(u∗, µ) minimizes the integrant for almost allµ.

Let us fix λ and focus on the integrand of the above functional and introduce the
following notation:

C(Γ, Σ) := Per(Σ) + λ|Σ\Γ |+ λ|Γ\Σ| (7)

min
Σ

C(Γ, Σ) (8)

whereΓ andΣ are sets with bounded perimeters inR2. Let Σf,µ denote a solution of
(8) for Γ = U(f, µ). From the definition of the upper level set, for the existence of a



u satisfyingU(u, µ) = Σf,µ for all µ, we needΣf,µ1 ⊇ Σf,µ2 for anyµ1 < µ2. This
result is given in the following lemma:

Lemma 1. Let the setsΣ1 and Σ2 be the solutions of (6) forΓ = Γ1 and Γ = Γ2,
respectively, whereΓ1 andΓ2 are two sets satisfyingΓ1 ⊃ Γ2.

If either one or both ofΣ1 andΣ2 are unique minimizers, thenΣ1 ⊇ Σ2; otherwise,
i.e., both are not unique minimizers,Σ1 ⊇ Σ2 may not hold, but in this case,Σ1 ∪Σ2

is a minimizer of (8) forΓ = Γ1.
Therefore, there always exists a solution of (8) forΓ = Γ1 that is a superset of any

minimizer of (8) forΓ = Γ2.

Using the above lemma, we get the following geometric solution characterization for
the TV-L1 model:

Theorem 3. Suppose thatf ∈ BV has essential infimumµ0. Let functionu∗ be defined
point-wise by

u∗(x) := µ0 +
∫ ∞

µ0

1Σf,µ
(x)dµ, (9)

whereΣf,µ is the solution of (8) forΓ = U(f, µ) that satisfiesΣf,µ1 ⊇ Σf,µ2 for
anyµ1 < µ2, i.e.,Σf,µ is monotonically decreasing with respect toµ. Thenu∗ is an
optimal solution of the TV-L1 model (3).

Next, we illustrate the implications of the above theorem by applying the results in [20]
to (8). In [20], the authors introduced theG-value, which is an extension of Meyer’sG-
norm, and obtained a characterization to the solution of the TV-L1 model based on the
G-value and theSlope[5]. These results are presented in the definition and the theorem
below.

Definition 1. LetΨ : R2 → 2R be a set-valued function that is measurable in the sense
that Ψ−1(S) is Lebesgue measurable for every open setS ⊂ R. We do not distinguish
Ψ between a set-valued function and a set of measurable (single-valued) functions, and
let

Ψ := {measurable functionψ satisfyingψ(x) ∈ Ψ(x), ∀x}.
TheG-value ofΨ is defined as follows:

G(Ψ) := sup
h∈C∞0 :

R |∇h|=1

− sup
ψ∈Ψ

∫
ψ(x)h(x)dx. (10)

Theorem 4. Let ∂|f | denote the set-valued sub-derivative of|f |, i.e., ∂|f |(x) equals
sign(f(x)) if f(x) 6= 0 and equals the interval[−1, 1] if f(x) = 0. Then, for the TV-L1

model (3),

1. uλ = 0 is an optimal solution if and only ifλ ≤ 1
G(∂|f |) ;

2. uλ = f is an optimal solution if and only ifλ ≥ suph∈BV
‖Df‖−‖Dh‖R |f−h| ,

where 1
G(∂|f |) ≤ suph∈BV

‖Df‖−‖Dh‖R |f−h| , ∀f ∈ BV .



It follows from the “layer cake” formula (6) that solving the geometric problem (8)
is equivalent to solving the TV-L1 model with inputf = 1Γ . Therefore, by applying
Theorem 4 tof = 1Γ , we can characterize the solution of (6) as follows:

Corollary 1. For the geometric problem (8) with a givenλ,

1. Σλ = ∅ is an optimal solution if and only ifλ ≤ 1
G(∂|1Γ |) ;

2. Σλ = Γ is an optimal solution if and only ifλ ≥ suph∈BV
‖D1Γ ‖−‖Dh‖R |1Γ−h| .

Corollary 1, together with Theorem 3, implies the followings. Suppose that the mask
setS of a geometric featureF coincides withU(f, µ) for µ ∈ [µ0, µ1). Then, for any
λ < 1/G(∂|1S |), 1Σf,µ

= ∅ for µ ∈ [µ0, µ1); hence, the geometric featureF is
not observable inuλ. In the example whereF = f = cBr (recall thatBr is the disk
function with radiusr and unit height),S andU(f, µ) are the circleB̄r with radiusr for
µ ∈ [0, c), andG(∂|1S |) = G(∂|Br|) = r/2. Therefore, ifλ < 1/G(∂|1S |) = 2/r,
1Σf,µ

= ∅ for µ ∈ [0, c). Also becauseµ0 = 0 and1Σf,µ
= ∅ for µ ≥ c in (9),uλ ≡ 0,

which means the featureF = cBr is not included inuλ.
If λ > 1/G(∂|1S |), Σf,µ 6= ∅ for µ ∈ [µ0, µ1), which implies at least some part

of the featureF can be observed inuλ. Furthermore, ifλ ≥ suph∈BV (‖D1Γ ‖ −
‖Dh‖)/ ∫ |1Γ − h|, we getΣf,µ = U(f, µ) = S for µ ∈ [µ0, µ1) and therefore, the
featureF is fully contained inuλ. In the above example whereF = f = cBr and
S = B̄r, it turns out2/r = 1/G(∂|1S |) = suph∈BV (‖D1Γ ‖ − ‖Dh‖)/ ∫ |1Γ − h|.
Therefore, ifλ > 2/r, Σf,µ = S for µ ∈ [0, c), anduλ = cBr = f .

In general, although a feature is often different from its vicinity in intensity, it cannot
monopolize a level set of the inputf , i.e., it is represented by an isolated sets inU(f, µ),
for someµ, which also contains isolated sets representing other features. Consequently,
uλ that contains a targeted feature may also contain many other features. However,
from Theorem 3 and Corollary 1, we can easily see that the arguments for the case
S = U(f, µ) still hold for the caseS ⊂ U(f, µ).

Proposition 1. Suppose there are a sequences of features inf that are represented by
setsS1, S2, . . . , Sl and have distinct intensity values. Let

λmin
i :=

1
G(∂|1Si |)

, λmax
i := sup

h∈BV

‖D1Si‖ − ‖Dh‖∫ |1Si − h| , (11)

for i = 1, . . . , l. If the features have decreasing scales and, in addition, the following
holds

λmin
1 ≤ λmax

1 < λmin
2 ≤ λmax

2 < . . . < λmin
l ≤ λmax

l , (12)

then featurei, for i = 1, . . . , l, can be precisely retrieved asuλmax
i +ε− uλmin

i −ε (hereε

is a small scalar that forces unique solutions becauseλmin
i = λmax

i is allowed).

This proposition holds since forλ = λmin
i − ε, featurei completely vanishes inuλ, but

for λ = λmax
i − ε, featurei is fully contained inuλ while there is no change to any

other features.
To extract a feature represented by setS in real-world applications, one can com-

puterG(∂|1S |) off-line and useλ slightly greater than1/G(∂|1S |). The intensity and
the position of the feature inf are not required as priors.

Next, we present a corollary of Theorem 3 to finish this section.



Corollary 2. [Morphological invariance]For any strictly increasing functiong : R→
R, uλ(g ◦ f) = g ◦ uλ(f).

5 Second-order cone programming formulations

In this section, we briefly show how to formulate the discrete versions of the TV-L1

model (3) as a second-order program (SOCP).
In an SOCP the vector of variablesx ∈ Rn is composed of subvectorsxi ∈ Rni –

i.e.,x ≡ (x1;x2; . . . ;xr) – wheren = n1 +n2 + . . .+nr and each subvectorxi must
lie either in an elementarysecond-order coneof dimensionni

Kni ≡ {xi = (x0
i ; x̄i) ∈ R× Rni−1 | ‖x̄i‖ ≤ x0

i },
or anni-dimensionalrotated second-order cone

Qni ≡ {xi ∈ Rni | xi = x̄, 2x̄1x̄2 ≥
ni∑

i=3

x̄2
i , x̄1, x̄2 ≥ 0},

which is an elementary second-order cone under a linear transformation.
With these definitions an SOCP can be written in the following form [1]:

min c>1 x1 + · · ·+ c>r xr

s.t. A1x1 + · · ·+ Arxr = b
xi ∈ Kni orQni , for i = 1, . . . , r,

(13)

whereci ∈ Rni andAi ∈ Rm×ni , for any i, andb ∈ Rm. As is the case for linear
programs, SOCPs can be solved in polynomial time by interior point methods.

We assume that images are represented as 2-dimensionaln × n matrices, whose
elements give the “grey” values of corresponding pixels, i.e.,fi,j = ui,j + vi,j , for
i, j = 1, . . . , n.

First, as the total variation ofu is defined discretely by forward finite differences as∫ |∇u| :=
∑

i,j [((∂
+
x u)i,j)2 + ((∂+

y u)i,j)2]1/2, by introducing new variablesti,j , we
can expressmin{∫ |∇u|} asmin{∑i,j ti,j} subject to the 3-dimensional second-order
cones(ti,j ; (∂+

x u)i,j , (∂+
y u)i,j) ∈ K3. Second, minimizing the fidelity term

∫ |f − u|
is equivalent to minimizings subject to

∑
i,j(fi,j−ui,j) ≤ s and

∑
i,j(ui,j−fi,j) ≤ s.

Therefore, the SOCP formulation of the TV-L1 model is

mins,t,u,∂+
x u,∂+

y u

∑
1≤i,j≤n ti,j + λs

s.t. (∂+
x u)i,j = ui+1,j − ui,j ∀i, j = 1, . . . , n,

(∂+
y u)i,j = ui,j+1 − ui,j ∀i, j = 1, . . . , n,∑
1≤i,j≤n(fi,j − ui,j) ≤ s,∑
1≤i,j≤n(ui,j − fi,j) ≤ s,

(ti,j ; (∂+
x u)i,j , (∂+

y u)i,j) ∈ K3 ∀i, j = 1, . . . , n.

(14)

Finally, we note that bothG(∂|f |) andsuph∈BV
‖Df‖−‖Dh‖R |f−h| , after homogenizing

the objective function of the latter, can be easily developed based on the SOCP formu-
lation of the total variation term

∫ |Dh|.



6 Numerical results

6.1 Comparison among three decomposition models

In this subsection, we present numerical results of the TV-L1 model and compare them
with the results of the Meyer [13] and the Vese-Osher (VO) [21] models, below.

The Meyer model:minu∈BV {
∫
|∇u| : ‖v‖G ≤ σ, f = u + v}.

The Vese-Osher model:minu∈BV

∫
|∇u|+ λ

∫
|f − u− div(g)|2 + µ

∫
|g|.

We also formulated these two models as SOCPs, in which no regularization or approxi-
mation is used (refer to [9] for details). We used the commercial package Mosek as our
SOCP solver. In the first set of results, we applied the models to relatively noise-free
images.

We tested textile texture decomposition by applying the three models to a part (Fig.
1 (b)) of the image “Barbara” (Fig. 1 (a)). Ideally, only the table texture and the strips on
Barbara’s clothes should be extracted. Surprisingly, Meyer’s method did not give good
results in this test as the texturev output clearly contains inhomogeneous background.
To illustrate this effect, we used a very conservative parameter - namely, a smallσ - in
Meyer’s model. The outputs are depicted in Fig. 1 (d). Asσ is small, some table cloth
and clothes textures remain in the cartoonu part. One can imagine that by increasing
σ we can get a result with less texture left in theu part, but with more inhomogeneous
background left in thev part. While Meyer’s method gave unsatisfactory results, the
other two models gave very good results in this test as little background is shown in
Figures 1 (e) and (f). The Vese-Osher model was originally proposed as an approxima-
tion of Meyer’s model in which theL∞-norm of |g| is approximated by theL1-norm
of |g|. We guess that the use of theL1-norm allowsg to capture more texture signal
while the originalL∞-norm in Meyer’s model makesg to capture only the oscillatory
pattern of the texture signal. Whether the texture or only the oscillatory pattern is more
preferable depends on applications. For example, the latter is more desirable in analyz-
ing fingerprint images. Compared to the Vese-Osher model, the TV-L1 model generated
a little sharper cartoon in this test. The biggest difference, however, is that the TV-L1

model kept most brightness changes in the texture part while the other two kept them in
the cartoon part. In the top right regions of the output images, the wrinkles of Barbara’s
clothes are shown in theu part of Fig. 1 (e) but in thev part of (f). This shows that the
texture extracted by TV-L1 has a wider dynamic range.

In the second set of results, we applied the three models to the image “Barbara”
after adding a substantial amount of Gaussian noise (standard deviation equal to 20).
The resulting noisy image is depicted in Fig. 1 (c). All the three models removed the
noise together with the texture fromf , but noticeably, the cartoon partsu in these
results (Fig. 1 (g)-(l)) exhibit a staircase effect to different extents. We tested different
parameters and conclude that none of the three decomposition models is able to separate
image texture and noise.



6.2 Feature selection using the TV-L1 model

ComponentS̄1 S̄2 S̄3 S̄4 S̄5
G-value 19.39390 13.39629 7.958856 4.570322 2.345214
λmin 0.0515626 0.0746475 0.125646 0.218803 0.426400

λ1 = λ2 = λ3 = λ4 = λ5 = λ6 =
0.0515 0.0746 0.1256 0.2188 0.4263 0.6000

Table 1.

We applied the TV-L1 model with differentλ’s to the composite input image (Fig.
2 (f )). Each of the five components in this composite image is depicted in Fig. 2 (S1)-
(S5). We name the components byS1, . . . , S5 in the order they are depicted in Fig. 2.
They are decreasing in scale. This is further shown by the decreasingG-values of their
mask sets̄S1, . . . , S̄5 , and hence, their increasingλmin values (see (11)), which are
given in Table 1. We note thatλmax

1 , . . . , λmax
6 are large since the components do not

possess smooth edges in the pixelized images. This means that the property (12) does
not hold for these components, so using the lambda valuesλ1, . . . , λ6 given in Table
1 does not necessarily give entire feature signal in the outputu. We can see from the
numerical results depicted in Fig. 2 that we are able to produce outputu that contains
only those features with scales larger that1/λi and that leaves, inv, only a small amount
of the signal of these features near non-smooth edges. For example, we can see the
white boundary ofS2 in v3 and four white pixels corresponding to the four corners of
S3 in v4 andv5. This is due to the nonsmoothness of the boundary and the use of finite
difference. However, the numerical results closely match the analytic results given in
Subsection 4.1. By forming differences between the outputsu1, . . . , u6, we extracted
individual featuresS1, . . . , S5 from inputf . These results are depicted in the fourth row
of images in Fig. 2.

We further illustrate the feature selection capacity of the TV-L1 model by presenting
two real-world applications. The first application is background correction for cDNA
microarray images, in which the mRNA-cDNA gene spots are often plagued with the
inhomogeneous background that should be removed. Since the gene spots have similar
small scales, an appropriateλ can be easied derived from Proposition 1. The results
are depicted in Fig. 2 (c)-(f). The second application is illumination removal for face
recognition. Fig. 2 (i)-(iii) depicts three face images in which the first two images belong
to the same face but were taken under different lighting conditions, and the third image
belongs to another face. We decomposed their logarithm using the TV-L1 model (i.e.,

f
log→ f ′ TV−L1

−→ u′ + v′) with λ = 0.8 and obtained the images (v′) depicted in Fig. 2
(iv)-(vi). Clearly, the first two images (Fig. 2 (iv) and (v)) are more correlated than their
originals while they are very less correlated to the third. The role of the TV-L1 model
in this application is to extract the small-scale facial objects like the mouth edges, eyes,
and eyebrows that are nearly illumination invariant. The processed images shall make
the subsequent computerized face comparison and recognition easier.
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(a)512× 512 “Barbara” (b) a256× 256 part of (a) (c) noisy “Barbara” (std.=20)

(d) Meyer (σ = 15) applied to (b) (e) Vese-Osher (λ = 0.1, µ = 0.5) applied to (b)

(f) TV-L1 (λ = 0.8) applied to (b) (g) Meyer (σ = 20) applied to (c)

(h) Vese-Osher (λ = 0.1, µ = 0.5) applied to (c) (l) TV-L1 (λ = 0.8) applied to (c)

Fig. 1. Cartoon-texture decomposition and denoising results by the three models.
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Fig. 2.Feature selection using the TV-L1 model.


