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Abstract. Feature subset selection is an important subject when train-
ing classifiers in Machine Learning (ML) problems. Too many input
features in a ML problem may lead to the so-called “curse of dimen-
sionality”, which describes the fact that the complexity of the classifier
parameters adjustment during training increases exponentially with the
number of features. Thus, ML algorithms are known to suffer from impor-
tant decrease of the prediction accuracy when faced with many features
that are not necessary. In this paper, we introduce a novel embedded fea-
ture selection method, called ESFS, which is inspired from the wrapper
method SFS since it relies on the simple principle to add incrementally
most relevant features. Its originality concerns the use of mass functions
from the evidence theory that allows to merge elegantly the information
carried by features, in an embedded way, and so leading to a lower com-
putational cost than original SFS. This approach has successfully been
applied to the domain of image categorization and has shown its effec-
tiveness through the comparison with other feature selection methods.
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1 Introduction

When a classification problem has to be solved, the common approach is to
compute a wide variety of features that will carry as much as possible different
information to perform the classification of samples. Thus, numerous features
are used whereas, generally, only a few of them are relevant for the classification
task. Including the other in the feature set used to represent the samples to
classify, may lead to a slower execution of the classifier, less understandable
results, and much reduced accuracy [1]. In this context, the objective of feature
selection is three-fold: improving the prediction performance of the predictors,
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providing faster and more cost-effective predictors, and gaining a deeper insight
into the underlying processes that generated the data.

Thus, a feature selection method aims at finding the most relevant features.
There exist considerable works in the literature on the question. Interesting
overviews include [2][3]. However, the relevance notion is not perfectly defined
and may depend on the feature selection method. One of these definitions [4] is
to consider that a feature f is relevant if it is incremental useful to a learning
algorithm L with respect to a feature subset S: the accuracy that L produces an
hypothesis using the feature set f ∪S is higher than the accuracy achieved only
using S. In the case of classification problems, the accuracy can be the correct
classification rate.

Feature selection methods can be categorized into three main categories ac-
cording to the dependence to the classifiers: filter approaches, wrapper ap-
proaches and embedded approaches [5].

Filter methods include Relief method [6], Focus algorithm [7], Orthogonal
Forward Selection [8], and normally evaluate the statistical performance of the
features over the data without considering the proper classifiers. The irrelevant
features are filtered out before the classification process [1]. Their main advantage
is their low computational complexity which makes them very fast. Their main
drawback is that they are not optimized to be used with a particular classifier
as they are completely independent of the classification stage.

Wrapper methods on the contrary evaluate feature subsets with the classi-
fication algorithm in order to measure their efficiency according to the correct
classification rate [2]. Thus, feature subsets are generated thanks to some search
strategy, and the feature subset which leads to the best correct classification
rate is kept. Among algorithms widely used, we can mention Genetic Algorithm
(GA) [9][10], Sequential Forward Selection (SFS) [11], Sequential Floating Selec-
tion [12] and Oscillating Selection [13]. The computational complexity is higher
than the one of filter methods but selected subsets are generally more efficient,
even if they remain sub-optimal [14].

In embedded feature selection methods, similarly to wrapper methods, fea-
ture selection is linked to the classification stage, this link being in this case
much stronger as the feature selection in embedded methods is included into the
classifier construction. Some examples of such method are recursive partitioning
methods for decision trees such as ID3 [15], C4.5 [16][17] and CART [18], or
the recently proposed recursive feature elimination (RFE) approach, which is
derived based on the support vector machine (SVM) theory and has shown its
good performance for the gene selection [19][20]. Embedded methods offer the
same advantages as wrapper methods concerning the interaction between the
feature selection and the classification. Moreover, they present a better com-
putational complexity since the selection of features is directly included in the
classifier construction during training process.

In our work, we introduce a new embedded feature selection method we have
developed and called ESFS, inspired from the wrapper method SFS since it
relies on the simple principle to add incrementally most relevant features, and
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making use of the term of mass function which is introduced from the evidence
theory which allows elegantly to merge feature information in an embedded way,
leading to a lower computational cost than original SFS. This approach has been
evaluated on the problem of image classification and has shown its effectiveness
comparing to other feature selection methods.

The rest of this paper is organized as follows. In section 2, we introduce the
evidence theory on which our feature selection method is based, and detailed in
section 3. Experimental results are presented in section 4. Finally, conclusions
and perspectives are drawn in section 5.

2 Overview of the Evidence Theory

In our feature selection scheme, the term “belief mass” from the evidence theory
is introduced into the processing of features.

Dempster and Shafer wanted in the 1970’s to calculate a general uncertainty
level from the Bayesian theory. They developed the concept of “uncertainty map-
ping” to measure the uncertainty between a lower limit and an upper limit [21].
Similar to the probabilities in the Bayesian theory, they presented a combination
rule of the belief masses (or mass function) m().

The evidence theory was completed and presented by Shafer in [22]. It relies
on the definition of a set of n hypotheses Ω which have to be exclusive and
exhaustive. In this theory, the reasoning concerns the frame of discernment 2Ω

which is the set composed of the 2n subsets of Ω. In order to express the degree of
confidence we have in a source of information for an event A of 2Ω, we associate
to it an elementary mass of evidence m(A).

The elementary mass function or belief mass which presents the chance of
being a true statement is defined as:

m : 2Ω → [0, 1] . (1)

which satisfies:
m(Φ) = 0 and

∑

A⊆2Ω

m(A) = 1 . (2)

The belief function is defined if it satisfies Bel(Φ) = 0 and Bel(Ω) = 1 and for
any collection A1...An of subsets of Ω

Bel(A1 ∪ ... ∪ An) ≥
∑

I⊆{1...n},I �=φ

(−1)|I|+1Bel(∩i∈IAi) . (3)

The belief function shows the lower bound on the chances, and it corresponds
to the mass function with the following formulaes

Bel(A) =
∑

B⊆A

m(B) ∀ A ⊂ Ω . (4)

m(A) =
∑

B⊆A

(−1)|A−B|Bel(B) . (5)

where |X | means the number of elements in the subset X .



Image Categorization Using ESFS 291

The doubt function is defined as Dou(A) = Bel(Ā) and the upper probability
function is defined as Pl(A) = 1 − Dou(A). The true belief in A should be
between Bel(A) and Pl(A).

The Dempster’s combination rule can combine two or more independent sets
of mass assignments by using orthogonal sum. For the case of two mass functions,
let m1 and m2 be mass functions on the same frame Ω, the orthogonal sum is
defined as m = m1 ⊕ m2, to be m(Φ) = 0, and

m(A) = K
∑

X∩Y =A

m1(X) • m2(Y ) . (6)

K =
1

1 − ∑
X∩Y =φ m1(X) • m2(Y )

. (7)

For the case with more than two mass functions, let m = m1 ⊕ ... ⊕ mn. It
satisfies m(Φ) = 0 and

m(A) = K
∑

∩Ai=A

∏

1≤i≤n

mi(Ai) . (8)

K =
1

1 − ∑
∩Ai=φ

∏
1≤i≤n mi(Ai)

. (9)

This definition of mass functions from the evidence is used in our model in order
to represent the source of information given by each feature, and to combine
them easily and to consider them as a classifier whose recognition value is given
by the mass function.

3 ESFS Scheme

Recall that an exhaustive search of the best subset of features, leading to explore
a space of 2n subsets, is impractical, we turn to a heuristic approach for the
feature selection. The SFS is selected as the basic of our feature selection. For this
classifier dependent sub-optimal selection method, we have provided in this work
two innovations. First, the range of subsets to be evaluated in the forward process
is extended to multiple subsets for each size, and the feature set is reduced
according to a certain threshold before the selection in order to decrease the
computational burden caused by the extension of the subsets in the evaluation.
Second, since the SFS is a classifier dependent method, the concept of belief
masses which comes from the evidence theory is introduced to consider the
feature as a classifier which leads to an embedded feature selection method.

3.1 Method Overview

Heuristic feature selection algorithm can be characterized by its stance on four
basic issues that determine the nature of the heuristic search process. First,
one must determine the starting point in the space of feature subsets, which
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influences the direction of search and operators used to generate successor states.
Second decision involves the organization of the search. As an exhaustive search
in a space of 2n feature subsets is impractical, one needs to rely on a more
realistic approach such as greedy methods to traverse the space. At each point
of the search, one considers local changes to the current state of the features,
selects one and iterates. The third issue concerns the strategy used to evaluate
alternative subsets of features. Finally, one must decide on some criterion for
halting the search. In the following, we bring our answers to the previous four
questions.

The SFS algorithm begins with an empty subset of features. The new subset Sk

with k features is obtained by adding a single new feature to the subset Sk−1 which
performs the best among the subsets with k−1 features. The correct classification
rate achieved by the selected feature subset is used as the selection criterion. In the
original algorithm of SFS, there are totally n ∗ (n +1)/2 subsets which need to be
evaluated and the optimal subset may be missing in the searching.

In order to avoid departure too far from the optimal performance, we proposed
an improvement of the original SFS method by extending the subsets to be
evaluated. In each step of forward selection, instead of keeping only one subset
for each size of subsets, a threshold is set according to the compromise between
the performance and the computational burden (which is decided according to
the performance from experiments with a small amount of data in our work)
and all the subsets with the performance above the threshold are kept to enter
the evaluation in the next step. Since remaining multiple subsets in each step
may lead to heavy computational burden, only the features selected in the first
step (subsets with single feature), thus having the best abilities to discriminate
among classes that occur in the training data, are used in the evaluation in
posterior steps. As the features are added to the potential subsets one by one in
the SFS process, the forward process of creating a feature subset with size k can
be seen as a combination between two elements: a subset with size k − 1 and a
single feature. Thus, if we consider each subset as a feature itself, the process
of creating a new feature subset can be interpreted as generating a new feature
from two features.

A wrapper feature selection scheme such as the SFS needs to specify a classi-
fier in order to evaluate improvement of classification accuracy as feature selection
criterion. In our case, the classifier used in this feature selection method is simply
based on the belief masses of the features which are modeled from the distribution
of the features for each class obtained from the training data. The belief masses
of samples in the testing set are calculated with the model of the belief masses.
The class with the highest belief mass is then taken as the output of the classifi-
cation. This classifier is repeated for every subset in evaluation for searching the
best feature subset. The procedure is detailed in the next subsection.

3.2 Feature Selection Procedure

The feature selection procedure is introduced in this section with its four steps.

Step 1: Calculation of the belief masses of the single features.
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Before the feature selection starts, all features are normalized into [0, 1]. For each
feature,

Fean =
Fean0 − min(Fean0)

max(Fean0) − min(Fean0)
. (10)

where Fean0 is the set of original value of the nth feature, and Fean is the
normalized value of the nth feature.

By definition of the belief masses, the mass can be obtained by different ways
which can represent the chance for a statement to be true. In this paper, the
PDFs (probability density functions) of the features computed from the training
data are used to represent the masses of the single features.

The curves of PDFs of the features are obtained by applying polynomial
interpolation to the statistics of the distribution of the feature values from the
training data.

Taking the case of a 2-class classifier as example, the classes are defined as
subset A and subset AC . First, the probability densities of the features in each
of the 2 subsets are estimated from the training samples by the statistics of the
values of the features in each class. We define the probability density of the kth

feature Feak in subset A as Prk(A, fk) and the probability density in subset
AC as Prk(AC , fk), where the fk is the value of the feature Feak .According to
the probability densities, the masses of feature Feak on these two subsets can
be defined as

mk(A, fk) =
Prk(A, fk)

Prk(A, fk) + Prk(AC , fk)
. (11)

mk(AC , fk) =
Prk(AC , fk)

Prk(A, fk) + Prk(AC , fk)
. (12)

where at any possible value of the kth feature fk, mk(A, fk) + mk(AC , fk) = 1.
In the case of N classes, the classes are defined as A1, A2, ..., AN . The masses

of feature Fk of the ith class Ai can be obtained as

mk(Ai, fk) =
Prk(Ai, fk)

∑N
n=1 Prk(An, fk)

. (13)

which satisfies
N∑

i=1

mk(Ai, fk) = 1 . (14)

Step 2: Evaluation of the single features and selection of the initial set of po-
tential features.

When the distribution model of the belief masses of the single features for the
different classes have been extracted from the training data, the single features
are evaluated by passing the distribution model derived from the training data.
For each sample, its belief mass value can be extracted from feature mass func-
tions. The samples are assigned to the class which has the highest belief mass
and thus performances of correct classification rates can be obtained.
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Within this process, the single features can then be ordered according to the
correct classification rate given by mass functions and thus the best features can
be selected.

The features are ordered in descending order according to the correct classifi-
cation rates Rsingle(Fk) as {Fs1, Fs2, ..., FsN}, where N means the total number
of features in the whole feature set.

In order to reduce the computational burden in the feature selection, an
initial feature set FSini is constructed with the best K features in the re-
ordered feature set according to a certain threshold in classification rates as
FSini = {Fs1, Fs2, ..., FsK}.

The threshold of the classification rates is decided according to the best clas-
sification rate as:

Rsingle(Fs K) ≥ thres 1 ∗ Rbest 1 . (15)

where Rbest 1 = Rsingle(Fs 1). In our work of image classification, the threshold
value thres 1 is set to 0.7 according to a balance between the overall perfor-
mance and the calculation time by experiments. This threshold may vary with
different problems, and around 100 features are kept in our applications above
the threshold of 0.7.

Only the features selected in the set FSini will attend in the latter steps of
feature selection process. The elements (features) in FSini are seen as subsets
with size 1 at the same time.

Step 3: Combination of features for the generation of the feature subsets.

For the iterations with subsets with size k(k ≥ 2), the generation of a subset is
converted into the creation of a new feature by using an operator of combination
from two original features, and the subsets are selected according to a threshold
similar to the case with single features for each size of subsets.

We note the set of all the feature subsets in the evaluation with size k as FSk

and the set of the selected subsets with size k as FS′
k. Thus, FS1 equals to the

original whole feature set, and FS′
1 = FSini. From k = 2, the set of the feature

subsets FSk is noted as:

FSk = Combine(FS′
k−1, FSini) = {Fc01 k, F c02 k, ..., F c0Nk k} . (16)

where the function “Combine” means to generate new features by combining fea-
tures from each of the two sets FS′

k−1 and FSini with all the possible combinations
except the case in which the element from FSini appears in the original features
during the generation process of the element from FS′

k−1; Fc0n k represents the
generated new features; and Nk is the number of elements in the set FSk.

The creation of a new feature from two features is implemented by combin-
ing the contribution of the belief masses of the two features, making use of an
operator of combination. The combining process works as follows.

Assume that N classes are considered in the classifier. For the ith class Ai,
the pre-processed mass m∗ for the new feature Fc0t k, which is generated with
Fcx k−1 from FS′

k−1 and Fsy from FSini, Fc0t k = Combine(Fcx k−1, F sy), is
calculated as
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m∗(Ai, fc0t k) = T (m(Ai, fcx k−1), m(Ai, fsy)) . (17)

where fx is the value of the feature Fx, and T (x, y) is an operator of combination
that corresponds to a t-norm operator, being a generalization of the conjunctive
‘AND’ [27]. The sum of m∗s may not be 1 according to different operators. In
order to meet the definition of belief masses, the m∗s can then be normalized as
the masses for the new feature:

m(Ai, fc0t k) =
m∗(Ai, fc0t k)

∑N
n=1 m∗(An, fc0t k)

. (18)

The performance of the combined new feature may be better than both two
features in the combination. However, the combined new feature may even per-
formance worse than any of the two original features, which will be eliminated
in the selection.

The correct classification rates of the combined new features can be obtained
with the belief masses by assigning the class with the highest belief mass to the
data samples, and the combined new features can then be ordered in descending
order according to the correct classification rates as with the single features:

FSk = {Fc01 k, F c02 k, ..., F c0Nk k} = {Fc1 k, F c2 k, ..., F cNk k} . (19)

The best feature with size k is noted as Fcbest k = Fc1 k, and the recognition
rate of feature Fcbest k is recorded as Rbest k.

Similar to the selection of FSini in the evaluation of the single features, a
threshold is set to select a certain number of subsets with size k to take part to
the next step of forward selection. The set of the subsets remained is noted as

FS′
k = {Fc1 k, F c2 k, ..., F cN0k k} . (20)

which satisfies R(FcN0k k) ≥ thres k ∗Rbest k. In order to simplify the selection,
the threshold value thres k is set in our work to the same value as 0.7 in every
step without any adaptation to each step.

Step 4: Stop criterion and the selection of the best feature subset.

The stop criterion of ESFS occurs when the best classification rate begins to
decrease while increasing the size of the feature subsets. In order to avoid
missing the real peak of the classification performance, the forward selection
stops when the classification performance continues to decrease in two steps,
Rbest k < min(Rbest k−1, Rbest k−2).

4 Experimental Results

The feature selection method proposed in previous section has been evaluated
on the problem of image classification.
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4.1 Dataset

Our experiments are performed on the SIMPLIcity dataset [25]. It is a sub-
set of the COREL database, formed by 10 image categories, each containing
100 images. For the purpose of validating our ESFS based image categorization
approach, 6 categories containing totally 600 images have been chosen in our
experiments: Beach, Building, Bus, Flower, Horse, and Mountain. Some sample
images are presented in Fig. 1.

Fig. 1. Some sample images from SIMPLIcity dataset (from top to bottom, from left
to right, they belong to Beach, Building, Bus, Flower, Horse and Mountain).

4.2 Feature Extraction

A total number of 1056 features have been computed to represent each image
sample from SIMPLIcity dataset. The corresponding feature set thus includes
Color Auto-Correlogram (CAC), Color Coherence Vectors (CCV), Color Mo-
ments (CM), Edge Histogram (EH), Grey Level Co-occurrence Matrix (GLCM)
and Texture Auto-Correlation (TAC), which belong to 3 groups respectively:
Color features, Texture features and Shape features. The high number of fea-
tures as compared to the relatively low number of samples available for training
classifiers strongly suggests the use of a feature selection method to improve
classification accuracy.

4.3 Results

Four groups of experiments have been made on SIMPLIcity dataset: one with
all the features without selection, the second with features selected with filter
methods, such as fisher filter [23] and principal component analysis (PCA) [26],
the third with features selected using a wrapper method, such as SFS, and the
last with the best features selected by ESFS.

Five types of one step global classifiers are tested: Multi-layer Perceptron
(Neural Network, marked as MP in the following text), Decision Tree (C4.5),
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Linear Discriminant Analysis (LDA), K-Nearest Neighbors (K-NN), and multi-
class SVM (C-SVC). Each classifier is tested with several parameter configu-
rations, and only the best results are kept. The experiments are carried out on
TANAGRA platform [24] with 4-folds cross-validation. The experimental results
are listed in Table 1.

Table 1. Comparison between the results without feature selection and with the
features selected by different methods

Classification rate C4.5 LDA K-NN MP C-SVC

No Selection 69.4% 56.8% 80.0% 79.7% 87.3%

Fisher Filter 68.9% 89.2% 79.8% 83.2% 82.9%

PCA 68.3% 85.7% 52.1% 80.5% 51.9%

SFS 69.4% 88.2% 79.5% 80.6% 81.2%

ESFS 70.8% 90.4% 83.0% 87.1% 87.3%

The features selected by the embedded method ESFS are actually working in
a filter way on the several classifiers in this experiment. The results show that
for all of the classifiers tested in this experiment, the features selected by ESFS
work better than both the original features without selection and the features
selected by other methods. We can observe from the table that for certain clas-
sifiers, such as K-NN and MP, the superiority of our ESFS is very obvious and
presented an improvement from 4% to 8% in the classification rate as compared
to other methods. For the other classifiers, ESFS also performed efficiently and
showed its advantage. Moreover, focusing in C-SVC, we found that the classifi-
cation rate of feature selection methods decreased gravely as compared to that
of “No Selection” except in the case of ESFS, which performed the same as “No
Selection”. This phenomenon is probably due to the high ability of SVM in solv-
ing the small dataset, high dimensional pattern recognition problems and even
in this case, our ESFS approach has still maintained the highest performance.
Thus, these experimental results have shown that ESFS is able to select the
most discriminative features for the problem of image classification. Moreover, if
we compare the computational cost between original SFS and ESFS, as the first
one works as a wrapper feature selection method, a training of the classifier (MP
for example) needs to be performed for each possible combination of features,
at each step of the SFS process, whereas ESFS carry its own classifier thanks to
mass functions which are used both for feature combination and decision value,
and thus do not need any training during the selection process. So, the compu-
tational cost of ESFS is much lower than the one of SFS. Experiments presented
previously have been realized on a PC computer equipped with Intel Core Duo
T7200/2GHz and 2GB memory using Windows XP system. In this case, the
selection process with ESFS takes around 50 minutes whereas the selection by
SFS lasts from 8 hours for C-SVC to two weeks for MP.
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5 Conclusion and Future Work

In this paper, we have presented a novel feature selection method, ESFS, which
relies on the simple principle to add incrementally most relevant features. For this
purpose, each feature is represented by a mass function from the evidence theory,
which allows to merge the information carried by features in an embedded way,
and so leading to a lower computational cost than wrapper method. Experimen-
tal results on the problems of image classification shown that selecting relevant
features improves the classification accuracy, and for this purpose, ESFS, used
as a filter selection method, performs better than the traditional filter method,
namely Fisher and PCA algorithm, and wrapper method, namely SFS.

We envisage in our future work to use ESFS as the basis of a hierarchical
classifier, which will be represented by a binary classification tree where ESFS
will be nodes. The purpose of this hierarchical structure is to allow to better
separate classes by first separating classes far away from each other and then
concentrating on closer classes. Moreover, thanks to ESFS, each subclassifier
could have at its disposal its own feature set.
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