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Although the existing traditional image classification methods have been widely applied in practical problems, there are some
problems in the application process, such as unsatisfactory effects, low classification accuracy, and weak adaptive ability. ,is
method separates image feature extraction and classification into two steps for classification operation. ,e deep learning model
has a powerful learning ability, which integrates the feature extraction and classification process into a whole to complete the
image classification test, which can effectively improve the image classification accuracy. However, this method has the following
problems in the application process: first, it is impossible to effectively approximate the complex functions in the deep learning
model. Second, the deep learning model comes with a low classifier with low accuracy. So, this paper introduces the idea of sparse
representation into the architecture of the deep learning network and comprehensively utilizes the sparse representation of well
multidimensional data linear decomposition ability and the deep structural advantages of multilayer nonlinear mapping to
complete the complex function approximation in the deep learning model. And a sparse representation classification method
based on the optimized kernel function is proposed to replace the classifier in the deep learning model, thereby improving the
image classification effect. ,erefore, this paper proposes an image classification algorithm based on the stacked sparse coding
depth learning model-optimized kernel function nonnegative sparse representation. ,e experimental results show that the
proposed method not only has a higher average accuracy than other mainstreammethods but also can be good adapted to various
image databases. Compared with other deep learning methods, it can better solve the problems of complex function approx-
imation and poor classifier effect, thus further improving image classification accuracy.

1. Introduction

According to the Internet Center (IDC), the total amount of
global data will reach 42ZB in 2020. And more than 70% of
the information is transmitted by image or video. To extract
useful information from these images and video data,
computer vision emerged as the times require. At present,
computer vision technology has developed rapidly in the
field of image classification [1, 2], face recognition [3, 4],
object detection [5–7], motion recognition [8, 9], medicine
[10, 11], and target tracking [12, 13]. As an important re-
search component of computer vision analysis and machine
learning, image classification is an important theoretical

basis and technical support to promote the development of
artificial intelligence. Image classification began in the late
1950s and has been widely used in various engineering fields,
human-car tracking, fingerprints, geology, resources, cli-
mate detection, disaster monitoring, medical testing, agri-
cultural automation, communications, military, and other
fields [14–19]. A large number of image classification
methods have also been proposed in these applications,
which are generally divided into the following four cate-
gories. (1) Image classification methods based on statistics: it
is a method based on the least error, and it is also a popular
image statistical model with the Bayesian model [20] and
Markov model [21, 22]. (2) Image classification methods
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based on traditional colors, textures, and local features: the
typical feature of local features is scale-invariant feature
transform (SIFT). ,is method was first proposed by David
in 1999, and it was perfected in 2005 [23, 24]. SIFT looks for
the position, scale, and rotation invariants of extreme points
on different spatial scales. It is widely used in object rec-
ognition [25], panoramic image stitching [26], andmodeling
and recognition of 3D scenes and tracking [27]. However,
this type of method has problems such as dimensionality
disaster and low computational efficiency. (3) Image clas-
sification method based on shallow learning: in 1986,
Smolensky [28] proposed the Restricted Boltzmann Ma-
chine (RBM), which is widely used in feature extraction [29],
feature selection [30], and image classification [31]. In 2017,
Sankaran et al. [32] proposed a Sparse Restricted Boltzmann
Machine (SRBM) method. Its sparse coefficient is deter-
mined by the normalized input data mean. It defines a data
set whose sparse coefficient exceeds the threshold as a dense
data set. It achieves good results on the MNIST data set.
However, the characteristics of shallow learning are not
satisfactory in some application scenarios. (4) Image clas-
sification method based on deep learning: in view of the
shortcomings of shallow learning, in 2006, Hinton proposed
deep learning technology [33]. For the first time in the
journal science, he put forward the concept of deep learning
and also unveiled the curtain of feature learning. In view of
this, many scholars have introduced it into image classifi-
cation. Krizhevsky et al. presented the AlexNet model at the
2012 ILSVRC conference, which was optimized over the
traditional Convolutional Neural Networks (CNN) [34]. It
mainly includes building a deeper model structure, sampling
under overlap, ReLU activation function, and adopting the
Dropout method. It is applied to image classification, which
reduces the image classification Top-5 error rate from 25.8%
to 16.4%. ,erefore, this method became the champion of
image classification in the conference, and it also laid the
foundation for deep learning technology in the field of image
classification. Since then, in 2014, the Visual Geometry
Group of Oxford University proposed the VGG model [35]
and achieved the second place in the ILSVRC image clas-
sification competition. It reduces the Top-5 error rate for
image classification to 7.3%. Its structure is similar to the
AlexNet model, but uses more convolutional layers. In 2015,
Girshick proposed the Fast Region-based Convolutional
Network (Fast R-CNN) [36] for image classification and
achieved good results. Compared with the previous work, it
uses a number of new ideas to improve training and testing
speed, while improving classification accuracy. In 2017, Lee
and Kwon proposed a new deep convolutional neural
network that is deeper and wider than other existing deep
networks for hyperspectral image classification [37]. In 2018,
Zhang et al. proposed an image classification method
combining a convolutional neural network and a multilayer
perceptron of pixels. It consistently outperforms pixel-based
MLP, spectral and texture-based MLP, and context-based
CNN in terms of classification accuracy. ,is study provides
an idea for effectively solving VFSR image classification [38].
Some scholars have proposed image classification methods
based on sparse coding. For example, Zhang et al. [39]

embedded label consistency into sparse coding and dictio-
nary learning methods and proposed a classification
framework based on sparse coding automatic extraction.
Jing et al. [40] applied label consistency to image multilabel
annotation tasks to achieve image classification. Zhang et al.
[41] proposed a valid implicit label consistency dictionary
learning model to classify mechanical faults. However, this
type of method still cannot perform adaptive classification
based on information features.

Although the deep learning theory has achieved good
application results in image classification, it has problems
such as excessive gradient propagation path and over-fitting.
In view of this, this paper introduces the idea of sparse
representation into the architecture of the deep learning
network and comprehensively utilizes the sparse represen-
tation of good multidimensional data linear decomposition
ability and the deep structural advantages of multilayer
nonlinear mapping. It will complete the approximation of
complex functions and build a deep learning model with
adaptive approximation capabilities. It solves the problem of
function approximation in the deep learning model. At the
same time, a sparse representation classification method
using the optimized kernel function is proposed to replace
the classifier in the deep learning model. It will improve the
image classification effect. So, this paper proposes an image
classification algorithm based on the stacked sparse coding
depth learning model-optimized kernel function nonnega-
tive sparse representation. ,e novelty of this paper is to
construct a deep learning model with adaptive approxi-
mation ability. At the same time, this paper proposes a new
sparse representation classification method for optimizing
kernel functions to replace the classifier in the deep learning
model.

Section 2 of this paper will mainly explain the deep
learning model based on stack sparse coding proposed in
this paper. Section 3 systematically describes the classifier
design method proposed in this paper to optimize the
nonnegative sparse representation of kernel functions.
Section 4 constructs the basic steps of the image classifi-
cation algorithm based on the stacked sparse coding depth
learning model-optimized kernel function nonnegative
sparse representation. Section 5 analyzes the image classi-
fication algorithm proposed in this paper and compares it
with the mainstream image classification algorithm. Finally,
the full text is summarized and discussed.

2. Deep Learning Model Based on Stacked
Sparse Coding

2.1. Stacked Sparse Autoencoder. ,e Automatic Encoder
Deep Learning Network (AEDLN) is composed of multiple
automatic encoders. If multiple sparse autoencoders form a
deep network, it is called a deep network model based on
Sparse Stack Autoencoder (SSAE).

,e sparse autoencoder [42, 43] adds a sparse constraint
to the autoencoder, which is typically a sigmoid function.
During learning, if a neuron is activated, the output value is
approximately 1. If the output is approximately zero, then
the neuron is suppressed. ,e network structure of the
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automatic encoder is shown in Figure 1. ,e basic principle
of forming a sparse autoencoder after the automatic encoder
is added to the sparse constraint as follows.

It is assumed that the training sample set of the image
classification is x(1), x(2), . . . , x(m) , and x(m) is the image to
be trained. Training is performed using a convolutional
neural network algorithm with the output target y(i) set to

the input value, y(i)� x(i).
In Figure 1, the autoencoder network uses a three-layer

network structure: input layer L1, hidden layer L2, and
output layer L3. Its training goal is to make the output signalx approximate the input signal x, that is, the error value
between the output signal and the input signal is the
smallest.

,e number of hidden layer nodes in the self-encoder is
less than the number of input nodes. If the number of hidden
nodes is more than the number of input nodes, it can also be
automatically coded. At this point, it only needs to add
sparse constraints to the hidden layer nodes. In general,
high-dimensional and sparse signal expression is considered
to be an effective expression, and in the algorithm, it is
generally not specified which nodes in the hidden layer
expression are suppressed, that is, artificially specified
sparsity, and the suppression node is the sigmoid unit output
is 0. Specifying ρ sparsity parameter in the algorithm rep-
resents the average activation value of the hidden neurons,
i.e., averaging over the training set. In node j in the activated
layer l, its automatic encoding can be expressed as a(l)j :

a(l)j � f sl− 1
i

W(t− 1)
ji ∗ α

(t− 1)
i + b(l− 1)⎛⎝ ⎞⎠, (1)

where f (x) is the sigmoid function, the number of nodes in
the Lth layer can be expressed as sl the weight of the i, jth unit
can be expressed asWji, and the offset of the Lth layer can be
expressed as b(l). ,erefore, a(2)j (x) can be used to represent
the activation value of the input vector x for the first hidden
layer unit j, then the average activation value of j is

ρj � 1

m
m
i�1

α(2)j (x, y) . (2)

,e above formula indicates that for each input sample, j
will output an activation value. ,erefore, the activation
values of all the samples corresponding to the node j are
averaged, and then the constraints are

ρj � ρ, (3)

where ρ is the sparse parameter of the hidden layer unit. To
achieve the goal of constraining each neuron, usually ρ is a
value close to 0, such as ρ� 0.05, i.e., only 5% chance is
activated. ,e goal of e-learning is to make ρ as close as
possible to ρ. ,at is to say, to obtain a sparse network
structure, the activation values of the hidden layer unit nodes
must be mostly close to zero. In order to achieve the purpose
of sparseness, when optimizing the objective function, thoseρ which deviate greatly from the sparse parameter ρ are

punished. ,is paper chooses to use KL scatter (Kullback
Leibler, KL) as the penalty constraint:

c ρj  �s2
j�1

ρ log
ρρj  +(1 − ρ)log

1 − ρ

1 − ρj, (4)

where s2 is the number of hidden layer neurons in the sparse
autoencoder network, such as the method using KL diver-
gence constraint, then formula (4) can also be expressed as
follows:

c ρj  �s2
j�1

KL ρ ‖ρj . (5)

Among them,

KL ρ ‖ρj  � ρ log
ρρj  +(1 − ρ)log

1 − ρ

1 − ρj. (6)

When ρj � ρ, KL(ρ ‖ρj) � 0, if the value of ρj differs
greatly from the value of ρ, then the KL(ρ ‖ρj) term will also
become larger. ,e overall cost function can be expressed as
follows:

Hsparse(W, b) � H(W, b) + βs2
j�1

KL ρ ‖ρj . (7)

Among them, the coefficient β is a sparse penalty term,
the value of ρj related toW, b, andH (W, b) is a loss function,
which can be expressed as follows:

H(W, b) �
1

m
m
i�1

H W, b;x(i) ⎡⎣ ⎤⎦ + 0.5λ nl− 1
l�1

sl
i�1

sl+1
i�1

W(l)
ji 2

�
1

m
m
i�1

1

2
hW,b x

(i) ����� �����2⎡⎣ ⎤⎦ + 0.5λ nl − 1
l�1

sl
i�1

sl+1
i�1

W(l)
ji 2.
(8)

,e abovementioned formula gives the overall cost
function, and the residual or loss of each hidden layer node is
the most critical to construct a deep learning model based on
stacked sparse coding. To this end, the residuals of the
hidden layer are described in detail below, and the corre-
sponding relationship is given.,e residual for layer l node i
is defined as δ(l). It is used to measure the effect of the node
on the total residual of the output. ,e sparse penalty item
only needs the first layer parameter to participate in the
calculation, and the residual of the second hidden layer can
be expressed as follows:

δ(2) � s2
j�1

W(2)
ji δ(3)⎛⎝ ⎞⎠f′ z(2)i . (9)

After adding a sparse constraint, it can be transformed
into

δ(2) � s2
j�1

W(2)
ji δ

(3)⎛⎝ ⎞⎠ + β −
ρρj +

1 − ρ

1 − ρj f′ z(2)i , (10)
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where z(l)j is the input of the activation amount of the Lth
node j, f′(z(l)j ) � α(l)j .

2.2. Stack Sparse Autoencoder Model and Training Ideas.
In general, the dimensionality of the image signal after deep
learning analysis increases sharply and many parameters
need to be optimized in deep learning. ,erefore, sparse
constraints need to be added in the process of deep learning.
It can effectively control and reduce the computational
complexity of the image signal to be classified for deep
learning. It can efficiently learn more meaningful expressions.

,e stack sparse autoencoder is a constraint that adds
sparse penalty terms to the cost function of AE. ,erefore, it
can automatically adjust the number of hidden layer nodes
according to the dimension of the data during the training
process. It avoids the disadvantages of hidden layer nodes
relying on experience. Based on the study of the deep
learning model, combined with the practical problems of
image classification, this paper, sparse autoencoders are
stacked and a deep learning model based on Sparse Stack
Autoencoder (SSAE) is proposed. In the process of deep
learning, the more layers of sparse self-encoding and the
feature expressions obtained through network learning are
more in line with the characteristics of data structures, and it
can also obtain more abstract features of data expression.

2.2.1. SSAE Model Structure. ,e SSAE is implemented by
the superposition of multiple sparse autoencoders, and the
SSAE is the same as the deep learning model. It is also a
generation model. ,e SSAE is characterized by layer-by-
layer training sparse autoencoder based on the input data
and finally completes the training of the entire network.
,en, by comparing the difference between the input value
and the output value, the validity of the SSAE feature
learning is analyzed. ,e basic structure of SSAE is as shown
in Figure 2. ,e SSAEs are stacked by an M-layer sparse
autoencoder, where each adjacent two layers form a sparse
autoencoder. During the training process, the output re-
construction signal of each layer is used to compare with the
input signal to minimize the error.

2.2.2. SSAE Model Training Ideas. ,e SSAE depth model
directly models the hidden layer response of the network by
adding sparse constraints to the deep network. Since each
hidden layer unit is sparsely constrained in the sparse
autoencoder. ,erefore, it can get a hidden layer sparse
response, and its training objective function is

Hmin(W, c, b) � − m
l�1

log
h

ρ(x(l), h(l))

+ λK
j�1

ρ −
1

m
K
j

E hj(l)
 x(l) 



2

.

(11)

In the formula, the response value of the hidden layer is
between [0, 1]. ρ ∈ (0, 1) represents the response expectation
of the hidden layer unit. ,e smaller the value of ρ, the more
sparse the response of its network structure hidden layer
unit. hρ(x(t), h(t)) represents the probability of occur-
rence of the lth sample x (l). E[h(l) |x(l)] represents the
expected value of the jth hidden layer unit response. h (l)
represents the response of the hidden layer.m represents the
number of training samples.

SSAE training is based on layer-by-layer training from
the ground up.,e idea of SSAE training is to train one layer
in the network each time, that is, to train a network with only
one hidden layer. In training, the first SAE is trained first,
and the goal of training is to minimize the error between the
input signal and the signal reconstructed after sparse de-
composition.,en, the output value of the M-1 hidden layer
training of the SAE is used as the input value of the Mth
hidden layer. Repeat in this way until all SAE training is
completed. SSAE itself does not have the function of clas-
sification, but it only has the function of feature extraction.
,erefore, if you want to achieve data classification, you
must also add a classifier to the last layer of the network.,e
classifier for optimizing the nonnegative sparse represen-
tation of the kernel function proposed in this paper is added
here.

In this paper, the output of the last layer of SAE is used as
the input of the classifier proposed in this paper, which keeps
the parameters of the layers that have been trained un-
changed. ,e weights obtained by each layer individually
training are used as the weight initialization values of the
entire deep network. ,en, fine tune the network parame-
ters. ,e basic flow chart of the constructed SSAE model is
shown in Figure 3.

2.3. Advantages of SSAE Deep Learning Model in Image
Classification. Compared with the deep belief network
model, the SSAE model is simpler and easier to implement.
SSAE’s model generalization ability and classification ac-
curacy are better than other models. ,is is due to the in-
clusion of sparse representations in the basic network model
that makes up the SSAE. Sparse autoencoders are often used
to learn the effective sparse coding of original images, that is,
to acquire the main features in the image data. ,e SSAE
model is an unsupervised learning model that can extract
high autocorrelation features in image data during training,

X1

X2

Xm

…

…

+1

…

Input 
layer

Output 
layer

+1

X1

Xm

X2

Figure 1: Basic structure of a sparse autoencoder.
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and it can also alleviate the optimization difficulties of
convolutional networks. Since the learning data sample of
the SSAE model is not only the input data, but also used as
the target comparison image of the output image, the SSAE
weight parameter is adjusted by comparing the input and
output, and finally the training of the entire network is
completed.

,e SSAE depthmodel is widely used for feature learning
and data dimension reduction. Due to the constraints of
sparse conditions in the model, the model has achieved good
results in large-scale unlabeled training. Moreover, the
weight of its training is more in line with the characteristics
of the data itself than the traditional random initialization
method, and the training speed is faster than the traditional
method.

,e image classification algorithm studied in this paper
involves a large number of complex images. ,ese large
numbers of complex images require a lot of data training to
dig into the deep essential image feature information. Since
the calculation of processing large amounts of data is in-
evitably at the expense of a large amount of computation,
selecting the SSAE depth model can effectively solve this
problem. ,e SSAE deep learning network is composed of
sparse autoencoders. In the process of training object im-
ages, the most sparse features of image information are
extracted. It can reduce dimension information. ,en,
through the deep learning method, the intrinsic charac-
teristics of the data are learned layer by layer, and the ef-
ficiency of the algorithm is improved. Applying SSAE to
image classification has the following advantages:

(1) ,e essence of deep learning is the transformation of
data representation and the dimensionality reduc-
tion of data. In DNN, the choice of the number of
hidden layer nodes has not been well solved.
However, the sparse characteristics of image data are
considered in SSAE. It is calculated by sparse rep-
resentation to obtain the eigendimension of high-
dimensional image information. ,e sparsity con-
straint provides the basis for the design of hidden
layer nodes. In summary, the structure of the deep
network is designed by sparse constrained optimization.

(2) Because deep learning uses automatic learning to
obtain the feature information of the object

measured by the image, but as the amount of cal-
culated data increases, the required training accuracy
is higher, and then its training speed will be slower.
,erefore, adding the sparse constraint idea to deep
learning is an effective measure to improve the
training speed. ,e SSAE model proposed in this
paper is a new network model architecture under the
deep learning framework.

,erefore, the SSAE-based deep learning model is
suitable for image classification problems. ,e model can
effectively extract the sparse explanatory factor of high-di-
mensional image information, which can better preserve the
feature information of the original image. It can reduce the
size of the image signal with large structure and complex
structure and then layer the feature extraction. ,e features
thus extracted can express signals more comprehensively
and accurately. It is an excellent choice for solving complex
image feature analysis.

3. ClassifierDesign forOptimizingNonnegative
Sparse Representation of Kernel Functions

3.1. Basic Principle of Nonnegative Sparse Coding.
Assuming that images are a matrix ofw × h, the autoencoder
will map each image into a column vector v ∈Rd, d � w × h,
then n training images form a dictionary matrix, that is,
D � [v1, v2, . . . , vn] ∈ Rd×n. Let D1 ∈ Rd×k denote the target
dictionary and D2 ∈ Rd×(n×k) denote the background dic-
tionary, then D� [D1, D2].

Under the sparse representation framework, the pure
target column vector y ∈Rd can be obtained by a linear
combination of the atom v in the dictionary and the sparse
coefficient vector C. ,e details are as follows:

y � 
i�1: n

vi · ci. (12)

Among them, the sparse coefficient C� [0, . . ., 0, ct1, 0,
. . ., 0] ∈Rn. In the ideal case, only one coefficient in the
coefficient vector is not 0. In the real world, because of the
noise signal pollution in the target column vector, the target
column vector is difficult to recover perfectly. So, add a slack
variable to formula (12):

y � 
i�1: n

vi · ci + r, (13)

where y is the actual column vector and r ∈Rd is the
reconstructed residual. In formula (13), vi and y are known,
and it is necessary to find the coefficient vector corre-
sponding to the test image in the dictionary. To this end, it
must combine nonnegative matrix decomposition and then
propose nonnegative sparse coding. ,erefore, its objective
function becomes the following:

min
C
H(C) � y − 

i�1: n

vi · ci

���������
���������
2

2

+ λ‖C‖1, (14)

where λ is a compromise weight. When λ increases, the
sparsity of the coefficient increases. ‖C‖1 � i�1: n‖ci‖, ci≥ 0,
vi,j ≥ 0.
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Refactoring

Refactoring

Refactoring
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Figure 2: Basic schematic diagram of the stacked sparse
autoencoder.
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3.2.7eBasic Principle of Classification of Nonnegative Sparse
Representation of Kernel Function. ,e premise that the
nonnegative sparse classification achieves a higher classifi-
cation correct rate is that the column vectors of
D � [v1, v2, . . . , vn] are not correlated. But in some visual
tasks, sometimes there are more similar features between
different classes in the dictionary. If the two types of
problems are considered, the correlation of the column
vectors ofD1 andD2 is high, and the nonzero solutions of the
convex optimization may be concentrated on the wrong
category. A kernel function is a dimensional transformation
function that projects a feature vector from a low-dimen-
sional space into a high-dimensional space. It can increase
the geometric distance between categories, making the linear
indivisible into linear separable. ,is method has many
successful applications in classic classifiers such as Support
Vector Machine. Inspired by [44], the kernel function
technique can also be applied to the sparse representation
problem, reducing the classification difficulty and reducing
the reconstruction error. Its basic idea is as follows.

Let function ϕ project the feature from dimensional
space d to dimensional space h: Rd→Rh, (d< h). ,e class to
be classified is projected as y→ϕ(y), and the dictionary is
projected as D→D � (ϕ(v1), ϕ(v2), . . . ,ϕ(vn)). Let
K(x, x) � ϕ(x)Tϕ(x) � 1. ,en, the kernel function is
sparse to indicate that the objective equation is

min
C

H(C) � 
i�1: n

ϕ vi(  · ci − ϕ(y)

���������
���������
2

2

+ λ‖C‖1

s.t. ci ≥ 0, vi,j ≥ 0.
(15)

It can be known that the convergence rate of the random
coordinate descent method (RCD) is faster than the classical
coordinate descent method (CDM) and the feature mark
search FSS method. However, because the RCD method
searches for the optimal solution in the entire real space, its
solution may be negative. It does not conform to the
nonnegative constraint ci≥ 0 in equation (15).,erefore, this
paper proposes a kernel nonnegative Random Coordinate
Descent (KNNRCD) method to solve formula (15). ,e
condition for solving nonnegative coefficients using
KNNRCD is that the gradient of the objective function R (C)
conforms to the Coordinate-wise Lipschitz Continuity, that
is,

∇cH C + hej  − ∇cH(C) ≤ Lj|h|. (16)

When ci≠0, the partial derivative of J (C) can be obtained:

k vj, vi  � φ vj T · φ vi( ,
k vj, y  � φ vj T · φ(y),
∇cH(C) � 

i�1: n

ci · K vj, vi  − K vj, y  + λ.

(17)

Calculated by the above mentioned formula,

Lj � max
z ∇cJ(C)( 

zc
  � k vj, vi , (18)

where k (vj, vi) � 1. It can be seen that the gradient ∇cH(C)
of the objective function is divisible and its first derivative is
bounded. So, the gradient of the objective function H (C) is
consistent with Lipschitz’s continuum. According to [44],
the update method of RCD is

ck+1i � cki − L
− 1
i · ∇H(C) · ei, (19)

where i is a random integer between [0, n]. But the calculated
coefficient result may be ck+1i < 0. So, it needs to improve it to

ck+1i � max 0, cki − L
− 1
i · ∇H(C) · ei . (20)

For the coefficient selection problem, the probability that
all coefficients in the RCD are selected is equal. ,is strategy
leads to repeated optimization of the zero coefficients. In
order to improve the efficiency of the algorithm, KNNRCD’s
strategy is to optimize only the coefficient ci greater than
zero. Specifically, the computational complexity of the
method is O((n/ε)log(1/ρ)), where ε is the convergence
precision and ρ is the probability. ,erefore, for any kernel
function K(·, ·), the KNNRCD algorithm can iteratively
optimize the sparse coefficient C by the abovementioned
formula.

Begin

Data preprocessing

Network parameter initialization

Preset training parameters, train the first layer of sparse self-
encoder, and use the training result as the next layer of SAE 

input

�e SAE is trained layer by layer to obtain a deep learning 
model, and the feature depth representation is obtained, and the 

classifier is added

A loss function is constructed for the trained SSAE model 
and fine-tuned

Test model

Figure 3: Basic flow chart of SSAE model training.
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,is paper proposes the Kernel Nonnegative Sparse
Representation Classification (KNNSRC) method for clas-
sifying and calculating the loss value of particles. If rs is the
residual corresponding to class s, then

rs � n

i�1
D · Cs − φ(y)

����� �����22
� CTSK vi, vj 

n×n
Cs − 2K vi, y( Tn×1Cs , (21)

where Cs is the corresponding coefficient of the S-class. For
the two classification problem available,

ly � 1, if r1 < r2,
ly � 0, if r1 > r2,

⎧⎨⎩ (22)

where ly is the category corresponding to the image y. For a
multiclass classification problem, the classification result is
the category corresponding to the minimum residual rs. ,e
particle loss value required by the NH algorithm is li,t� r1.

,e KNNRCD method can combine multiple forms of
kernel functions such as Gaussian Kernel and Laplace
Kernel. ,e final classification accuracy corresponding to
different kinds of kernel functions is different.

4. Image Classification Algorithm Based on
Stacked Sparse CodingDeep LearningModel-
Optimized Kernel Function Nonnegative
Sparse Representation

Firstly, the sparse representation of good multidimensional
data linear decomposition ability and the deep structural
advantages of multilayer nonlinear mapping are used to
complete the approximation of the complex function of the
deep learning model training process. ,en, a deep learning
model based on stacked sparse coding with adaptive ap-
proximation ability is constructed. ,e classifier of the
nonnegative sparse representation of the optimized kernel
function is added to the deep learning model. Finally, an
image classification algorithm based on stacked sparse
coding depth learning model-optimized kernel function
nonnegative sparse representation is established. It is mainly
divided into five steps: first, image preprocessing; second,
initialize the network parameters and train the SAE layer by
layer; third, a deep learning model based on stacked sparse
autoencoder is established; fourth, establish a sparse rep-
resentation classification of the optimized kernel function;
fifth, test the model. ,e basic flow chart of the proposed
image classification algorithm is shown in Figure 4. Its basic
steps are as follows:

(1) First preprocess the image data.

(2) Initialize the network parameters and give the
number of network layers, the number of neural
units in each layer, the weight of sparse penalty
items, and so on.

(3) ,e approximation of complex functions is ac-
complished by the sparse representation of multi-
dimensional data linear decomposition and the deep
structural advantages of multilayer nonlinear

mapping. It will build a deep learning model with
adaptive approximation capabilities. At the same
time, combined with the practical problem of image
classification, this paper proposes a deep learning
model based on the stacked sparse autoencoder. In
deep learning, the more sparse self-encoding layers,
the more characteristic expressions it learns through
network learning and are more in line with the data
structure characteristics. It is also capable of cap-
turing more abstract features of image data
representation.

(4) In order to improve the classification effect of the
deep learning model with the classifier, this paper
proposes to use the sparse representation classifi-
cation method of the optimized kernel function to
replace the classifier in the deep learning model. It
can improve the image classification effect.

(5) Based on steps (1)–(4), an image classification al-
gorithm based on stacked sparse coding depth
learning model-optimized kernel function nonneg-
ative sparse representation is established. ,e algo-
rithm is used to classify the actual images.

5. Example Analysis

5.1. Daily Database Example Analysis. ,is section uses
Caltech 256 [45], 15-scene identification data set [45, 46],
and Stanford behavioral identification data set [46] for
testing experiments. All the pictures are processed into a
gray scale image of 128×128 pixels, as shown in Figure 5.
,e images covered by the above databases contain enough
categories. ,is is the main reason for choosing this type of
database for this experiment. ,e method in this paper
identifies on the above three data sets. ,e maximum block
size is taken as l� 2 and the rotation expansion factor is 20.
Randomly select 20%, 30%, 40%, and 70% of the original
data set as the training set and the rest as the test set. Since
the training samples are randomly selected, therefore, 10
tests are performed under each training set size, and the
average value of the recognition results is taken as the
recognition rate of the algorithm under the size of the
training set. In order to reflect the performance of the
proposed algorithm, this algorithm is compared with other
mainstream image classification algorithms. ,e experi-
mental results are shown in Table 1.

It can be seen from Table 1 that the recognition rates of
the HUSVM and ScSPM methods are significantly lower
than the other three methods. ,is is because the linear
combination of the training test set does not effectively
represent the robustness of the test image and the method to
the rotational deformation of the image portion. ,e reason
that the recognition accuracy of AlexNet and VGG+FCNet
methods is better than HUSVM and ScSPM methods is that
these two methods can effectively extract the feature in-
formation implied by the original training set. It facilitates
the classification of late images, thereby improving the image
classification effect. ,e accuracy of the method proposed in
this paper is significantly higher than that of AlexNet and
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VGG+FCNet. Because although this method is also a
variant of the deep learning model, the deep learning model
proposed in this paper has solved the problems of model
parameter initialization and classifier optimization. It can
train the optimal classification model with the least amount

of data according to the characteristics of the image to be
tested. ,is is also the main reason why the method can
achieve better recognition accuracy under the condition that
the training set is low. In the case where the proportion of
images selected in the training set is different, there are

(a) (b) (c)

(d) (e) (f)

Figure 5: Sample image of the data set: (a) cannon, (b) coin, (c) duck, (d) horse, (e) microwave, and (f) mouse.

Begin

Image data preprocessing

Establish a deep learning model based on stacked sparse 
autoencoder

Establish sparse representation classification of optimized 
kernel functions

Image classification algorithm based on stacked sparse 
coding deep learning model-optimized kernel function

nonnegative sparse representation

Test model

Figure 4: Basic flow chart of image classification algorithm based on stack sparse coding depth learning-optimized kernel function
nonnegative sparse representation.
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certain step differences between AlexNet and VGG+FCNet,
which also reflects the high requirements of the two models
for the training set.

To further verify the universality of the proposed
method. In this section, the experimental analysis is carried
out to verify the effect of the multiple of the block rotation
expansion on the algorithm speed and recognition accuracy,
and the effect of the algorithm on each data set. ,e block
size and rotation expansion factor required by the algorithm
for reconstructing different types of images are not fixed. For
example, in the coin image, although the texture is similar,
the texture combination and the grain direction of each
image are different. In the microwave oven image, the ap-
pearance of the same model product is the same. Although
there are angle differences when taking photos, the block
rotation angles on different scales are consistent. ,erefore,
when identifying images with a large number of detail ro-
tation differences or partial random combinations, it must
rotate the small-scale blocks to ensure a high recognition
rate. For any type of image, there is no guarantee that all test
images will rotate and align in size and size. ,erefore, the
recognition rate of the proposed method under various
rotation expansion multiples and various training set sizes is
shown in Table 2. When calculating the residual, the se-
lection principle of the block dictionary of different scales is
adopted from the coarse to the fine adaptive principle.

It can be seen from Table 2 that the recognition rate of
the proposed algorithm is high under various rotation ex-
pansion multiples and various training set sizes. For dif-
ferent training set ratios, it is not the rotation expansion
factor, the higher the recognition rate is, because the rotation
expansion of the block increases the completeness of the
dictionary within the class. On the other hand, it has the
potential to reduce the sparsity of classes. So, if the rotation
expansion factor is too large, the algorithm proposed in this
paper is not a true sparse representation, and its recognition
is not accurate. At the same time, as shown in Table 2, when
the training set ratio is very low (such as 20%), the recog-
nition rate can be increased by increasing the rotation ex-
pansion factor. When the training set ratio is high,
increasing the rotation expansion factor reduces the rec-
ognition rate. ,is is because the completeness of the dic-
tionary is relatively high when the training set is high.
However, while increasing the rotation expansion factor
while increasing the in-class completeness of the class, it
greatly reduces the sparsity between classes. It will cause the
algorithm recognition rate to drop.

5.2. Medical Database Example Analysis. In order to further
verify the classification effect of the proposed algorithm on
medical images. ,is section will conduct a classification test
on two public medical databases (TCIA-CT database [51]
and OASIS-MRI database [52]) and compare them with
mainstream image classification algorithms.

5.2.1. Database Introduction and Test Process Description.
In 2013, the National Cancer Institute and the University of
Washington jointly formed the Cancer Impact Archive
(TCIA) database [51]. ,e TCIA-CT database is an open
source database for scientific research and educational re-
search purposes. According to the setting in [53], this paper
also obtains the same TCIA-CT database of this DICOM
image type, which is used for the experimental test in this
section. Some examples of images are shown in Figure 6.
,is paper also selected 604 colon image images from da-
tabase sequence number 1.3.6.1.4.1.9328.50.4.2. ,e TCIA-
CT database contains eight types of colon images, each of
which is 52, 45, 52, 86, 120, 98, 74, and 85. ,e size of each
image is 512∗ 512 pixels. For this database, the main reason
is that the generation and collection of these images is a
discovery of a dynamic continuous state change process.
Even within the same class, its difference is still very large.
,erefore, if the model is not adequately trained and learned,
it will result in a very large classification error. Finally, this
paper uses the data enhancement strategy to complete the
database, and obtains a training data set of 988 images and a
test data set of 218 images.

,e OASIS-MRI database is a nuclear magnetic reso-
nance biomedical image database [52] established by OASIS,
which is used only for scientific research. ,e database
contains a total of 416 individuals from the age of 18 to 96.
,e database brain images look very similar and the changes
between classes are very small. To this end, this paper uses
the setting and classification of the database in the literature
[26, 27], which is divided into four categories, each of which
contains 152, 121, 88, and 68 images. An example picture is
shown in Figure 7. Figure 7 shows representative maps of
four categories representing brain images of different patient
information. From left to right, the images of the differences
in pathological information of the patient’s brain image.
From left to right, they represent different degrees of
pathological information of the patient. It can be seen from
Figure 7, it is derived from an example in each category of
the database. ,e classification of images in these four

Table 1: Different methods identify accuracy at various training set sizes (unit:%).

Method type
,e proportion of training sets.

20% 30% 40% 70%

HUSVM [47] 82.2 86.8 91.6 93.8
ScSPM [48] 88.1 90.1 92.4 94.5
AlexNet [49] 90.5 92.3 94.5 97.2
VGG+FCNet [50] 91.4 94.7 95.2 98.1
Ours 94.5 96.1 97.8 99.2
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categories is difficult; even if it is difficult for human eyes to
observe, let alone use a computer to classify this database.
Based on the same data selection and data enhancement
methods, the original data set is extended to a training set of
498 images and a test set of 86 images.

5.2.2. Classification Results and Analysis. ,e classification
algorithm proposed in this paper and other mainstream image
classification algorithms are, respectively, analyzed on the
abovementioned two medical image databases. According to
the experimental operation method in [53], the classification
results are counted. ,e statistical results are shown in Table 3.

It can be seen from Table 3 that the image classification
algorithm based on the stacked sparse coding depth learning
model-optimized kernel function nonnegative sparse rep-
resentation is compared with the traditional classification
algorithm and other depth algorithms. ,e classification
accuracy obtained by the method has obvious advantages. At

the same time, the performance of this method is stable in
both medical image databases, and the classification accu-
racy is also the highest. Specifically, the first three corre-
sponding traditional classification algorithms in the table are
mainly to separate the image feature extraction and classi-
fication into two steps, and then combine them for classi-
fication of medical images. ,e latter three corresponding
deep learning algorithms can unify the feature extraction
and classification process into one whole to complete the
corresponding test. In general, the integrated classification
algorithm achieves better robustness and accuracy than the
combined traditional method. ,is is also the main reason
why the deep learning image classification algorithm is
higher than the traditional image classification method.

For the performance in the TCIA-CT database, only the
algorithm proposed in this paper obtains the best classifi-
cation results. ,e classification accuracy of the three al-
gorithms corresponding to other features is significantly
lower.,e results of the other two comparison depth models

(a) (b) (c) (d)

Figure 7: Example picture of the OASIS-MRI database.

Table 2: Identification accuracy of the proposed method under various rotation expansion multiples and various training set sizes (unit: %).

Rotational expansion factor
Proportion of training set

20% 30% 40% 70%

5 90.1 91.3 94.3 94.2
10 91.5 92.6 98.8 99.2

20 92.4 98.1 97.2 98.9
40 93.3 95.9 95.2 98.0
80 97.5 94.6 94.7 97.4

(a) (b) (c) (d)

Figure 6: Example picture of the TCIA-CT database.
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DeepNet1 and DeepNet3 are still very good. Although 100%
classification results are not available, they still have a larger
advantage than traditional methods. For the most difficult to
classify OASIS-MRI database, all depth model algorithms
are significantly better than traditional types of algorithms.
,is also shows that the accuracy of the automatic learning
depth feature applied to medical image classification tasks is
higher than that of artificially designed image features. ,e
HOG+KNN, HOG+ SVM, and LBP+ SVM algorithms that
performed well in the TCIA-CT database classification have
poor classification results in the OASIS-MRI database
classification. In particular, the LBP+ SVM algorithm has a
classification accuracy of only 57%.

In short, the traditional classification algorithm has the
disadvantages of low classification accuracy and poor sta-
bility in medical image classification tasks. It shows that this
combined traditional classification method is less effective
for medical image classification. However, the classification
accuracy of the depth classification algorithm in the overall
two medical image databases is significantly better than the
traditional classification algorithm. ,is also proves the
advantages of the deep learning model from the side. In
addition, the medical image classification algorithm of the
deep learning model is still very stable. Among them, the
image classification algorithm based on the stacked sparse
coding depth learning model-optimized kernel function
nonnegative sparse representation is compared with
DeepNet1 and DeepNet3. It achieved the best classification
performance. ,is is because the deep learning model
proposed in this paper not only solves the approximation
problem of complex functions, but also solves the problem in
which the deep learning model has poor classification effect.

5.3. ImageNet Database Example Analysis. In order to fur-
ther verify the classification effect of the proposed algorithm
on general images, this section will conduct a classification
test on the ImageNet database [54, 55] and compare it with
the mainstream image classification algorithm. ,e
ImageNet data set is currently the most widely used large-
scale image data set for deep learning imagery. It is also the
most commonly used data set for image classification tasks
to be validated and model generalization performance. Due
to the uneven distribution of the sample size of each cate-
gory, the ImageNet data set used as an experimental test is a
subcollection after screening. ,ere are a total of 1000
categories, each of which contains about 1000 images. An

example of an image data set is shown in Figure 8. In this
paper, the image in the ImageNet data set is preprocessed
before the start of the experimental process, with a uniform
size of 256× 256. At the same time, the mean value of each
pixel on the training data set is calculated, and the mean
value is processed for each pixel. ,e specific experimental
results are shown in Table 4.

It can be seen from Table 4 that the image classification
algorithm proposed in this paper has certain advantages over
other mainstream image classification algorithms. At the
same time, the performance of this method in both medical
image databases is relatively stable, and the classification
results are also very accurate. Specifically, this method has
obvious advantages over the OverFeat [56] method. Both the
Top-1 test accuracy rate and the Top-5 test accuracy rate are
more than 10% higher than the OverFeat method. ,is also
shows that the effect of different deep learning methods in
the classification of ImageNet database is still quite different.
Because the dictionary matrix D involved in this method has
good independence in this experiment, it can adaptively
update the dictionary matrix D. Furthermore, the method of
this paper has good classification ability and self-adaptive
ability. Compared with the VGG [44] and GoogleNet
[57–59] methods, the method improves the accuracy of Top-
1 test by nearly 10%, which indicates that the deep learning
method proposed in this paper can better identify the sample
better. ,e Top-5 test accuracy rate has increased by more
than 3% because this method has a good test result in Top-1
test accuracy.,e VGG and GoogleNet methods do not have
better test results on Top-1 test accuracy. ,ese two methods
can only have certain advantages in the Top-5 test accuracy.
,is is because the deep learning model constructed by these
two methods is less intelligent than the method proposed in
this paper. ,is method is better than ResNet, whether it is
Top-1 test accuracy or Top-5 test accuracy. It only has a small
advantage.

In short, the early deep learning algorithms such as
OverFeat, VGG, and GoogleNet have certain advantages in
image classification. In Top-1 test accuracy, GoogleNet can
reach up to 78%. GoogleNet can reach more than 93% in
Top-5 test accuracy. ,e deep learning algorithm proposed
in this paper not only solves the problem of deep learning
model construction, but also uses sparse representation to
solve the optimization problem of classifier in deep learning
algorithm. ,erefore, the proposed algorithm has greater
advantages than other deep learning algorithms in both Top-
1 test accuracy and Top-5 test accuracy.

Table 3: Comparison table of classification accuracy of different classification algorithms on two medical image databases (unit: %).

Method type
Medical database type

TCIA-CT OASIS-MRI

LBP+ SVM 71.8 57.5
HOG+KNN 85.1 67.6
HOG+SVM 87.3 81.6
DeepNet1 98.7 89.2
DeepNet3 99.2 92.1
Ours 100 95.2
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6. Conclusion

In this paper, a deep learning model based on stack sparse
coding is proposed, which introduces the idea of sparse
representation into the architecture of the deep learning
network and comprehensive utilization of sparse repre-
sentation of good multidimensional data linear decompo-
sition ability and deep structural advantages of multilayer
nonlinear mapping. It solves the approximation problem of
complex functions and constructs a deep learning model
with adaptive approximation ability. ,en, a sparse repre-
sentation classifier for optimizing kernel functions is pro-
posed to solve the problem of poor classifier performance in
deep learning models. ,is sparse representation classifier
can improve the accuracy of image classification. On this
basis, this paper proposes an image classification algorithm
based on stacked sparse coding depth learning model-op-
timized kernel function nonnegative sparse representation.

,e basic idea of the image classification method pro-
posed in this paper is to first preprocess the image data.

Reuse sparseness to represent good multidimensional data
linear decomposition capabilities and deep structural ad-
vantages of multilayer nonlinear mapping. It solves the
approximation problem of complex functions and con-
structs a deep learning model with adaptive approximation
ability. At the same time, combined with the basic problem
of image classification, this paper proposes a deep learning
model based on the stacked sparse autoencoder. ,en, in
order to improve the classification effect of the deep learning
model with the classifier, this paper proposes to use the
sparse representation classification method of the optimized
kernel function to replace the classifier in the deep learning
model. It enhances the image classification effect. Finally, an
image classification algorithm based on stacked sparse
coding depth learning model-optimized kernel function
nonnegative sparse representation is established. ,e image
classification algorithm is used to conduct experiments and
analysis on related examples.

,is paper verifies the algorithm through daily database,
medical database, and ImageNet database and compares it with
other existing mainstream image classification algorithms. ,e
experimental results show that the proposed method not only
has a higher average accuracy than other mainstream methods
but also can be well adapted to various image databases.

Data Availability

,e data used to support the findings of this study are in-
cluded within the paper.

Figure 8: ImageNet database example diagram.

Table 4: Comparison table of classification results of different
classification algorithms on ImageNet database (unit: %).

Method type Top-1 test accuracy Top-5 test accuracy

OverFeat 68.31 85.82
VGG 76.30 93.20
GoogleNet 78.91 93.33
ResNet 85.72 96.43
Ours 87.18 97.15
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