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In view of the problem that manual selection of hyperparameters may lead to

low performance and large consumption of manpower cost of the

convolutional neural network (CNN), this paper proposes a nonlinear

convergence factor and weight cooperative self-mapping chaos optimization

algorithm (WOACW) to optimize the hyperparameters in the identification and

classification model of rice leaf disease images, such as learning rate, training

batch size, convolution kernel size and convolution kernel number. Firstly, the

opposition-based learning is added to the whale population initialization with

improving the diversity of population initialization. Then the algorithm

improves the convergence factor, increases the weight coefficient, and

calculates the self-mapping chaos. It makes the algorithm have a strong

ability to find optimization in the early stage of iteration and fast

convergence rate. And disturbance is carried out to avoid falling into local

optimal solution in the late stage of iteration. Next, a polynomial mutation

operator is introduced to correct the current optimal solution with a small

probability, so that a better solution can be obtained in each iteration, thereby

enhancing the optimization performance of the multimodal objective function.

Finally, eight optimized performance benchmark functions are selected to

evaluate the performance of the algorithm, the experiment results show that

the proposed WOACW outperforms than 5 other common improved whale

optimization algorithms. The WOACW_SimpleNet is used to identify rice leaf

diseases (rice blast, bacterial leaf blight, brown spot disease, sheath blight and

tungro disease), and the experiment results show that the identification average

recognition accuracy rate reaches 99.35%, and the F1-score reaches 99.36%.
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1 Introduction

Rice is one of the most important rations for the people. In

China, rice is planted on about 25% of the country’s arable land

(Sethy et al., 2020), which is second only to wheat and corn.

According to statistics, rice is the most widely recognized

nutritious food in Asia and the food source of more than half

of the world’s population, so the quality and yield of rice have

been highly valued by society and even the world. However,

frequent plant diseases change the original morphology of plants

to destroy its important functions. For rice, its growth process is

susceptible to rice blast, bacterial leaf blight, brown spot, sheath

blight, tungro disease and other diseases. For this reason, the

disease identification is urgent and important in the stage of

rice growth.

Some traditional crop diseases are generally identified by

plant protection experts which mainly rely on artificial visual. It

will not only waste time and human resources, but also obtain

low recognition accuracy, strong subjectivity and easy to be

affected by other factors. During the 3-6 months of rice growth,

agricultural workers often apply chemical controls to protect rice

at different stages of rice growth, including disinfection with

chemical agents before planting and spraying pesticides during

susceptible growth stages. However, the irregular use of

pesticides will cause adverse consequences for the environment

and human health (Wu et al., 2017). Therefore, how to quickly

and accurately obtain crop disease information, so as to

rationally use pesticides has become the key problem.

With the continuous development of image processing

technology, the diagnostic accuracy of crop diseases has been

improved and the identification results can be the scientific basis

for the scientific control of crops. Till now, some achievements

have been reported. Su B et al. performed machine vision

processing on the strawberry images. First, the median filtering

was used to remove noise, and then five classic edge

segmentation detection algorithms were employed to segment

the strawberry outline. Finally the area, perimeter and color

characteristics of the segmented target image were evaluated,

which contributed to the development of strawberry automatic

grading equipment to a certain extent (Su and Hua, 2018).

Tewari et al. (2020) processed rice pest and disease images via

using an image segmentation method based on chromatic

aberration and identified the diseased parts which assisted in

the development of a real-time variable speed chemical spray

system. Park et al. (2018) applied multispectral image pattern

recognition technology to identify pests and diseases, and the

accuracy was up to 99.00%.

Over the past few years, the research of machine learning in

the field of image recognition had been developed. Some

researchers used support vector machine (SVM) to detect and

classify images (Kaur et al., 2019; Liu et al., 2020). Zhang et al.

(2018a) used the K-means clustering algorithm to identify four

cucumber leaf disease images and three apple leaf disease images.
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Zhao et al. (2020) proposed an image segmentation method

based on fuzzy C-means (FCM), where the initial parameters are

optimized via particle swarm optimization (PSO) algorithm.

Compared to the classical FCM, the improved FCM has smaller

objective function values, sharper image segmentation

boundaries, and good noise immunity. Although machine

learning has a good image classification effect, this method

based on artificial feature extraction has certain subjective and

technical limitations, resulting in the recognition efficiency of the

model cannot be improved.

In recent years, due to the continuous development of

artificial intelligence, the types of data that need to be

processed are more diversified, and image, as a kind of visual

data, has a large number of processing needs, so deep learning

with a more efficient feature extraction method has been

proposed. Among them, convolutional neural network (CNN),

as a direction of deep learning, is widely used in the field of

agricultural engineering, such as food disease recognition, fruit

quality detection and so on. CNN has been successfully applied

to the detection and recognition of objects and regions in images.

CNN automatically extracts features from images, video and

audio to reduce the impact of human factors on the recognition

effect. Compared with artificial feature extraction, this method

not only saves time, but also increases the accuracy of model

recognition. Zhang et al. (2020) extracted the texture, color and

other characteristics of the fully convolutional network, and

combined with hyperspectral technology to detect and segment

the bruised tissue, unbruised tissue and calyx end of blueberries.

The results showed that the method had excellent performance

in the detection of early bruising of blueberries compared with

the SVM. Parvathi and Selvi (2021) proposed an improved fast

regional convolutional neural network model for mature

coconut images in complex backgrounds, which together with

residual networks (ResNet-50) improved detection values at two

major maturity stages. The test results showed that the detection

performance of the proposed method was higher and its

classification loss rate was only 5.10%. Crr et al. (2020)

proposed a small CNN model architecture to detect rice pests

and diseases. The experiment results showed the average

recognition rate can reach 93.30%, and its standard deviation

was 0.96, which was smaller than other CNN models. Xie et al.

(2021) proposed a lightweight model based on deep

convolutional neural network (DCNN) for the recognition of

external defect images of carrots. The recognition accuracy of the

model in the test set was 97.04% and the detection speed of about

80 frames per second. Mkonyi L et al. and Qiu J et al. all used the

method of transferring the pre-trained ImageNet model to

manually fine-tune the number of fully connected layers

neurons and learning rate of the classic VGG16 model, so as

to modulate the identification accuracy of early tomato plants

and rice leaf diseases. The recognition rate of the VGG16 proved

that the model has the characteristics of high accuracy, strong

generalization ability and small loss rate (Mkonyi et al., 2020;
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Qiu et al., 2021). A network was proposed by improving the

basic learning rate of the GoogLeNet model, which recognized 8

kinds of corn disease images, and finally achieved the purpose of

improving the recognition accuracy. It has been experimentally

proved that, the average recognition accuracy reached 98.90%

(Zhang et al., 2018b).

Although the image recognition and classification functions

of deep neural networks are powerful, it is difficult to select

suitable hyperparameters. CNN models rely on multiple

hyperparameters (activation function, number of convolutional

kernels, convolutional kernel size, learning rate, etc.). But its

selection is often based on experience, and its selection rule is not

clearly defined. If one of the selected hyperparameters are

inappropriate, it will cause low model accuracy and large loss

rate. Therefore, it is crucial to find a set of appropriate

hyperparameters. For this reason, some researchers have used

heurist ic optimizat ion algorithms to opt imize the

hyperparameters of CNN models, such as PSO, grey wolf

optimization (GWO), and ant colony optimization (ACO) and

so on. An adaptive cooperative PSO algorithm (ACPSO) was

proposed, which took the output of the ACPSO algorithm as the

weight of the multi-layer feed-forward network. In this way, the

model training avoid falling into local optimal value, and

effectively improved the recognition rate of CNN (Xiao et al.,

2019). Tu et al. (2021) fused a Modified PSO algorithm

(ModPSO), which made the structure of CNN not affected by

the addition or elimination of the network layer. Compared to

other algorithms, this algorithm can avoid falling into the

situation of “precocious”. Kanwal et al. (2021) proposed a

multi-objective PSO convolutional autoencoder by improving

the speed and position update equations of particle individuals,

making the method versatile and accurate. An enhanced GWO

was proposed, which accelerated the convergence speed and

improved the convergence rate compared with the classical

GWO. Then the enhanced GWO was used to optimize the

network topology and learning hyperparameters of CNN-LSTM.

Experiments showed that this method can not only capture key

features, but also encapsulate complex dependencies into time

series tasks to perform time series tasks (Xie et al., 2020).

Hyperspectral image analysis combined with a CNN model

based on GWO optimization was often used in land cover

classification, crop stage detection and other remote sensing

aspects. GWO optimized six hyperparameters in CNN to make

up for the shortcomings of traditional optimization methods,

such as time-consuming and laborious. Experiments showed

that the classification accuracy of the algorithm on the specified

datasets was more than 99.00% (Ladi et al., 2022). The early

diagnosis of Alzheimer’s disease based on CNN was proposed.

ACO was used to optimize the hyperparameters in CNN, and

the specific way was to back propagate the classification error in

the iterative training of CNN model to the ACO, and finally

obtained the CNN structure with the optimal combination of

hyperparameters. This method was applied to Alzheimer’s
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disease neuroimaging initiative dataset by researchers, and the

classification accuracy can reach 98.67% (Singh and Janghel,

2022). Compared with other swarm intelligence optimization

algorithms, the whale optimization algorithm (WOA) used in

this paper is easy to implement, has fast convergence speed, high

convergence accuracy, and is not easy to fall into the local

optimal solution, so it is widely used in various fields.

WOA used in this paper and its improved algorithms have

been applied to industry, engineering and other fields (Mirjalili

and Lewis, 2016). In order to solve the problem of minimizing

the sum of the energy consumption cost and the completion

time cost of the workshop, the discrete whale optimization

algorithm (DWOA) was proposed to solve the mathematical

model. The scale of the solution was determined by the parallel

calculation of the two sub-problems of job arrangement and

speed selection, and the population was initialized with DWOA

to improve the quality of the initial solution. The variable field

search strategy was integrated into the algorithm, which

improved the search ability of the algorithm (Jiang et al.,

2019). The WOA used to optimize the hyperparameters of the

SVM for detecting and classifying the multi-power quality

events, which made the SVM have higher classification

accuracy (Dash and Subudhi, 2019). An improved WOA used

to optimize fault detection and diagnostics for sensorless

brushless DC motors. The simulation results showed the

improved diagnostic strategy of WOA is the most effective

(Vanchinathan et al., 2021).

Since the hyperparameters of CNN models are usually

selected manually without explicit specification, this selection

method may lead to lower final classification accuracy of the

model. The research direction of this paper is to use the

optimization algorithm instead of manual selection to avoid

the problem of huge computing parameters and serious

preemption of computing resources during model operation.

The first contribution of this paper is to propose WOACW.

First, the initialization population is improved using adversarial

learning, which greatly improves the algorithm’s convergence

rate and computational accuracy. Secondly, the number of

iterations of global exploration is increased by modifying the

convergence factor, that is, the global exploration ability of the

algorithm is enhanced. Then, the author introduces weights in

the optimization stage of the algorithm, and the local search

ability is continuously enhanced with the increase of the number

of iterations by adjusting the step size of the algorithm. The

convergence factor and weight effectively balance the global

exploration ability and local search ability of the algorithm.

The chaotic map is introduced in it to enhance the robustness of

the algorithm. Finally, the polynomial mutation operator is used

after each iteration, and the mutation vector with a small

probability further avoids the situation that the algorithm falls

into the local optimal solution. Experiments show that

WOACW has better optimization effect than WOA. The

second contribution of this paper is to use WOACW’s strong
frontiersin.org
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optimization ability and fast convergence speed to optimize the

hyperparameters of the lightweight CNN model, and identify

them due to the identification of rice leaf disease images. The

experiment verifies the feasibility of the method and provides an

effective idea for the optimization of the CNN model.

The following parts of this paper are organized as follows. In

the Section 2 of this paper, an improved whale optimization

algorithm is proposed based on nonlinear convergence factor

and weight cooperative self-mapping chaotic perturbation

(WOACW). Simulation experiments show that WOACW has

faster convergence speed and higher convergence accuracy than

other WOAs. In the Section 3 of this paper, firstly, a simple CNN

model is proposed, and then five common images of rice leaf

diseases and healthy leaves were identified and classified using

SimpleNet optimized byWOACW. The Section 4 of this paper is

the conclusion and prospects, the research direction of

subsequent experimental improvement and application of rice

disease identification are indicated. These parts will be described

in detail below.
2 Methods

At present, swarm intelligence optimization algorithms are

widely used in many fields such as artificial intelligence and they

are one of the key steps to solve complex problems. Inspired by

the hunting behavior of whale populations, the whale

optimization algorithm was proposed by Australian scholar

Mirjalili in 2016, which had a simple structure, strong

optimization ability, fast convergence speed and easy to

implement. But at the same time there are problems such as

low convergence accuracy and easy to fall into “precocious”

(Kong et al., 2020). In order to solve such problems, many

variants of the WOAs have been proposed. Guo et al. (2017)

proposed the WOAWC, where the Cauchy inverse cumulative

distribution function method and the adaptive weight method

were used to improve the global and local search capabilities of

the WOA, thus improving the convergence accuracy of the

algorithm. Kong et al. (2020) proposed the AWOA, which

used the adaptive adjustment weight method to improve the

search ability of the algorithm in different iteration periods. The

same time, they used the adaptive adjustment search strategy to

increase the diversity of the population. Wang et al. (2019)

proposed the CWOA, which used a chaotic reverse learning

strategy to initialize the population, and adjusted the

convergence accuracy and robustness of the population by

cooperating with the weight with the nonlinear convergence

factor function with chaos mapping. Huang et al. (2020)

proposed the CPWOA, which optimized the algorithm by

nonlinear convergence factor and weight. In order to explore

the whole space more fully, the authors added a variation

algorithm to the algorithm, which largely maintained the

diversity of the population.
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2.1 Whale optimization algorithm

Some areas of the whale’s brain have cells like humans,

which can think, learn, and judge. The WOA simulates the

group feeding activities of humpback whales. And the algorithm

is divided into three stages: encircling prey, bubble-net attacking

method and global search for prey. These three stages are

described in detail below.

2.1.1 Encircling prey
Due to the exact position of the whales for their prey during

predation is unknown, the WOA assumes that the current

optimal solution is the position closest to the target prey. After

defining the optimal position, the other whales attempt to

update their respective positions towards the optimal vector

and gradually surround the best solution. The position update

equation in the encircling prey phase is shown in Eq. 1:

X t + 1ð Þ = X* tð Þ − A · D (1)

D = C · X* tð Þ − X tð Þ�� �� (2)

where X(t) represents the vector of the current whale’s location,

X*(t) represents the current optimal position vector of whale

position, t is the current number of iterations, A and C are

learning factors. Note that A and C are derived from the

following equations:

A = 2a� r1 − a (3)

C = 2� r2 (4)

a = 2 − 2� t=Tmax (5)

where a is the convergence factor, which drops linearly from

2 to 0, r1 and r2 are random numbers between [0,1] , t is the

current number of iterations, and Tmax is the maximum number

of iterations.

2.1.2 Bubble-net attacking method
Spatially, whales follow a spiral. Therefore, the method first

calculates the distance D between the whale’s position X and the

position of the prey X* (the current optimal solution). Then a

spiral equation between the whale and its prey is established to

simulate the whale’s spiral trajectory. The location update is

shown in Eq. 6:

X t + 1ð Þ = X* tð Þ + D′′ · ebl · cos  2p lð Þ (6)

D′′ = X* tð Þ − X tð Þ�� �� (7)

where D′′ represents the distance between the ith whale and the

current optimal solution, b is the constant which defines the

shape of the logarithmic spiral, l is a random value within [−1,1].
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To sum up, whales approach their prey in both encircling

prey and bubble-net attacking method ways. To achieve

synchronization of the model, the same probability p is chosen

to select the hunting method which is shown in Eq. 8:

X t + 1ð Þ =
X* tð Þ − A · D p < 0:5

X* tð Þ + D′′ · ebl · cos  2p lð Þ p ≥ 0:5

(
(8)

where p is a random number within [0,1].

2.1.3 Global search for prey
The WOA randomly selects individual whales as the global

optimal solution on a global scale, and other whale individuals

are gathered, which enhances the global search capability of the

algorithm. Its position update is shown in Eq. 9:

X t + 1ð Þ = Xrand tð Þ − A · D′ (9)

D′  =  jC  ·  Xrand(t)  − X(t)j (10)

where Xrand(t) represents the location of a randomly

selected whale.

When p≥0.5 , the algorithm adopts the spiral surrounding

method, as shown in Eq. 6. When p<0.5 , it includes two stages of

global random exploration and local surrounding predation, and

uses the |A| to take the random values. When |A|<1 , the

algorithm adopts the local encircling prey phase, as shown in

Eq. 1. When |A|≥1 , the algorithm employs the global search

phase, as shown in Eq. 9.
2.2 WOACW

2.2.1 Population initialization based on
opposition-based learning

The recent studies have shown that the degree of population

initialization is directly related to the convergence rate and

computational accuracy of the algorithm (Bangyal et al., 2021),

and good initialization of the population is helpful in improving

the performance of the algorithm. However, the WOA often

randomly selects values in the value range when initializing the

population, which may cause the population to be unevenly

distributed in space and affect the convergence efficiency of the

entire algorithm. In recent years, the opposition-based learning

strategies have been widely used to guide populations for

approximate global optimal solutions (Ding et al., 2019). And

it has been widely used in group intelligence algorithms such as

PSO algorithm and butterfly optimization algorithm(BOA)

(Agarwal and Srivastava, 2021; Guo et al., 2021) Therefore,

this paper applies the opposition-based learning strategy to the

WOA for population initialization, so that to improve the

efficiency of the algorithm.
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Assumed that the number of individual populations is N .

The dimension of each individual is D . xid exists in [lbd,ubd] ,

where lbd and ubd is the lower and upper bounds of the dth

dimensionvalue of the ith individual vector, respectively. The

initial population of the WOA is X={xi}(i=1,2,…,N) , where xi=

{xid}(d=1,2,…,D) . The value of the dth dimension in the

opposing population is shown in Eq. 11:

x
‘

id = lbd + ubd − xid (11)

Use the above equation to generate the opposing populations

X′ with the numbers of n . And X0 = fx0
ig(i = 1, 2,…,N) , where

x
0
i = fx0

idg(d = 1, 2,…,D). Subsequently, the random population

X is merged with the opposing population X′ to get a new

population {X∪X"} . Finally, the fitness value of each individual

in the new population is calculated and sorted. And the first N

vectors with the best fitness are selected as the initial population

Xinit of the whole algorithm.

2.2.2 Self-mapping chaotic nonlinear
convergence factors and weights

Like other swarm intelligence optimization algorithms, the

overall algorithm is consisting of the global exploration phase

and the local exploitation phase. In the classical WOA, the

convergence factor a decreases linearly from 2 to 0, so as to

controlling the change of the parameter A (Eq. 3), thereby

coordinating the global exploration phase and the local

exploitation phase. For multi-objective problems, the solution

vector should be selected more extensively in the value interval

to avoid falling into the local optimal solution, in the period of

global exploration. In the local exploitation phase, some better

vectors obtained in the previous stage are quickly converged for

saving calculation time. However, the linear convergence factor

cannot balance the two phases well, so the linear convergence

factor function needs to be changed to a nonlinear function, as

shown in Eq. 12:

a = 2 · cos 
p
2
·

t
Tmax

� �
(12)

After this, the number of iterations for global explorations is

increased, making global exploration more sufficient.

This paper also introduces a chaotic sequences (Liu and Ye,

2011), which together with the nonlinear convergence factor

function form a new convergence factor function, as shown in

Eq. 13:

a = a · yt
�� �� (13)

where y0 is a random number in (-1,1), and yt=1−2(yt−1)2

(yt∈(−1,1)) is a chaotic sequence generated from the self-

logical mapping function.

The improved convergence factor function proposed above

can well balance the global exploration ability and the local
frontiersin.org
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search ability. In the early stage of algorithm iteration, the global

exploration ability is enhanced, but the convergence speed is

slower. In the later stage of algorithm iteration, the algorithm

convergence speed is too fast, leading to fall into local

optimization. Therefore, the speed of the global exploration

should be accelerated, and a subtle perturbation mechanism

should be added to the local exploration period, thereby

enhancing the robustness of the algorithm. In this paper, the

weight w1 and w2 are added to the WOA, as shown in Eq. 14 and

Eq. 15.

w1 =
cos   p · t

Tmax

� �
+ 1

� �
2

(14)

w2 = w1 · yt
�� �� (15)

Through the improvement of the self-mapping chaotic

nonlinear convergence factor and weight, the encircling prey,

bubble-net attaching method and global search for prey are

updated as Eq. 16, Eq. 17 and Eq. 18, respectively.

X t + 1ð Þ = X* tð Þ · w2 − A · D (16)

X t + 1ð Þ = X* tð Þ · w2 + D′′ · ebl · cos  2p lð Þ (17)

X(t + 1) = Xrand(t) · w1 − A · D
0

(18)
2.2.3 Polynomial mutation operator
Theoretically, all vectors during iteration gradually move

closer to the optimal vector, and the algorithm can better

determine which regions of the parameter space are worth

exploring and calculating. However, due to the complexity of

multi-objective functions, convergence accuracy cannot be

guaranteed. Therefore, this paper uses the mutation operator

(Alawad and Abed-alguni, 2022) to find the better solution may

exist in the search space, ensuring the diversity of algorithms.

The polynomial mutation referenced in this paper is shown in

Eq. 19:

X
‘

k = Xk + d · ubk − lbkð Þ (19)

d =
2u + 1 − 2uð Þ1 − dmm+1

1

� � 1
mm+1−1 u ≤ 0:5

1 − 2 1 − uð Þ + 2 u − 0:5ð Þ 1 − d2ð Þmm+1
� � 1

mm+1 u > 0:5

8<
:

(20)

where X
0

k is the optimal individual vector after mutation. Xk is

the local optimal vector after each iteration. D is the maximum

dimension of the vector, and k∈(1,2,…,D) .ubk and lbk are the

upper and lower bounds of the kth dimension, and u is a random

number in [0,1] . mm represents the distribution index. d1=(Xk

−lbk)/(ubk−lbk) , d2=(ubk−Xk)/(ubk−lbk).
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Note that the greedy mechanism is used in each iteration.

When the adaptability value of the mutated solution vector is

better than the fitness value of the local optimal solution vector,

the local optimal solution vector is replaced with the mutated

solution. The output vector using polynomial variation is better

than the current global optimal vector, which improves the

convergence accuracy of the algorithm.

2.2.4 Algorithm flow
To sum up, the WOACW is designed, and the flow is shown

in Table 1.

2.3 Algorithm performance analysis

The proponents ofWOA algorithm comparedWOAwith other

optimization algorithms (Mirjalili and Lewis, 2016). In the

simulation test of this paper, we focus on the analysis of

WOACW and other improved WOA. All simulation experiments

were run on a computer with AMD R5-5600, 16G memory,
TABLE 1 Pseudo code for the WOACW.

WOACW
begin

1: Initialization of population size N, number of iterations T and problem
dimension D;

2: Generate an initial population with N individuals according to Section 2.2.1;

3: Record the current optimal vector and optimal fitness value;

4: Initialize y0, mm;

5: while (t<T) do

6: Calculated the yt sequence and a according to Eq. 13;

7: Calculated the w1 and w2 according to Eq. 14 and Eq. 15;

8: for i=1 to N do

9: Update parameters A, D, p, l;

10: for j=1 to D do

11: if (p < 0.5) do

12: if (|A| >= 1) do

13: Update the current individual position according to Eq. 18;

14: else if (|A| < 1) do

15: Update the current individual position according to Eq. 16;

16: end if

17: else if (p >= 0.5) do

18: Update the current individual position according to Eq. 17;

19: end if

20: end for

21: Update the optimal solution and the optimal vector;

22: Polynomial mutation according to Eq. 19 produces new variables;

23: Use the greed mechanism to preserve the optimal solution for this
iteration;

24: end for

25: t=t+1;

26: end while

end
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2.30GHz. And the program is programmed usingMATLABR2021b

programming. In this paper, eight benchmark functions are selected

to test the performance of the WOACW algorithm, which are

shown in Table 2. The test functions are given by Eq. 21 ∼ Eq. 28.

Among them, f1(x)∼f5(x) are unimodal benchmark functions, which

mainly investigate the convergence rate and solution accuracy of the

algorithm. f6(x)∼f8(x) are multimodal function, which mainly

examines the comprehensive optimization ability of the algorithm.

Sphere  :  f1(x) = on

i=1
x2i (21)

Schwefel 1:2  :  f2(x) = on

i=1 oi

j−1
xj

� �2
(22)

Rosenbrock  :  f3(x) = on−1

i=1
100(xi+1 − x2i )

2 + (xi − 1)2
� �

(23)

Step  :  f4(x) = on

i=1
xi + 0:5½ �ð Þ2 (24)

Quartic  :  f5(x) = on

i=1
ix4i + random 0, 1½ Þ (25)

Penalized 1 :  f6(x) =
p
n f10sinðpy1Þ +o

n−1

i=1
(yi − 1)2

1 + 10sin2(pyi+1)
� �g +o

n

i=1
u(xi, 10, 100, 4),

yi = 1 + xi+1
4 , u(xi, a, k,m) =

k(xi − a)m xi > a

0 −a < xi < a

k( − xi − a)m xi < −a

8>><
>>:

(26)

Penalized 2  : f7(x)

= 0:1fsin2(3px1) +o
n

i=1
(xi − 1)2 1 + sin2(3px1 + 1)

� �

+ (xn − 1)2 1 + sin2(2pxn)
� �

+o
n

i=1
u(xi, 5, 100, 4)g

(27)
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Kowalik  :  f8(x) = o11

i=1
ai −

x1(b
2
i + bix2)

b2i + bix3 + x4

	 
2
  (28)

In order to test the optimization ability of the WOACW, the

WOA and four improved WOAs are used for comparison,

including the CWO, the CPWOA, the WOAWC and the

AWOA. The eight benchmark functions in Table 2 are

optimized and solved, and the experimental parameters of the

six WOAs are set as shown in Table 3.

In this paper, two evaluation metrics are used: the optimal

accuracy average (Ave) and the optimal accuracy standard

deviation (Std), where the average reflects the accuracy of the

algorithm and the standard deviation reflects the stability of the

algorithm solution. In order to eliminate the randomness of the

algorithm, 30 independent experiments are carried out on 6

WOAs. The experimental results are shown in Table 4.

For solving unimodal benchmark functions, we can see that

the WOAWC, the AWOA and the WOACW all converge to 0 in

f1(x) and f2(x) functions, which is the theoretical minimum.

After f3(x) and f5(x) function testing, the WOACW convergence

accuracy is optimal. After the 6 algorithms have been tested as

functions f4(x) , although the convergence accuracy of the

CPWOA is better than that of the WOACW, the standard

deviation of the WOACW is smaller and more robust. For

solving multimodal test functions, the algorithms optimize the f6
(x) and f8(x) functions, and the average convergence accuracy of

the WOACW is smaller than that of the other five algorithms.

However, after testing the f7(x) , it is found that the convergence

accuracy of the WOACW is not optimal, second only to the

CPWOA. The reason is that the function has many local

minimums, it is difficult to detect the global optimal solution,

resulting in low convergence accuracy. In summary, the

optimization capability of the WOACW is superior to several

other WOAs. Although the convergence performance of the

WOACW is not as good as other algorithms in individual test

functions, it is still at the forefront of performance ranking and

shows sufficient competitiveness. In order to clearly observe the

curve change of the convergence functions, this paper takes the
TABLE 2 Eight benchmark functions.

Function Name Dimension Search scope Optimal value

f1(x) Sphere 30 [−100,100] 0

f2(x) Schwefel 1.2 30 [−100,100] 0

f3(x) Rosenbrock 30 [−30,30] 0

f4(x) Step 30 [−100,100] 0

f5(x) Quartic 30 [−1.28,1.28] 0

f6(x) Penalized 1 30 [−50,50] 0

f7(x) Penalized 2 30 [−50,50] 0

f8(x) Kowalik 4 [−5,5] 3.00e-04
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constant logarithmic function when plotting, and the

convergence curves of eight benchmark functions are shown

in Figure 1.
3 Results and discussion

3.1 CNN and WOACW_SimpleNet
algorithm thought

Compared with the manual feature extraction method, CNN

uses automatic feature extraction, and its error feedforward

function enables it to identify and classify targets with higher

accuracy. At present, it has achieved great success in the fields of

image processing (Öztürk et al., 2018), object detection (Kumar

and Srivastava, 2020) and face recognition (Khan et al., 2019).

The LeNet-5 model was first proposed as a convolutional neural

network. Its structure is not complex, the number of layers is
Frontiers in Plant Science 08
small, mainly including convolutional layers, pooled layers and

fully connected layers. The alternating settings of convolutional

and pooling layers in the model can abstract the input images

into a set of feature maps through multiple nonlinear

transformations, then the neurons of the fully connected layers

are used to classify these features. The network structure of the

LeNet-5 model is shown in Figure 2.

The first core part of the CNN is the convolutional layer,

which performs convolutional calculations on the input data so

that the complex features of the image can be fully described.

The correspondence between the input and output of the

convolutional layer is shown in Eq. 29.

xouti = fcov on

i=1
xini � wij + bj

� �
(29)

where xouti represents the output of the neuron, fcov(·) is the

activation function of current convolutional layer, of which the

ReLU activation function is used in LeNet-5, n input signals can

input neurons jth at the same time, xini represents the input

signal, wij represents weights to connect the x
in
i and neuron j , bj

is the bias value of the network.

The second core part of the CNN is the pooling layer, which

usually lies after the convolutional layer. It is used to reduce the

size of the feature map, thereby reducing the number of

parameters and retaining the data information as much as

possible. The correspondence of the pooling layer is shown in

Eq. 30:

touti = fsub tinj , t
in
j+1

� �
(30)

where touti represents the output value of the pooling layer, and

fsub(·) is a pooling type function, which can be maximize pooling
TABLE 3 Experimental parameters of the six WOAs.

Objects Values of parameters

Common part N = 30, T = 500, Dim = 30, b = 1

WOA –

CWOA ainitial = 2, afinal = 0, winitial = 0.9, wfinal = 0.2

CPWOA mm = 2

WOAWC –

AWOA d1 = 1.0e-4, d2 = 1.0e-4

WOACW mm = 2
Note that if a is no redefinition in the above algorithm, the corresponding algorithm is
linearly reduced from 2 to 0.
TABLE 4 Performance comparison of eight WOAs.

Function Index WOA CWOA CPWOA WOAWC AWOA WOACW

f1(x) Ave 9.28e-34 0 1.66e-31 0 0 0

Std 5.08e-33 0 6.49e-31 0 0 0

f2(x) Ave 4.65e+04 0 6.60e+04 0 0 0

Std 1.44e+04 0 1.39e+04 0 0 0

f3(x) Ave 2.81e+01 2.80e+01 5.87e+00 2.86e+01 2.79e+01 1.25e+00

Std 4.18e-01 3.00e-01 7.41e+00 7.29e-02 3.30e+00 2.28e-02

f4(x) Ave 4.34e-01 7.85e-01 1.22e-01 3.05e-01 4.95e-01 2.31e-01

Std 2.30e-01 3.34e-01 4.85e-02 6.88e-02 1.98e-01 1.16e-02

f5(x) Ave 2.57e-03 1.18e-04 4.26e-03 1.35e-04 1.20e-04 4.62e-05

Std 2.83e-03 8.97e-05 5.04e-03 9.68e-05 6.94e-05 3.65e-05

f6(x) Ave 2.38e-02 3.99e-02 1.13e-02 1.84e-02 2.29e-02 1.09e-02

Std 1.07e-02 1.81e-02 9.97e-03 1.87e-02 1.03e-02 5.69e-03

f7(x) Ave 5.75e-01 5.58e-01 1.67e-01 2.26e-01 2.25e-01 1.88e-01

Std 2.75e-01 1.84e-01 8.78e-02 4.59e-02 1.28e-01 1.08e-02

f8(x) Ave 1.04e-03 6.14e-04 1.06e-03 4.25e-04 3.94e-04 3.78e-04

Std 8.25e-04 1.91e-04 7.85e-04 1.05e-04 5.34e-05 6.99e-05
fro
Note that the bold numbers indicate the better performance.
ntiersin.org

https://doi.org/10.3389/fpls.2022.1008819
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Lu et al. 10.3389/fpls.2022.1008819
A B

D E F

G H

C

FIGURE 1

The convergence curves of WOA, CWOA, CPWOA, WOACW, AWOA and WOACW to f1(x)~f8(x) benchmark functions (as shown in sub-
figure A–H respectively).
FIGURE 2

Schematic diagram of LeNet-5 structure.
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or average pooling. tinj represents the output value of the jth

neuron of the pool layer corresponding to the input

characteristic plane.

The CNN reduces the number of parameters in the model

computation by combining local awareness, weight sharing and

pooling techniques. However, the hyperparameters such as the

number of convolutional kernels, the size of convolutional

kernels and the learning rate are obtained by researchers

through many experiments, which increase the time cost, but

also usually cannot obtain the optimal parameter combination,

resulting in the low model training accuracy. Therefore, this

paper uses the WOACW to optimize the hyperparameter of

the CNN. In order to verify the feasibil i ty of the

WOACW_SimpleNet, the optimized hyperparameter is used

to improve the accuracy of the simple CNN model for image

recognition of rice leaf diseases.

The WOACW has few tunable parameters and has fast

convergence speed. It takes the cross-entropy loss function as

the objective function of WOACW and the cross-entropy loss

value of each iteration test as the fitness function value. The

cross-entropy loss function equation is shown in Eq. 31.
Frontiers in Plant Science 10
C = −
1
nox yln ŷð Þ + 1 − yð Þln 1 − ŷð Þ½ � (31)

where n is the total number of training data, x is the training

input, ŷ is the actual output, and y is the corresponding target

output. The optimal solution vector obtained by the algorithm is

used as a set of hyperparameters of the optimal CNN, and then

reconstructs the CNN structure. The WOACW_SimpleNet

flowchart is shown in Figure 3. For ease of programming, the

concept of “vector” is transformed into “list” in Python, so that

the index value of the elements in the vector to the list can be

input into CNN through the index.
3.2 Image acquisition and preprocessing

In this experiment, images of healthy leaves and five

common leaf diseases of rice are collected. The images are

derived from the public dataset of Kaggle website and the

experimental field of Bayi Agricultural University in

Heilongjiang. The shooting time was June and July 2021. In

the manual acquisition process, considering the impact of light
FIGURE 3

WOACW_SimpleNet flowchart.
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on the image acquisition, the sampling time of the image was set

to 7:00-9:00 and 16:00-18:00. The equipment used for image

acquisition is Huawei nova7 smart phone, and the pixels of its

rear camera are 64.0 million. In order to obtain a relatively large

and clear picture of the disease spots in the picture, the distance

between the camera and the rice leaf spots was about 0.25 m

during the shooting process. In the end, 634 leaf pictures of

three-channel rice were collected, where 630 valid samples were

collected, including rice blast, bacterial leaf blight, brown spot

disease, sheath blight, tungro disease and healthy leaf images,

each in the image format JPG.

The experimental environment of this paper is Windows 10,

the processor is AMD R5-5600, and the memory is 16G. In order

to unify the input dimensions of the deep learning model, all

images in the dataset are scaled to 224 × 224 pixels. Because

training CNN requires a lot of data, the images need to be

expanded before the experiment. The specific data augmentation

methods include geometric transformation, nonlinear
Frontiers in Plant Science 11
transformation, Gaussian blur, salt and pepper noise, etc. The

expanded rice leaf disease dataset has a total of 3060 images,

which helps to reduce the overfitting in the training stage. Some

rice leaf disease images after data augmentation are shown

in Figure 4.

Rice blast is distributed in various rice regions throughout

the country, mainly damaging leaves, stems and ears. Among

them, leaf blast can occur in the whole growth period. The center

of the disease spot is gray white, the edge is brown, there is a

pale-yellow halo outside, and there is a gray mold layer on the

back of the leaf. When the disease spots are more, they form

irregular large spots and produce fewer spores. Bacterial leaf

blight can occur in all organs during the whole growth period,

and the leaves are the most susceptible to the disease. The disease

starts from the leaf tip or the edge of the leaf. Dark green water

soaked and linear spots appear at first, and soon yellow white

disease spots are formed along the linear spots. Then, the disease

spots expand along both sides of the leaf edge or the middle rib,
A B

D

E F

C

FIGURE 4

Rice leaf disease images. Note that (A) stands for rice blast, (B) stands for bacterial leaf blight, (C) stands for brown spot disease, (D) stands for
sheath blight, (E) stands for tungro disease and (F) stands for health.
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and become yellowish brown, and finally become dry white. The

boundary of the disease spots is obvious, and the disease spots

are not convex. In the initial stage of rice infected with brown

spot disease, it is a small brown water-soaked spot, and then it

expands into a spindle shaped or irregular reddish-brown stripe,

with yellow halo at the edge, grayish brown at the center of the

disease spot, and the disease spot often melts into a large stripe,

making the leaves locally gray and sterile (Azim et al., 2021). Rice

sheath blight can occur from seedling stage to Panicle stage.

When the leaves are infected, the disease spots are in the shape

of clouds, and the edges fade to yellow. When the humidity

of rice growing environment is high, white reticular hyphae

grow at the disease site, and then converge into white hyphae,

forming dark brown sclerotia, which is easy to fall off. Tungro

disease of rice causes the affected plants to shrink and the leaves

to change color, and the growth declines. The leaves are orange

to yellow, mottled on the young leaves, and rusty spots on the

old leaves.
3.3 CNN model structure for rice leaf
disease identification

In the experiment, the Keras 2.6.0 deep learning framework

is used. This paper constructs an 11-layer convolutional neural

network model, consisting of four convolutional layers, four

pooling layers and three fully connected layers. Compared with

the VGG16 model and the InceptionV3 model, the structure of

this 11-layer CNN model is relatively simple. The pooling type

is the Max-pooling with step size of 2, which can condense the

data features for reduce the number of parameters required for

the subsequent layers. The nonlinear activation function used

in convolutional layers and fully connected layers is ReLU, and

every padding takes valid. Each layer uses the dropout, and

20% of neurons are randomly discarded to alleviate the degree

of overfitting and underfitting, saving the model’s better

prediction efficiency. The activation function of the output

layer is Softmax.

Assuming that the population number isM , the number of

iterations of the WOACW optimization is N , and the number

of CNN model training times is epochs. That is, the time cost

of parameter optimization is M×N×epochs . Considering the

training cost, this paper set M=15 and N=30 . Initialize the

position of the whale individual by using the hyperparameters

in Table 5.

According to Table 5, the WOACW uses some of the

hyperparameters as the population solution vectors.

Activation functions and pooling types are not chosen for

optimization because they are less selective and less effective. If

the step size is optimized, the processed image size will be

small. In this case, the CNN is not very effective at extracting

local features, and there is no guarantee that there is a large

search space for other parameters.
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After 450 times of model training, the optimal combination of

CNN parameters selected by the WOACW_SimpleNet is shown in

Table 6. Additionally, the model structure diagram is shown

in Figure 5.

The CNN model is reconstructed via the above optimal

hyperparameters. And the ratio of images of training set,

validation set and test set from the rice disease image dataset

is 6:2:2. To solve the problem that the number of epochs needs to

be set manually, the “early stopping” method is used to

determine the number of trainings. When the validation loss is

not reduced for 10 consecutive epochs, it is considered that the

loss is no longer decreasing and the model stops training.

Compared the loss rate and accuracy of the model on the

training set and the validation set, as shown in Figure 6.

It is clear that the model with the above hyperparameters

has good learning performance. In the first 50 iterations, the

accuracy rate of the training set and the verification set rise

rapidly, and the convergence curve fluctuates greatly. After 50

iterations, the convergence curve remains relatively stable.

The accuracy rate keeps fluctuating and rising, at the same

time the loss rate keeps fluctuating and falling. It shows that

the model does not falling into underfitting and overfitting,

and could continuously learn.

To illustrate the effectiveness of the SimpleNet, several

classical convolutional models including the VGG16, the

InceptionV3, and the MobileNetV2 are compared with the

SimpleNet. Due to the smaller dataset used in this experiment,

the transfer model training is performed by modifying the fully

connected layer of these three models.

Evaluation metrics are accuracy, precision, recall, F1-score

and training time for a single image, where the first four metrics
TABLE 5 Hyperparameters in the WOACW_SimpleNet.

Vector
components

Hyperparameters Range of initial
values

x1 Number of convolutional kernels
in C1

10−100(Z)

x2 Number of convolutional kernels
in C2

10−100(Z)

x3 Number of convolutional kernels
in C3

10−100(Z)

x4 Number of convolutional kernels
in C4

10−100(Z)

x5 Size of convolutional kernels in
C1

3×3, 5×5, 7×7, 9×9

x6 Size of convolutional kernels in
C2

3×3, 5×5, 7×7, 9×9

x7 Size of convolutional kernels in
C3

3×3, 5×5, 7×7, 9×9

x8 Size of convolutional kernels in
C4

3×3, 5×5, 7×7, 9×9

x9 Learning rate 0.001−0.1(Z)

x10 Batch size 40−100(Z)
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are shown as Eq. 32 ∼ Eq. 35:

Accuracy =
TP + TN

TP + FP + TN + FN
(32)

Precision =
TP

TP + FP
(33)

Recall =
TP

TP + FN
(34)
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F1 − score =
2� Precision� Recall
Precision + Recall

(35)

where, TP is a class of positive samples predicted to be

positive, TN is class of negative samples predicted to be negative,

FP is a class of negative samples predicted to be positive, FN is a

class of positive samples predicted to be negative.

The leaf features of the six kinds of rice leaf disease

images used in this paper are identified by the VGG16, the

MobileNetV2, the InceptionV3 and the SimpleNet, and the

overall evaluation metrics are shown in Table 7. It can be

seen from the table that although the training time of

VGG16 and SimpleNet in a single picture is longer than

that of the other two models, the average recognition

accuracy of SimpleNet for rice leaf diseases is the highest,

up to 99.35%, which is about 4-8 percentage points higher

than that of other models. The SimpleNet outperformed the

training results of the other three CNN models in terms of

accuracy, recall, and F1-score, the reason is that difference

between rice spots is small, and few information about the

image characteristics of related spots. Since this paper

studies specific rice leaf diseases, only the identification

performance indicators of rice leaf disease images in the

model are considered. Calculating a large number of features

wi l l cause the tra ining effec t of the model to be

unsatisfactory. Table 8 shows the evaluation metrics of the

four CNN models for each rice leaf disease. Specify the labels

∈ {0, 1, 2, 3, 4, 5} correspond to the features ∈ {rice blast,
TABLE 6 WOACW_SimpleNet optimal hyperparameters.

Vector compo-
nents

Hyperparameters Optimal
value

x1 Number of convolutional kernels in
C1

16

x2 Number of convolutional kernels in
C2

32

x3 Number of convolutional kernels in
C3

64

x4 Number of convolutional kernels in
C4

96

x5 Size of convolutional kernels in C1 3×3

x6 Size of convolutional kernels in C2 3×3

x7 Size of convolutional kernels in C3 3×3

x8 Size of convolutional kernels in C4 3×3

x9 Learning rate 0.0052

x10 Batch size 58
FIGURE 5

Schematic diagram of SimpleNet structure.
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bacterial leaf blight, brown spot disease, sheath blight,

tungro disease, health}.

In order to observe the recognition effect of each disease

more intuitively in different models, the output visualization is

shown in Figure 7. For each rice disease, the SimpleNet has the

highest identification accuracy, reaching more than 99.00%. For

the InceptionV3 model, the accuracy of the model in identifying

brown spot disease is about 90.00%, but the accuracy of

recognizing other types of diseases is more than 96.00%. The

accuracy of the VGG16 model and the MobileNetV2 model are

not stable, which indicates the generalization ability is poor. To

sum up, the experiment results show that the SimpleNet model

has good identification accuracy and better robustness for the six

kinds of rice leaf diseases.

The confusion matrices of the four CNNs on the test set are

shown in the Figure 8. The number of pictures of each disease

on the test set is 102, and the prediction results of the diseases

can be intuitively observed through color depth and numerical

size in the confusion matrix. From the confusion matrix of the

three transfer CNN models, some diseases such as rice blast,

bacterial leaf blight and brown spot disease have a prediction

bias of about 25.00%. In Figure 8(d), the SimpleNet

misidentifies only 2.00% of rice blast leaves as bacterial leaf

blight leaves, and the prediction of other leaf diseases is
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accurate. It can also be seen that the model is better at

recognition and classification than the other three

CNN models.
4 Conclusion

In this paper, the WOACW algorithm is proposed to

optimize hyperparameters of CNNs to avoid the influence of

human factors for detecting the rice disease. First, by simulating

the values of the eight benchmark functions, the results show

that WOACW is generally better than the WOA, the CWOA,

the CPWOA, the WOAWC and the AWOA in terms of

convergence precision and convergence rate. Secondly, a

simple CNN model is built by stacking the convolutional

layers and the pooling layers. Finally, the hyperparameters of

the SimpleNet are optimized by WOACW using the rice leaf

disease image in the experiment. It can be seen that SimpleNet

has higher recognition accuracy than some classic CNNs, which

can reach 99.35%.

Future work mainly includes the following three aspects. First,

we will optimize the classical CNNmodels in the future work. The

optimization direction includes deep structural parameters such
A B

FIGURE 6

SimpleNet training curves. (A) The loss curves of SimpleNet. (B) The accuracy curves of SimpleNet.
TABLE 7 The overall evaluation metrics of four CNN models for rice leaf diseases.

Model Accuracy(%) Precision(%) Recall(%) F1-score(%) Training time(s)

VGG16 91.18 92.47 91.18 91.82 8.585

MobileNetV2 92.15 94.35 92.16 93.24 1.337

InceptionV3 95.26 96.08 95.26 95.67 1.974

SimpleNet 99.35 99.38 99.35 99.36 8.654
Note that the column name “Training time” refers to the training time for a single image.
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as network structure and network weights, etc. Since the CNN

models with complex structure generates a large number of

computational parameters in the training process, we will use

cloud servers and other machines with large computing capacity

to train the model. The final goal of optimization is to optimize the
Frontiers in Plant Science 15
model with better universality and model performance indicators,

and increase the applicability of the model to the datasets with a

large number of data characteristics. Second, the samples will be

enriched in the future to further improve the identification

accuracy and practical application value of the model. Third, the
TABLE 8 Evaluation metrics of four CNN models for six kinds of rice leaf diseases.

Model Metrics 0 1 2 3 4 5

VGG16 Accuracy 0.928 0.833 0.931 0.947 0.928 0.904

Precision 0.851 1.000 0.817 0.990 0.933 0.958

Recall 0.951 0.716 0.961 1.000 0.951 0.892

F1-score 0.898 0.834 0.883 0.995 0.942 0.924

MobileNetV3 Accuracy 0.855 0.953 0.863 0.953 0.953 0.953

Precision 1.000 0.699 1.000 1.000 1.000 0.962

Recall 0.755 1.000 0.775 1.000 1.000 1.000

F1-score 0.860 0.823 0.873 1.000 1.000 0.981

InceptionV3 Accuracy 0.968 0.972 0.900 0.964 0.972 0.972

Precision 0.990 0.803 1.000 1.000 1.000 0.971

Recall 0.990 1.000 0.745 0.980 1.000 1.000

F1-score 0.990 0.891 0.854 0.990 1.000 0.985

SimpleNet Accuracy 0.988 0.996 0.992 0.992 0.996 0.997

Precision 1.000 0.971 0.991 1.000 1.000 1.000

Recall 0.980 1.000 0.990 0.990 1.000 1.000

F1-score 0.990 0.985 0.990 0.995 1.000 1.000
frontiersi
FIGURE 7

Recognition accuracy of four CNNs for the six kinds of rice leaf disease images.
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optimized convolutional model will be regarded as the core

module for developing mobile applications, so that agricultural

workers of different professional levels can directly identify and

classify the rice leaf diseases.
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