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Abstract

This paper proposes direct learning of image classifica-

tion from user-supplied tags, without filtering. Each tag is

supplied by the user who shared the image online. Enor-

mous numbers of these tags are freely available online, and

they give insight about the image categories important to

users and to image classification. Our approach is comple-

mentary to the conventional approach of manual annota-

tion, which is extremely costly. We analyze of the Flickr 100

Million Image dataset, making several useful observations

about the statistics of these tags. We introduce a large-scale

robust classification algorithm, in order to handle the in-

herent noise in these tags, and a calibration procedure to

better predict objective annotations. We show that freely

available, user-supplied tags can obtain similar or superior

results to large databases of costly manual annotations.

1. Introduction

Object recognition has made dramatic strides in the past

few years. This progress is partly due to the creation of

large-scale hand-labeled datasets. Collecting these datasets

involves listing object categories, searching the web for im-

ages of each category, pruning irrelevant images and provid-

ing detailed labels for each image. There are several major

issues with this approach. First, gathering high-quality an-

notations for large datasets requires substantial effort and

expense. Second, it remains unclear how best to deter-

mine the list of categories. Existing datasets comprise only

a fraction of recognizable visual concepts, and often miss

concepts that are important to end-users. These datasets

draw rigid distinctions between different types of concepts

(e.g., scenes, attributes, objects) that exclude many impor-

tant concepts.

This paper introduces an approach to learning about vi-

sual concepts by employing user-supplied tags. That is, we

directly use the tags provided by the users that uploaded

the images to photo-sharing services, without any subse-

quent manual filtering or curation. Tags in the photosharing

services reflect the image categories that are important to

users and include scenes (beach), objects (car), attributes

(rustic), activities (wedding), and visual styles (portrait),

as well as concepts that are harder to categorize (family).

Online sharing is growing and many services host content

other than photographs (e.g., Behance, Imgur, Shapeways).

The tags in these services are abundant, and learning about

them could benefit a broad range of consumer applications

such as tag suggestion and search-by-tag.

User-supplied tags are freeform and using them presents

significant challenges. These tags are entirely uncurated,

so users provide tags for their images in different ways.

Different users provide different numbers of tags per im-

age, and, conversely, choose different subsets of tags. One

tag may have multiple meanings, and, conversely, multiple

terms may be used for the same concept. Most sharing sites

provide no quality control whatsoever for their tags. Hence,

it is important to design learning algorithms robust to these

factors.

Contributions. In addition to introducing the direct use

of user-supplied tags, this paper presents several contribu-

tions. First, we analyze statistics of tags in a large Flickr

dataset, making useful observations about how tags are used

and when they are reliable. Second, we introduce a ro-

bust logistic regression method for classification with user-

supplied tags, which is robust to randomly omitted posi-

tive labels. Since tag noise is different for different tags,

the tag outlier probabilities are learned simultaneously with

the classifier weights. Third, we describe calibration of the

trained model probabilities from a small annotation set.

We demonstrate results for several tags: predicting the

tags that a user would give to an image, predicting objec-

tive annotations for an image, and retrieving images for a

tag query. For the latter two tasks, which require objective

anotations, we calibrate and test on the manually-annotated

NUS-WIDE [5] dataset.

We show that training on a large collection of freely

available, user-supplied tags alone obtains comparable per-

formance to using a smaller, manually-annotated training

set. That is, we can learn to predict thousands of tags with-

out any curated annotations at all. Moreover, if we cal-

ibrate the model with a small annotated dataset, we can

obtain superior performance to conventional annotations at
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a tiny fraction (1/200) of the labeling cost. Our methods

could support several annotation applications, such as auto-

suggesting tags to users, clustering user photos by activity

or event, and photo database search. We also demonstrate

that using robust classification substantially improves image

retrieval performance with multi-tag queries.

2. Related Work

The amazing progress of the recent years of vision has

been driven in part by datasets. These datasets are built

through a combination of webscraping and crowd-sourcing,

with the aim of labeling the data as cleanly as possible. Im-

ageNet [21] is the most prominent whole-image classifica-

tion dataset, but other recent examples include NUS-WIDE

[5], the SUN scene attribute database [19, 26], and PLACES

[27]. The curation process has a number of drawbacks, such

as the cost of gathering clean labels and the difficulty in de-

termining a useful space of labels. It is unclear that this

procedure alone will scale to the space of all important con-

cepts for vision [21]. We take a complementary approach

of using a massive database of freely available images with

noisy, unfiltered tags.

Merging noisy labels is a classic problem in item-

response theory, and has been applied in the crowdsourcing

literature [20, 25]. We extend robust logistic regression [20]

to large-scale learning with Stochastic EM. In image recog-

nition, a related problem occurs when harvesting noisy data

from the web [3, 4, 7, 15, 24]; these methods take comple-

mentary approaches to ours, and focus on object and scene

categories.

To our knowledge, no previous work directly learns im-

age classifiers from raw Flickr tags without curation. Most

similar to our own work, Zhu et al. [28] use matrix factor-

ization to clean up a collection of tags. In principle, this

method could be used as a first step toward learning clas-

sifiers, though it has not been tested as such. This method

requires batch computation and is unlikely to be practical

for large numbers of tags and images. Gong et al. [9] use

raw Flickr tags as side-information for associating images

with descriptive text.

Most previous work has focused on names and attributes

for objects and scenes, including previous work on image

tagging (e.g., [6, 8, 11, 19, 21, 26, 27]). Unfortunately these

datasets are disjoint and little attention has been paid to the

list of objects, scenes, and attributes. Our solution is to learn

what users care about, using a robust loss function that takes

into account the noise in the labels. We learn many other

kinds of tags, such as tags for events, activities, and image

style. There have been a few efforts aimed at modeling a

few kinds of image style and aesthetics [13, 17].
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Figure 1: Tag histogram for the most popular tags, exclud-

ing non-image tags. The distribution is heavy-tailed, and

there are 5400 tags with more than 1000 images each.

3. Analysis of User-Supplied Tags

When can user-supplied tags be useful, and when can

they be trusted? In this section, we analyze the tags pro-

vided on Flickr, and compare them to two datasets with

ground truth labels. Some of these observations motivate

our algorithm in Section 4, and others provide fodder for

future research.

Flickr 100 Million (F100M). Our main dataset is the Ya-

hoo/Flickr Creative Commons 100M dataset1. This dataset

comprises 99.3 million images, each of which includes a list

of the tags supplied by the user that uploaded the image.

3.1. Types of tags

The F100M dataset provides an enormous number of im-

ages and tags (Figure 1) that could be used for learning.

Some of the most frequent tags are shown in Table 1. There

are 5400 tags that occur in at least 1000 images. The set

of tags provides a window into the image concepts that are

important to users. Many of these represent types of image

label that are not represented in previous datasets.

Some of the most important tag types are as follows:

events and activities such as travel, music, party, festi-

val, football, school; specific locations such as california

and italy; scene types such as nature, part, urban, sun-

set, etc.; the seasons (fall, winter, summer, spring); im-

age style such as portrait, macro, vintage, hdr; and art

and culture such as painting, drawing, graffiti, fashion,

punk. Many frequent tags also represent categories that do

not seem learnable from image data alone, which we call

non-image tags, including years (2011, 2012, ...), and spe-

cific camera and imaging platforms (nikon, iphone, slr).

1http://yahoolabs.tumblr.com/post/89783581601



Flickr tag # Flickr synset # node # subtree

travel 1221148 travel.n.01 0 0

wedding 734438 wedding.n.03 1257 1257

flower 907773 flower.n.01 1924 339376

art 902043 art.n.01 0 11353

music 826692 music.n.01 0 0

party 669065 party.n.01 0∗ 0

nature 872029 nature.n.01 0 0

beach 768752 beach.n.01 1713 1773

city 701823 city.n.01 1224 1224

tree 697009 tree.n.01 1181 563038

vacation 694523 vacation.n.01 0 0

park 686458 park.n.01 0 0

people 641571 people.n.01 1431 1431

water 640259 water.n.06 759 7585

architecture 616299 architecture.n.01 1298 1298

car 610114 car.n.01 1307 40970

festival 609638 festival.n.01 0 0

concert 605163 concert.n.01 1322 1322

summer 601816 summer.n.01 0 0

sport 564703 sport.n.01 1888 200402

Table 1: The 20 most frequent tags in F100M, after merging

plurals and omitting non-image/location tags. Correspond-

ing ImageNet synsets are given, along with synset node and

subtree counts. These statistics are typical: we estimate

that nearly half of popular Flickr tags are absent from Ima-

geNet. Moreover, even when there is correspondence, some

ImageNet tags do not capture all meanings of a term (Sec-

tion 3.2). Some of these tags are covered by scene attribute

databases [26, 19, 27]. (∗There are 66 party images in Im-

ageNet, in the wrong synset party.n.04.)

3.2. Correspondence with ImageNet

A main motivation for using F100M is that it contains

information missing from existing, curated datasets. Does

it? We compare F100M to the ImageNet image classifica-

tion dataset [21], which comprises 14 million images gath-

ered from Flickr, labeled according to the WordNet hierar-

chy [16] through a carefully-designed crowdsourcing pro-

cedure.

In order to quantify the dataset gap, we studied the 100

most frequent tags in F100M (after omitting the non-image

and location tags described above). For each tag, we man-

ually determined a correspondence to WordNet, as follows.

In WordNet, each concept is represented by a synonym set,

or synset. WordNet synsets are ordered, and most tags

(78%) correspond to the first WordNet noun synset for that

word. For example, the tag beach corresponds to the synset

beach.n.01. In other cases, we corrected the match manu-

ally. The most-frequent examples are shown in Table 1, and

more are shown in the Appendix. Based on this analysis

and some simple calculations, we estimate that about half

of the common Flickr non-image tags are absent from Im-

ageNet. Details of how this estimate was formed are given

in the Appendix.Some of these missing tags are covered by

scene [19, 26, 27] and style databases [13, 17].

Even when there is a corresponding tag in ImageNet, the

tag may be poorly represented. There are 11k images in the

ImageNet art.n.01 hierarchy, but there are only 8 subtrees

of art.n.01 with at least 1000 images; the biggest ones are

“olympian zeus,” “cinquefoil,” and “finger-painting;” and

there are no subtrees for “painting,” “drawing,” or “illustra-

tion.” The ImageNet synset for “band” includes only im-

ages for “marching bands” and not, say, “rock bands.”

Many image categories that are significant to users—for

example, in analyzing personal photo collections—are not

well represented in the ImageNet categories. Examples in-

clude family, travel, festival, and summer.

Some common tags in Flickr do not even exist in the

WordNet hierarchy, such as cosplay (a popular form of cos-

tume play), macro (as in macro photography), and vintage

(in the sense of “retro” or “old-style”). We also observed

problems in the full ImageNet database, where large sets of

images are assigned to the wrong synset, such as “party,”

“landscape,” and “tree/tree diagram.”

This is not in any way meant to disparage the substan-

tial, important efforts of the ImageNet team, but to empha-

size the enormous difficulty in trying to precisely curate a

dataset including all important visual concepts.

3.3. Label noise and ambiguities

A fundamental challenge in dealing with user-supplied

tags is that the mapping from observed tags to underlying

concepts is ambiguous. Here we discuss many types of

these ambiguities that we have observed.

Many terms have multiple or overlapping meanings. The

simplest case is for plurals, e.g., car and cars, which have

different meanings but which seem to be more or less in-

terchangeable tags on Flickr. Some tags have multiple dis-

tinct meanings [22], e.g., rock can mean both “rock-and-

roll music,” and “rocky landscapes.” Trickier cases include

terms like music, concert, and performance, which of-

ten overlap, but often do not. Some words are used nearly

interchangeably, such as cat and kitten, even though their

meanings are not the same. It seems that nearly all com-

mon tags exhibit some multiple meanings, though often one

sense dominates the others. Synonyms are also common,

e.g., cat and gato, as well as misspellings.

Multi-word tags often occur split up, e.g., images in New

York are frequently tagged as New and York rather than

New York. For this reason, tags like New and San are

largely meaningless on their own. Merging these split tags

(especially using cues from the other image metadata) is a

natural problem for future research.



3.4. Analysis with Ground Truth

In this section, we perform analysis using the anno-

tated subset of the NUS-WIDE dataset [5]. This is a

set of 269,642 Flickr images with annotations with both

user-supplied tags, and “ground truth” annotations by un-

dergraduate and high school students according to 81 con-

cepts. There are a number of potential sources of noise with

this dataset. Since the dataset was constructed by keyword

searches, it is not an unbiased sample of Flickr, e.g., only

one image in the dataset has zero keywords. Annotators

were not asked to judge every image for every concept; a

query expansion strategy was used to reduce annotator ef-

fort. Annotators were also asked to judge whether concepts

were present in images in ways that may differ from how

the images were originally tagged.

Tagging likelihoods. We now quantify the accuracy of

Flickr tags. We consider the Flickr images in NUS-WIDE

that contain manual annotations, and we treat these 81 la-

bels as ground truth, thus expanding on the discussion in

[5]. We assume an identity mapping between tags and an-

notations, i.e., the Flickr tag cat corresponds to the NUS-

WIDE annotation cat.

Overall, given that a tag correctly applies to an image,

there is empirically a 38% chance that the uploader will ac-

tually supply it. This probability varies considerably for

different tags, ranging from 2% for person to 94% for

cat. Frequently-omitted tags are often non-entry-level cate-

gories [18] (e.g., person) or they are not an important sub-

ject in the scene [1] (e.g., clouds, buildings). Given that a

tag does not apply, there is a 1% chance that the uploader

supplies it anyway. Across the NUS-WIDE tags, this prob-

ability ranges from 2% (for street) to 0.04% (for toy).

Despite these percentages, false tags and true tags are al-

most equally likely, since only a few of the 81 tags correctly

apply to each image. Each image has an average of 1.3 tags

(of the 81), and an observed tag has only a 62% chance of

being true. This percentage varies across different tags.

None of these numbers should be taken as exact, be-

cause the NUS annotations are far from perfect (see Ap-

pendix). Additionally, many “false” tags are due to differ-

ences in word senses between Flickr and NUS-WIDE. For

example, many earthquake images are clearly the result

of earthquakes, but are labeled as negatives in NUS-WIDE.

Many cat images that are annotated as non-cat are images

of tigers, lions, and cat costumes. Many nighttime images

were probably taken at night but indoors.

Tag index effects on accuracy. Flickr tags are provided

in an ordered list. We observed that tags earlier in the list are

often more accurate than later tags, and we again treat the

NUS-WIDE annotations as ground truth in order to quantify
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Figure 2: Empirically, tags that occur earlier in the list of

an image’s tags are more likely to be accurate. This plot is

computed from the NUS-WIDE dataset. (Error bars show

standard error.)

this.

We find that the effect is substantial, as shown in Figure

2. A tag that appears first or second in the list of tags has

about 65% chance of being accurate. A tag that occurs in

position 20 or later has about a 35% chance of being accu-

rate. The scales and shape of these plots also vary consider-

ably across different tags.

Effect of total number of tags. We also hypothesized

that tag reliability could depend on the total number of tags

provided for an image. This was motivated by our observa-

tion of commercially-oriented sharing sites, where upload-

ers are incentivized to include extraneous tags in order to

boost search results. However, we did not find any signifi-

cant effects in the Flickr data.

4. Robust Tag Classification

We now describe a robust classification algorithm, de-

signed to address the following observations from the pre-

vious section: user-supplied tags often omit relevant tags,

and these probabilities are different for each tag. A con-

ventional robust loss (e.g., Huber, Geman-McClure) would

not be appropriate because of the need to set the loss func-

tion’s parameters individually for each tag. The method is

based on previous robust logistic regression methods [20].

Previous approaches used batch computation, which cannot

realistically be applied to millions of images; we adapt these

methods to the large-scale setting using Stochastic EM [2].

The classifier takes as input image features x, and pre-

dicts class labels y ∈ {0, 1}. We perform prediction

for each possible tag independently, and so we consider

simple binary classification in this paper. As image fea-

tures x, we use the output of the last fully-connected layer

of Krizhevsky’s ImageNet Convolutional Neural Network

[14]; fc7 in the Caffe implementation [12]. We do not fine-

tune the network parameters in this paper.



4.1. Logistic Regression

As our approach is based on logistic regression, we be-

gin by briefly reviewing a conventional binary logistic re-

gression classifier. The logistic regression model assumes

that the probability of a positive tag (i.e., the probability

that y = 1) given input features x is a linear function w
T
x

passed through a sigmoid:

σ(s) ≡ 1/(1 + e−s); P (y = 1|x,w) = σ(wT
x) (1)

The loss function L(w) for a label training set {(xi, yi)} is

the negative log-likelihood of the data:

L(w) = − lnP (y1:N |x1:N ,w) (2)

=
∑

i(−yi lnσ(w
T
xi)− (1− yi) ln(1− σ(wT

xi)))

Training entails optimizing L with respect to w, using

stochastic gradient descent. Prediction entails computing

the label probability P (y|x,w) for a new image.

4.2. Robust model

As discussed in Section 3, user-supplied tags are often

noisy. However, the logistic regression model assumes that

the observed labels {yi} are mostly reliable—that is, it as-

sumes that yi = 1 almost always when w
T
xi is large.

To cope with this issue, we relax the assumption that the

observed training label y is the true class label. We intro-

duce a hidden variable z ∈ {0, 1} representing the true (hid-

den) class label. We also add a variable π to represent the

probability that a true label is added as a tag. The model

parameters are then θ = {w, π}, and the model is:

P (z = 1|x,w) = σ(wT
x) (3)

P (y = 1|z = 1, π) = π; P (y = 0|z = 0) = 1 (4)

and thus:

P (y = 1|x, π,w) = πσ(wT
x) (5)

The loss function for training is again the negative log-

likelihood of the data:

L(w, π) =
∑

i

(

−yi lnπσ(w
T
xi) (6)

−(1− yi) ln(1− πσ(wT
xi))

)

We also experimented with a model in which false tags are

occasionally added: P (y = 0|z = 0) = γ, where γ is an-

other learned parameter. We found that this model did not

improve performance, and so, for clarity, we omit γ from

the rest of the paper. The γ parameter may be useful for

other datasets where users produce more spurious tags. De-

tailed derivations of the model and gradients are straightfor-

ward, and are given in the Appendix (with γ).

Although the loss function is unchanged for positive la-

bels (y = 1), the model is robust to outliers for negative
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Figure 3: Loss functions for negative examples (y = 0).

Many Flickr users omit relevant tags, which is steeply pe-

nalized by the conventional logistic loss (ln(1−σ(s))). The

robust logistic loss (ln(1−πσ(s))), is tolerant to missing la-

bels.

examples (y = 0); see Figure 3 for loss function plots. The

classical logistic loss is unbounded, meaning that an overly

confident prediction may be heavily penalized. With a true

positive rate of π = 0.95, the loss is bounded above by

− ln(1 − π) ≈ 3, since no matter what the image there is

always at least a probability of 1 − π of a negative label.

The impact of π becomes smaller as the score s = w
T
x

becomes small, since if s ≪ 0 then P (z = 0) ≈ 1 and π
is only relevant when z = 1. When the true positive rate is

lower (e.g., π = 0.5 as in Figure 3), the dynamic range of

the loss function is further compressed.

4.3. Stochastic EM algorithm

Learning the model for a given tag entails minimiza-

tion of the loss with respect to w and π. Stochastic gra-

dient descent could be used for all parameters, and we pro-

vide gradients in the Appendix. However, we use Stochas-

tic Expectation-Maximization (EM) [2], since the steps are

simpler to interpret and implement, and the updates to π are

numerically stable by design. All derivations and detailed

versions of these equations are given in the Appendix.

Our stochastic EM algorithm applies the following steps

to each minibatch:

1. For each image i in the minibatch, the conditional

probability of the true label zi is computed as:

αi ← P (z = 1|yi,xi,w, π) (7)

=

{

1 yi = 1
(1−π)σ(wT

xi)
1−πσ(wT

xi)
yi = 0

(8)

2. We define the sufficient statistics for the minibatch as

Smb
α ≡

∑

i αi/N ; Smb
yα ≡

∑

i yiαi/N, (9)

where N is the number of datapoints in the summation.

Estimates of the average sufficient statistics for the full



dataset are updated with a step size η:

Sds ← (1− η)Sds + ηSmb (10)

In our experiments, we initialized Sds
α and Sds

yα to 1 and

used a fixed step size of η = 0.01.

3. π is computed from the current estimate of the suffi-

cient statistics, so that π is an estimate of the percent-

age of true labels that were actually supplied as tags:

π ← Sds
yα/S

ds
α (11)

4. The weights w are updated using stochastic gradient

on L. It is straightforward to verify that the gradient

w.r.t. w is
dL
dw

=
∑

i(σ(w
T
xi)− αi) xi. (12)

4.4. Calibration

In many cases, we would like to predict the true class

probabilities P (z|x). Well-calibrated estimates of these

probabilities are particularly useful in applications where it

is important to weight the importance of multiple tags for an

image, such as when trying to retrieve images characterized

by multiple tags or when choosing a small number of tags

to apply to an image [23].

In theory, the robust model above could learn a well-

calibrated estimate of P (z|x). However, the model still

makes strong simplifying assumptions—for example, it as-

sumes linear decision boundaries, and that label noise is in-

dependent of image content. To the extent that these as-

sumptions are unrealistic, the model may benefit from an

additional calibration step.

We tried to apply the calibration method from [23],

but found that it degraded the logistic regression model’s

performance. This may be because it is designed to ad-

dress miscalibration due to using non-probabilistic classi-

fiers such as SVMs, rather than due to label noise.

Instead, we propose the following strategy. First, a

model is learned with the large dataset. The weight vec-

tor w is then held fixed for each tag. However, an intercept

β is added to the model, so that the new class probability is

P (z = 1|x,w, β) = σ(wT
x+ β) (13)

The intercept allows the model to adjust the prior proba-

bility of each class in the new dataset. Then, we continue

training the model on a small curated dataset (treating it as

ground truth z), but only update the β parameters. Very lit-

tle curated data is necessary for this process, since only one

new parameter is being estimated per tag.

In our experiments, we simulate this procedure by train-

ing on the F100M data and calibrating on a subset of NUS-

WIDE annotations. More general domain adaptation meth-

ods (e.g., [10]) could also be used.
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Figure 4: Tagging likelihoods π estimated from Flickr im-

ages with RLR, versus estimation from the “ground truth”

NUS annotations. The likelihoods are correlated (r =
0.34), though the tagging likelihood is mostly underesti-

mated, probably due to inaccuracies in both the predictor

and the annotations.

Recall Precision F-score

LR 9.7 7.9 8.7

RLR 11.7 8.0 9.5

Table 2: Flickr tag prediction results. Robust logistic re-

gression improves over logistic regression’s ability to pre-

dict which tags a user is likely to apply to an image.

Recall Precision F-score

CNN+WARP [8] 52.0 22.3 31.2

NUS, LR 58.2 26.1 36.0

F100M, LR 58.4 21.7 31.6

F100M, RLR 58.0 22.3 32.3

F100M, LR, Calib 42.5 32.2 36.6

F100M, RLR, Calib 44.2 31.3 36.7

Table 3: Image annotation results, illustrating how the

freely-available user-supplied tags can augment or supplant

costly manual annotations. Testing is performed on the

NUS-WIDE test set. The first two rows show training only

on the NUS-WIDE training set with logistic regression, and

the previously-reported state-of-the-art [8]. Each of the re-

maining rows is trained on F100M with either LR or Ro-

bust LR. The third and fourth rows are also calibrated on

the NUS test set. All scores are predictions-at-5.

5. Experiments

We now describe experiments to test models learned

from F100M on several tasks, including tag prediction, im-

age annotation, and image retrieval with one or more tags.

All training is performed using Caffe [12], running for

20,000 minibatches, with minibatch size of 500 images.

Training is performed on a GeForce GTX780 GPU. Each

minibatch takes 2 seconds, and a complete run takes 11
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Figure 5: Single-tag retrieval results, and automatically-generated annotations. None of the query tags are in NUS-WIDE,

and most (music, rusty, drawing, bouldering) are also absent from ImageNet. Many of the annotations are also absent from

the other datasets as well.

hours. Based on the observations in Section 3.4, we only

keep the first 20 tags in all Flickr images in our experiments.

We use a subset of 4,768,700 images from F100M as train-

ing set and hold out another 200,000 for testing. The sets

are split by user ID in order to ensure that images from the

same user do not occur in both sets. Plural and singular tags

are combined using WordNet’s lemmatization.

5.1. Tag prediction

We first test the following prediction task: given a new

image, what tags would a user be likely to apply to this im-

age? This task could be useful for consumer applications,

for example, auto-suggesting tags for users when sharing

their images. Note that this task is different from ground-

truth prediction; we want to suggest tags that are both ob-

jectively accurate and likely to be applied by a user.

We trained a logistic regression baseline and a robust lo-

gistic regression model on our 4.7M-image F100M training

set, and evaluated the models’ ability to annotate images in

the 200K-image F100M test set.

For each test image, the model predicts the probability

of each tag occurring: P (y = 1|x,w, π). (Note that for

robust logistic regression, this is Equation 5, since we want

to predict tagging behavior y, not ground truth z.) The fi-

nal annotations were produced by selecting the top 5 most

likely tags for each image.

We evaluate overall precision and recall at 5 for each im-

age, averaged over all images. We also compute the F-score,

which is the harmonic mean of the average precision and re-

call. Table 2 summarizes the results. RLR achieves higher

recall without sacrificing precision. Figure 5 shows some

qualitative results of calibrated RLR’s ability to predict tags

for images from the test set. Figure 4 compares RLR’s esti-

mated values of π for each tag, versus the NUS annotations

estimated in Section 3.4. RLR’s estimates are correlated

with the NUS ground truth, but discrepancies are common.

5.2. Image annotation

We next test the task: given an image, which labels ob-

jectively apply to it? We use the same F100M training set

as above, but evaluate on the 81 labels in the manually an-

notated NUS-WIDE dataset, treating the NUS-WIDE anno-

tations as ground truth. We also compare to models trained

on NUS-WIDE.

We evaluate per-tag precision and recall averaged over

tags. For a tag j, per-tag precision is defined as N c
j /N

p
j

and per-tag recall is defined as N c
j /N

g
j , where Np

j is the

number of images that the system annotated with tag j, N c
j

is the number of images that a user annotated with tag j
that the system also annotated with tag j, and Ng

j is the
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Figure 7: Effect of calibration set size on image annotation

score. Training on user-supplied tags and then calibrating

on a small subset of manual annotations can outperform the

costly process of obtaining many manual annotations: the

annotation cost can be reduced by a factor of 200, while

obtaining the same results.

number of images in the test set that a user annotated with

tag j. Per-tag precision is undefined if a tag is never used

by the system; when this happens we define the precision

to be 0. We also computed the per-tag F-score. To predict

annotations with RLR, we predict z, not y (Equation 3 or

13). Scores are reported in Table 3.

Testing and training LR on NUS data produces some-

what better scores than training on F100M alone; it also pro-

duces better scores than the reported state-of-the-art on this

dataset [8]. We get the best scores by training on F100M

and then calibrating on the NUS training set (Section 4.4).

It is important to consider the cost of annotated labels.

The user-supplied tags in F100M are basically free, whereas

obtaining manual annotations is a very costly process. We

compare training on a subset of NUS training annotations,

versus F100M training plus calibration with the same NUS

subset. As shown in Figure 7, the calibration process can

yield scores superior to training on the full annotation set,

but with a 200x reduction in annotation cost.

1 Tag 2 Tags 3 Tags

NUS, LR 81 17.9 9.1

F100M, LR 70.1 8.5 2.3

F100M, RLR 71.9 9.2 2.7

F100M, LR, Calib 70.1 10.3 3.6

F100M, RLR, Calib 71.9 11 3.9

Table 4: Image retrieval results, showing precision at 5 for

multi-tag retrieval. Testing is performed on the NUS-WIDE

test set. Columns show performance for each method for

the number of tags that need to be matched. See the cap-

tion to Table 3 for an explanation of the rows. Robust LR

consistently outperforms LR, and calibration consistently

improves results. These trends are clearer for longer (and

therefore more difficult) queries.

5.3. Image retrieval

Finally, we consider the tag-based image retrieval task:

given a set of query tags, find images that match all the tags.

We measure performance using normalized precision at 5;

each system returns a set of 5 images, and its score for a

given query is the number of those images that are charac-

terized by all tags divided by the smaller of 5 and the total

number of relevant images in the test set. We use the NUS-

WIDE annotations as ground truth. We tested the same

models from the previous section. We tested each method

with queries consisting of every combination of one, two,

and three tags that had at least one relevant image in the test

set. Scores are shown in Table 4.

All models perform well on single-tag queries, but the

differences in precision grow rapidly as the number of tags

that the retrieved images must match increases. RLR con-

sistently outperforms LR, and calibration significantly im-

proves the models trained on Flickr. Figure 6 shows some

queries for which RLR outperforms LR.

The model trained on NUS-WIDE achieves the best

score. However, there are many thousands of tags for which

no annotations are available, and these results show that



good results can be obtained on these tags as well.

6. Discussion and Future Work

Online user-supplied tags represent a great, untapped

natural resource. We show that, despite their noise, these

tags can be useful, either on their own or in concert with a

small amount of calibration data. Though we have tested the

Flickr dataset, there are numerous other online datasets with

different kinds of user-supplied tags that can also be lever-

aged and explored for different applications. As noted in

Section 3, there is a great deal of structure in these tags that

could be exploited in future work. Our work could be com-

bined with methods that model the relationships between

tags, as well as improved CNN models and fine-tuning.

These tags could also provide mid-level features for other

classification tasks and consumer applications, such as tag

suggestion and organizing personal photo collections.
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A. Details of correspondence calculation

Here we explain how we estimated the percentage of

Flickr tags absent from ImageNet concepts (Section 3.2 of



the submission). We collected the top 1000 Flickr tags,

and manually filtered out non-image and location tags, with

612 tags remaining. We determined an automatic mapping

from Flickr tags to WordNet synsets, by mapping each tag

to its top WordNet noun synset, and manually corrected

mismatches in the top 100 Flickr tags. We call an Im-

ageNet synset large if it has 1000 of more node in the

subtree. Of the top 100 Flickr tags, we found that 54 of

them had large ImageNet subtree before correcting mis-

matches, and 62 had large subtrees after manual correc-

tions. Of the remaining 512 uncorrected tags, 189 (37%)

have large subtrees. Linear extrapolation suggests that

1 − ((189.0 ∗ (62.0/54.0)) + 62)/612 = 54% of tags are

missing ImageNet subtrees. Of course, there are a number

of questionable assumptions in this model, e.g., 1000 im-

ages may not be enough images for many classes, such as

art.

B. Issues with NUS-WIDE annotation

Figure8 shows some samples of annotation error in the

NUS-WIDE dataset. Another example is car and vehicle

categories: in the NUS-WIDE test set there are 431 in-

stances of “cars” of which only 177 instances are also an-

notated as “vehicle”.

(a) Cat

(b) Dog

Figure 8: NUS-WIDE annotation error examples. The

top retrieved images in RLR for cat and dog categories are

shown. Red boxes are shown around images marked as neg-

ative samples in the dataset.

C. Basic Logistic Regression

w logistic weights (14)

x image features (15)

s = w
T
x score given image data (16)

y ∈ {0, 1} observed label for each image (17)

The model of label probabilities given image data is:

s = w
T
x (18)

σ(s) =
1

1 + e−s
(19)

P (y = 1|s) = σ(s) (20)

The loss function for a dataset {(xi, yi)} is

L = − lnP (y1:N |x1:N ) (21)

= − ln





∏

i:yi=1

P (yi = 1|xi)









∏

i:yi=0

P (yi = 0|xi)



(22)

=
∑

i

(−yi lnP (yi = 1|xi)− (1− yi) lnP (yi = 0|xi)(23)

=
∑

i

(−yi lnσ(si)− (1− yi) ln(1− σ(si))) (24)

We can also rearrange terms:

1− σ(s) =
1 + e−s

1 + e−s
−

1

1 + e−s
= e−sσ(s) (25)

L =
∑

i

(

−yi lnσ(si)− (1− yi) ln e
−sσ(si)

)

(26)

=
∑

i

(− lnσ(si) + (1− yi)si) (27)

=
∑

i

(

ln(1 + e−s) + (1− yi)si
)

(28)

Gradients. During optimization, we use the gradients

with respect to w:

d

dw
σ(s) = σ(s)σ(s)e−s

x (29)

= σ(s)(1− σ(s))x (30)

dL

dw
=

∑

i

(

−
yi

σ(si)

d

dw
σ(si)−

1− yi
1− σ(si)

d

dw
(1− σ(si))

)

(31)

=
∑

i

(−yi(1− σ(s))xi + (1− yi)σ(si)xi) (32)

=
∑

i

(σ(si)− yi)xi (33)

Note that this is zero when yi = σ(si), which indicates a

perfect data fit.



Derivation using alternate form:

dL

dw
=

∑

i

((σ(si)− 1)xi + (1− yi)xi) (34)

=
∑

i

(σ(si)− yi)xi (35)

D. Robust Logistic Regression

w logistic weights (36)

x image features (37)

s = w
T
x score given image data (38)

y ∈ {0, 1} observed label for each image (39)

z ∈ {0, 1} hidden true label for each image (40)

The model of observations given scores is

P (z = 1|s) = σ(s) (41)

P (y = 1|z = 1) = π (42)

P (y = 0|z = 1) = 1− π false negative probability(43)

P (y = 0|z = 0) = γ (44)

P (y = 1|z = 0) = 1− γ false positive probability(45)

In the paper, we fix γ = 1.

The marginal probability of a given observation is:

P (y|s) =
∑

z∈{0,1}

P (y, z|s) = P (y|z = 1)P (z = 1|s) + P (y|z = 0)P (z = 0|s)(46)

P (y = 1|s) = πσ(s) + (1− γ)(1− σ(s)) (47)

= πσ(s) + (1− γ)e−sσ(s) (48)

= σ(s)((1− γ)e−s + π) (49)

P (y = 0|s) = (1− π)σ(s) + γ(1− σ(s)) (50)

= (1− π)σ(s) + γe−sσ(s) (51)

= σ(s)(1− π + γe−s) (52)

The Maximum Likelihood loss function can be written:

L =
∑

i

(−yi ln(πσ(si) + (1− γ)(1− σ(si))) (53)

−(1− yi) ln((1− π)σ(si) + γ(1− σ(si)))) (54)

=
∑

i

(

−yi lnσ(s)((1− γ)e−si + π)− (1− yi) lnσ(si)(1− π + γe−si)
)

(55)

=
∑

i

(

− lnσ(si)− yi ln((1− γ)e−si + π)− (1− yi) ln(1− π + γe−si)
)

(56)

When si >
∼35, and thus P (z = 1|s) ≈ 1, the summand

should be implemented as:

− yi lnπ − (1− yi) ln(1− π) (57)

Gradients. During optimization, we could use the gradi-

ents with respect to w:

dL

dw
=

∑

i

(

σ(si)− 1− yi
−(1− γ)e−si

(1− γ)e−si + π
− (1− yi)

−γe−si

1− π + γe−s

)

(58)

=
∑

i

(

σ(si)− 1− yi
−(1− γ)

(1− γ) + πesi
− (1− yi)

−γ

(1− π)esi + γ

)

(59)

(Dividing by es is done for stability. The case where s is

very large should also be handled by a separate condition.)

We also wish to optimize with respect to the parameters

π and γ:

dL

dπ
=

∑

i

(

−yi
−e−si

(1− γ)e−si + π
− (1− yi)

e−si

1− π + γe−si

)

(60)

=
∑

i

(

−yi
−1

1− γ + πesi
− (1− yi)

1

(1− π)esi + γ

)

(61)

dL

dγ
=

∑

i

(

−yi
−e−si

(1− γ)e−si + π
− (1− yi)

e−si

1− π + γe−si

)

(62)

=
∑

i

(

−yi
−1

1− γ + πesi
− (1− yi)

1

(1− π)esi + γ

)

(63)

D.1. Stochastic EM algorithm

In the E-step, we compute the probabilities over the la-

tent z’s given the data and the current model.

αi ≡ P (z = 1|yi, si) =
P (yi|z = 1, si)P (zi = 1|si)

P (yi|si)
(64)

which is computed with

P (z = 1|yi = 1, si) =
πσ(si)

πσ(si) + (1− γ)(1− σ(si))
(65)

P (z = 1|yi = 0, si) =
(1− π)σ(si)

(1− π)σ(si) + γ(1− σ(si))
(66)

M-step derivation. In the M-step, we update the various

model parameters. It can be derived by minimizing the neg-

ative expected complete log-likelihood:

E = <−
∑

i

lnP (yi, zi|si)>αi
(67)

= <−
∑

i

lnP (yi|zi)P (zi|s)>αi
(68)

< lnP (yi = 1|zi)> = αi lnπ + (1− αi) ln(1− γ) (69)

< lnP (yi = 0|zi)> = αi ln(1− π) + (1− αi) ln γ (70)

< lnP (zi|si)> = αi lnσ(si) + (1− αi) ln(1− σ(si))(71)

(72)



The derivatives are then:

dE

dπ
= −

∑

i

(

yi
αi

π
+ (1− yi)

−αi

1− π

)

(73)

dE

dγ
= −

∑

i

(

−yi
1− αi

1− γ
+ (1− yi)

1− αi

γ

)

(74)

dE

dw
= −

∑

i

(αi(1− σ(si))− (1− αi)σ(si))xi(75)

=
∑

i

(σ(si)− αi)xi (76)

Solving for dE/dπ = 0 and dE/dγ = 0 gives:

π ←

∑

i yiαi
∑

i αi

(77)

γ ←

∑

i(1− yi)(1− αi)
∑

i(1− αi)
(78)

Stochastic EM algorithm. In the stochastic EM algo-

rithm, we keep running tallies of

Sy =
∑

i

yi/N (79)

Syα =
∑

i

yiαi/N (80)

Sα =
∑

i

αi/N (81)

and then, in each M-step update, update the parameters as:

π ←
Syα

Sα

(82)

γ ←
1− Sy − Sα + Syα

1− Sα

(83)

We can also use dE/dw as a gradient estimate instead

of dL/dw.


