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ABSTRACT Neural architectures have accelerated the advancement in various domains by enabling 

automatic pattern detection, image classification, audio recognition, and face recognition etc. However, 

they are computationally expensive to design and expert knowledge in various domains is required. In this 

paper, a swarm intelligence algorithm is proposed to search for novel architectures without human 

intervention that can achieve comparable performance to those of human-designed architectures. This work 

is inspired by current neural architecture search approaches based on reinforcement learning and genetic 

algorithm. However, not much attention is paid towards swarm intelligence metaheuristics-based neural 

architecture search. A framework is proposed for automatically designing neural architectures based on a 

swarm intelligence metaheuristic: Crow Search Algorithm. First, Crow Search Algorithm is integrated with 

binary network representation. To make it compatible for Neural Architecture Search, the original distance 

metric is replaced with hamming distance-based similarity measure. Second, the tuning parameters of Crow 

Search Algorithm are reduced by replacing the static flight length parameter with our dynamic flight length 

distribution algorithm. Third, the target selection method (random selection) is replaced by tournament 

select method. The proposed framework is used to search for architectures on MNIST, CIFAR10, and 

CIFAR100 datasets and achieved 0.18%, 3.48%, and 15.64% test error, respectively. Furthermore, small-

scale transfer experiments are conducted to search architectures for Tiny ImageNet and achieved 34.43% 

test error. Nonparametric statistical analysis is performed to validate the impact of each modification in 

improving the quality of search space exploration. The proposed framework has achieved comparable 

performance with the state-of-the-art approaches, with a comparatively simpler approach and minimum 

human intervention. The proposed framework can be used to develop completely automated systems for 

designing architectures for various data-based classification applications. 

INDEX TERMS Neural architecture Search, hyperparameter optimization, AutoML, crow search 

algorithm, metaheuristic, image classification, deep learning

I. INTRODUCTION 

Deep learning models have solved various practical problems 

in a wide range of areas, such as image recognition, speech 

recognition, reinforcement learning and many more. 

However, they are hard to design, mainly because of 

underlying complexities and their inherent dependency on a 

bunch of hyperparameters. Currently, neural networks are 

hand-engineered and then tested rigorously with several 

values for the hyperparameters to get the best performance 

on a given task. In the early days of machine learning, data 

features were hand-engineered by experts to identify unique 

patterns and structures which were then used to train models. 

With the inception of neural networks, it became possible to 

let the algorithms decide which features are important for a 

specific task. Neural networks extract features on different 

abstraction levels depending upon the network depth. So, it is 

not wrong to say that neural networks have paved a path 
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towards automating the machine learning to an extent. 

Designing a neural network takes expert knowledge such as 

high-level expertise in mathematics, statistics, and algorithm 

design. Engineers are required to design an accurate and 

computationally low-cost architecture for each classification 

problem. After the design of Neural Network is finalized, 

engineers iteratively experiment with cumbersome 

hyperparameter values to tune the model for best possible 

performance. This practice of finding the optimal 

hyperparameters for a specific model can be automated with 

the help of some search algorithms, thus called 

Hyperparameter Optimization (HPO). Previously, most 

widely used strategy for HPO was a combination of grid 

search and manual search [1]. Later Bergstra et al. [2] 

proposed random search for HPO, which proved to be 

efficient and more plausible as compared to grid and manual 

search. However, these approaches are extremely expensive 

as they have small chance to just stumble upon a set of 

hyperparameters that will work for a given problem. Also, it 

will spend a lot of time just wastefully training on under-

performing choices. Another technique explored for HPO is 

Bayesian optimization [3], which outperformed both manual 

and random search. It builds a probabilistic model of the 

function mapping from hyperparameter values to the 

objective evaluated on a held-out validation set. More 

recently, there are gradient-based approaches for HPO. 

Maclaurin et al. [4] proposed to compute exact gradients of 

cross-validation performance with respect to all 

hyperparameters by demonstrating the applicability of 

gradient-based HPO to high-dimensional problems. For 

example, simultaneously optimizing the parameter 

responsible for weight initialization for each layer, the 𝐿2 penalty for each parameter in logistic regression, the 

learning rate for each iteration and each layer in a neural 

network. Franceschi et al. [5] proposed a method for forward 

and reverse gradient based HPO. This method uses a similar 

technique as [4] for reverse mode, following a classical 

Lagrangian approach used to derive backpropagation 

algorithm [6]. Furthermore, they propose that the forward-

mode procedure is suitable for real-time hyperparameter 

optimization. Recent studies [7] on gradient based HPO has 

shown robust performance and have outperformed previous 

Bayesian optimization techniques. However, hyperparameter 

optimization alone is not a complete solution for machine 

learning automation, as it still requires a human-engineered 

network architecture to begin with.  

For a Convolutional Neural Network (CNN), a typical 

neural network for image classification, it may take a long 

time to iteratively design, train, test, validate and finalize the 

model before applying any HPO technique. So, there must be 

a method to automatically produce neural network 

architectures. This dates back to 1988 when Fernando et al. 

[8] proposed self-organizing neural networks (SONN) for the 

problem of model identification. SONN was a flexible 

structure capable of adjusting its structure depending upon 

input data. Neural Architecture Search (NAS) is a domain 

which specifically aims to solve this problem by employing a 

technique to generate architectures automatically. NAS 

methods mainly comprise of (i) search-based, (ii) 

reinforcement learning-based, or (iii) gradient-based methods 

to automate the design of Neural networks. Elsken et al. [9] 

has categorized NAS approaches based on three dimensions 

namely, (i) search space, (ii) search strategy and (iii) 

performance estimation strategy. The search space defines 

what kind of networks are discoverable and directly 

translates to the architecture’s complexity level. Some of the 

recent state-of-the-art architectures include complex blocks 

having unique and modern layers. ResNet [10] for instance, 

consists of Residual block, which implements skip 

connections which have shown to mitigate gradient 

vanishing. Then, there are InceptionNet [11], SENet [12], 

etc. introducing further complex architectures. An 

architecture that can perform up to the par with such 

architectures needs to be adequately complex. Such an 

architecture can only be designed if the search space is 

complex enough. Usually, search spaces are designed to be 

as inclusive as possible which causes them to be hyper-

dimensional. An efficient yet effective search strategy should 

be devised to traverse a hyper-dimensional search space. This 

strategy revolves around the age-old exploration-exploitation 

dilemma. Finally, there must be a performance estimation 

strategy to evaluate the discovered architectures. Usually, in 

the case of NAS, the evaluation strategy consists of some 

machine learning metrics (validation loss or validation 

accuracy etc.) as fitness function for search algorithm. 

A. SEARCH SPACE 

The search space dictates the kind of architectures that can be 

designed (generated) by the said NAS framework. A search 

space includes a finite set of networks that can be generated. 

A search space is defined such that a network N ∈ 𝑑 

dimensional search space.  

Different kinds of networks can be categorized based on 

their underlying design-complexity. A rather simple 

architecture design is a sequential or chain-like architecture. 

In such networks, layers are connected in a sequential 

manner such that layer 𝐿𝑖 receives input from layer 𝐿𝑖−1 and 

sends output to layer 𝐿𝑖+1  as shown in Figure 1(a). Then, 

there are some network architectures that are not as simple as 

chain-like architectures. Most of the modern state-of-the-art 

architectures have multiple paths as shown in the Figure 1(b). 

In order to incorporate such modern designs in NAS, the 

search space needs to be designed with consideration for 

modern design elements like skip connections. Modern NAS 

methods use search spaces capable of implementing modern 

design elements like skip connections, residual or identity 

blocks, etc. In order to construct a search space which 

includes such type of multi-path architectures, Genetic CNN 

[13] has proposed a binary encoding scheme which will be 

discussed in later section. A search space which includes 
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complex architectures needs to be very complex, as a result 

such a space will be very large to efficiently search for. One 

way to reduce search space is to encode some information 

about what kind of human-made architectures generally 

perform well. One such example is constructing a meta-

architecture by using cells or motifs in a recursive manner 

[14]. Then the architecture for these cells is searched for.  

However, this introduces human bias which is a hindrance in 

automation of machine learning. Besides automation, this 

will simply divert the human effort from basic architecture 

design to meta-architecture design. 

The intuition behind cell-based search space is that, almost 

all well-performing human-engineered neural architectures 

are usually constructed by repeating motifs or blocks. So, 

instead of searching for full architectures, Zoph et. al [14] 

proposed NASNet search space, which finds generic cells 

that can be repeated in series and should also be scalable 

further to larger datasets. Instead of searching for whole 

networks, they search for two kinds of cells, (i) normal cell - 

that preserves the spatial dimensions of input and a (ii) 

reduction cell - that reduces the spatial dimensionality. 

Finally, they manually stack these cells in a predefined 

manner. Reinforcement learning based search method is 

employed for finding such generic cells. These cells can be 

constructed of convolution layers, non-linearities, etc. 

Another approach could be to fix the architecture of motifs 

and look for meta-architecture. A recent work [15] proposed 

to find meta-architectures by searching for configurations of 

fixed architecture blocks such as VGG Block, Residual 

Block, Convolutional Block, etc. However, as this study is 

aimed to progress the automation of machine learning, 

methods which include minimum human intervention are 

explored. To enable the search algorithms, traverse the search 

space, the search space needs to be represented in a 

structured way using a sophisticated encoding scheme. 

1) ENCODING SCHEMES 

To implement any metaheuristic algorithm, there are mainly 

two pre-requisites, (i) a representation of the solution 

domain, (ii) a heuristic or objective function (cost). In this 

section, representation of the solution domain is discussed. 

Solution domain can be represented by employing an 

encoding scheme. Genetic CNN [13] uses binary encoding 

scheme, where a network structure is represented by a fixed-

length binary string. This scheme can be applied to network 

structures which can be divided into stages e.g. Deep 

Residual Networks [10] and VGG [16]. Furthermore, in each 

stage 𝑖, there are several numbered nodes where each node 

corresponds to a convolutional layer. There are two default 

nodes in each stage i.e. input and output nodes. The input 

node receives data from previous stage, performs 

convolution and sends to all the nodes without a predecessor, 

and output node takes input from all the nodes without any 

successor and passes on to the next stage. Architecture of a 

single stage is shown in Figure 2. The intermediate nodes and 

their underlying connections are represented as a binary 

encoded string. Genetic CNN explores the search space of 

binary strings to form a suitable combination of connection 

between nodes. The connections are only allowed from a 

lower-numbered node to a higher-numbered node. Recently, 

Ahmad et al. [15], proposed an encoding scheme based on a 

search space consisting of fixed blocks most commonly used 

in modern CNNs e.g. residual block [10], Convolution block 

etc. They fixed the structure of individual blocks and 

formulated the search strategy to look for architectures by 

discovering different configurations or meta-architectures to 

arrange these blocks. This study follows the work of [13] and 

designs the search space by dividing network architectures in 

multiple stages. 

                                                                                
 

(a) (b) 

FIGURE 1. (a) Sequential (chain-like) Architectures. (b) Modern architectures can have multiple paths. 
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B. PERFORMANCE ESTIMATION STRATEGY 

The performance estimation strategy evaluates the 

performance of a possible CNN from its design. Performance 

estimation strategy concerns about objective function to be 

optimized. In the case of NAS, performance can be estimated 

by using several machine learning (deep learning) metrics. 

Most commonly used metrics are training accuracy, 

validation accuracy, training loss and validation loss. This 

work is based on optimizing the search strategy using these 

typical machine learning metrics. 

C. SEARCH STRATEGY 

A search strategy focuses on maximizing the heuristic 

function. A search strategy is directly dictated by the search 

algorithm employed to find the solution. Some of the known 

search strategies come under the umbrella of evolutionary 

methods, reinforcement learning (RL) and gradient-based 

methods.  

Evolutionary Algorithms based Neural Architecture 

Search 

Evolutionary search algorithms follow a process inspired 

by the biological concept of evolution where they try to 

evolve candidate individuals over several generations using 

concepts like mutation and cross-over etc. These algorithms 

have gained attraction for their proven efficiency for solving 

optimization problems. Some of the evolutionary 

metaheuristics are discussed in this section. Genetic 

Algorithm (GA) [17], takes its inspiration from natural 

process of evolution using basic operations such as mutation 

and cross-over. With the help of these operations, good 

performing traits are passed over to the next generations, 

eventually improving the performance of overall population 

over a certain number of iterations. Particle Swarm 

Optimization (PSO) [18] is a swarm intelligence algorithm, 

where the particles (potential solutions) move in the search 

space and improve their position iteratively depending on 

their individual positions as well as swarm’s overall position. 
PSO faces a problem when several objectives are conflicting 

with each other. Many Objective Particle Swarm 

Optimization (MOPSO) [19] tried to solve this problem by 

using a set of reference points dynamically determined 

depending upon the search process. Harmony Search (HS) 

[20] is based on the concept of harmony in music, and its 

main parameters are memory, pitch adjusting and 

randomization. Differential Evolution [21] is a global 

numerical optimization metaheuristic based on the mutation 

operation. Recently, there has been a trend of nature-inspired 

metaheuristics to solve optimization problems in various 

domains. Seouza et al. [22] proposed a modified version of 

crow search algorithm for feature selection where they 

reduce the continuous search space to discrete search space 

by restricting the movement of crows to only discrete 

lcoations. Nowdeh et al. [23] proposed to use matrix moth-

flame algorithm for optimal reconfiguration of distribution 

networks and placement of solar and wind renewable 

sources. Jahannoosh et al. [24] proposed a new meta-

heuristic algorithm for reliable and cos-effective designing of 

energy systems. Naderipour et al. [25] used grey wolf 

optimizer algorithm for optimal energy system design. 

Firefly and harmony search algorithms are also used for 

optimal power damping [26]. Genetic algorithm is proposed 

to optimize granular neural network parameters for pattern 

recognition [27] such as bird swarm optimization [28] for 

heart-rate classification, firefly algorithm [29] for 

optimization of modular granular neural networks and grey 

wolf optimizer [30] for optimizing granular neural networks 

for human recognition. Sanchez et al. [31] proposed to use 

particle swarm optimization with its fuzzy dynamic 

parameter adaptation to design modular granular neural 

network architectures. In the domain of NAS, Genetic CNN 

 
 

FIGURE 2. A representation of a stage having 𝒏 + 𝟏 number of nodes. Connections among these nodes can be searched by using Crow Search 
Algorithm or Genetic CNN. 

Input node Output nodenodennode0

noden-3

node2

Stage i

node3

node1

noden-2

noden-1



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2020.3031599, IEEE Access

 

VOLUME XX, 2017 5 

[13] uses an evolutionary search strategy on a binary encoded 

search space such that a set of candidate models are 

initialized in the form of a fixed size binary string, either 

randomly or by using Bernoulli distribution. Then these 

candidate individuals undergo genetic crossover by selecting 

a partner each and produce a child individual. Based on 

crossover probability and crossover rate child individual 

inherits a combination of genes from both parent candidates. 

These individuals may undergo mutation procedure based on 

mutation probability, which results in randomly flipping the 

bits in individual’s genes in accordance with the mutation 
rate. Finally, these individuals become candidate for next 

generation and are evaluated for their fitness for the objective 

function on a pre-defined dataset. EENA [32] proposes to 

efficiently evolve populations by modifying crossover and 

mutation operations of genetic algorithm. Amoeba-Net was 

the first to outperform human design networks on ImageNet. 

They apply a modified evolutionary algorithm on NASNet 

[14] search space. LEMONADE [33] is based on 

Lamarckian evolution and applies network morphisms 

operations to produce offspring which help in reducing the 

training time of individual networks. Furthermore, 

LEMONADE formulates the NAS as a multi-objective 

problem which simultaneously minimizes the test error and 

model size. 

Reinforcement Learning based Neural Architecture 

Search 

Among Reinforcement learning based methods, NAS 

using reinforcement learning [14] and NASNet [34]  are 

popular methods. In [14], it is proposed to use a RNN as 

controller which can design a string to specify architectures, 

however, this requires extensive computational power. In 

order to reduce the required computation, NASNet 

introduces a new search space which also allows 

transferability from one dataset to another. They achieve this 

by limiting the search space to a cell. They search for two 

cells, namely, normal cell and reduced cell. Normal cell 

maintains the dimensionality across input and output while 

reduction cell reduces the dimensionality. Furthermore, 

PNAS [35] utilizes the same search space and propose a 

method to progressively search for architectures in increasing 

order of complexity.  Reinforcement learning based methods 

aim to reduce the search space by focusing on architecture 

search for small cells or units which can be further repeated 

based on a meta-architecture. The meta-architecture is 

designed manually depending upon the dataset. Cell-based 

architecture search methods help reduce the search space 

because they only search for cell architecture. This also 

allows to re-use the cells for different architectures. 

However, cell-based architecture search methods divert 

human effort from global architecture search to meta-

architecture search and thus cannot substitute fully automated 

NAS. Reinforcement Learning based methods are 

computationally demanding even though they have achieved 

state-of-the-art performances.  

Differential Evolution based Neural Architecture Search 

Among Differential evolution methods, DARTS is quite 

notable for its less computational requirement and simplicity. 

Liu et al. [36] proposed a differentiable architecture search 

(DARTS) method which can achieve up-to-the-par 

performance with orders of magnitude less computational 

resources. This method is also simpler than RL based 

methods as it does not involve controller. GDAS [37] 

proposes to use a differentiable architecture sampler and 

applies it to directed acyclic graphs (DAGs). 

In an effort to reduce the search space both RL based 

methods and DARTS search for cell architectures. However, 

this study emphasizes on reducing human effort by 

employing search methods which look for complete 

architecture, not only a block or cell which has to be arranged 

and placed in a pre-defined manner. In this way, the problem 

is formulated to improve the search strategy instead of 

reducing search space.  

Among evolutionary algorithms, swarm optimization 

algorithms are not yet explored in the domain of NAS. A 

swarm intelligence algorithm named Crow Search Algorithm 

(CSA) is proposed by Askarzadeh et al. [38]. CSA is inspired 

by the methodology used by crows for seeking, hiding their 

own food, and stealing other’s food. CSA replaces concepts 
like (i) mutation and (ii) crossover with (i) following the 

better performing candidate (ii) flying to random locations. 

CSA also incorporates a memory associated with individual 

crow which also sets apart from other search algorithms. In 

GA, in every generation new offspring are produced 

however, in CSA, crows are produced once at the time of 

initialization. Individuals update their memory as they 

explore the search space.   

CSA resembles some of the previous algorithms e.g. GA, 

PSO and HS in many aspects. Some are briefly mentioned 

here. It creates an initial population of seekers to explore the 

search space. It is also not a greedy algorithm. Unlike GA, 

CSA includes memory unit to keep track of well-performing 

solutions found during exploration which is also the case 

with PSO and HS. In order to keep a balance between 

exploration and exploitation, CSA uses randomness and 

gradients [39]. CSA has only 2 decision parameters: flight 

length and awareness probability as compared to 4, 3 and 6 

decision parameters required for PSO, HS and GA, 

respectively. This makes it much easier to optimize CSA as 

compared to other search algorithms. 

Among previous evolutionary algorithms as mentioned 

before GA is well-explored in the NAS domain. Many 

studies have suggested the use of CSA because of its 

characteristics such as less parameter settings, easy 

implementation, and relatively strong development capacity 

in the search process [40]. It has already been applied to 

solve several engineering problems. In [38], authors solved 6 

constrained engineering problems using CSA and it 

outperformed Genetic Algorithm and Particle Swarm 

Optimization. In [41], CSA was applied to power distribution 
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network to find the optimal position to place the capacitors 

and their sizes, and experiments show that solutions found by 

CSA were accurate than other search methods. In computer 

vision domain CSA is also used by [42] to find the threshold 

for image segmentation. This helped in avoiding premature 

convergence and achieving automatic MRI segmentation. 

Recently, CSA is also applied for finding input weight of 

Extreme Learning Machine (ELM) and finding the threshold 

values for hidden layers [43]. Chiwen et al. [40] proposed 

and improved CSA based on neighborhood search of non-

inferior solution set and applied on pressure vessel design 

problem and tension-compression spring. Xiaxio et al. [44] 

proposed an improved CSA based on spiral search 

mechanism and applied to engineering optimization 

problems. However, Crow Search Algorithm (CSA) was not 

explored in NAS domain until recently. In [45], Abdullah et. 

al proposed Crow-search algorithm for hyperparameter 

optimization for image classification on MNIST and CIFAR-

10 datasets. According to results, CSA outperformed GA 

with slightly improved results and in a smaller number of 

total trainings. 

This work aims to develop a neural network search 

framework that is able to find complex architectures without 

needing any meta-architecture. For this purpose, Crow 

Search Algorithm (CSA) [38] is implemented on Binary 

encoded search space proposed by Genetic CNN [13]. The 

adaptation to binary search space to CSA has various 

constraints, assumptions, and modifications. Therefore, this 

new variation of CSA is named Binary CSA to distinguish it 

from original implementation of CSA. This study suggests 

applying Binary CSA on top of architecture search paradigm 

for complete architecture design search. This paper will 

compare the performance of two nature-inspired algorithms, 

Firstly, Genetic Algorithm (GA), a well-renowned algorithm 

based on evolution mechanics where every generation tries to 

improve individuals. Secondly, Crow Search Algorithm, 

which is based on lifestyle of crows, where they try to find 

food by following other crows and memorize their location 

of finding the food, eventually converging to the best 

possible location. Furthermore, some enhancements in 

Binary CSA are introduced for better convergence rate, 

which are discussed in later sections. In the next subsection 

crow search algorithm is discussed from the viewpoint of 

neural architecture search. 

D. CROW SEARCH ALGORITHM 

Crow Search Algorithm (CSA) is a population-based swarm 

intelligence algorithm, inspired by intelligent behavior of 

crows for hiding their food and following other birds to steal 

their food [38]. Crows watch other birds, observe where the 

other birds hide their food, and steal it once the owner leaves. 

The principles of CSA are listed as follows: 

• Crows live in the form of flock (group). 

• Crows hide their food at a good place. 

• Crows memorize their hiding places. 

• Crows follow each other to do the thievery. 

• Crows use their experience to protect their catch. 

• Crows memorize the hiding places other crows. 

As crows are thieves themselves, they know well the 

behavior of a thief and act accordingly to avoid being the 

victim. When a crow follows another crow there is a 
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FIGURE 3. (a) If the value of flight length (𝒇𝒍) is selected smaller 

than the distance between current position 𝒙𝒊,𝒊𝒕𝒆𝒓
  of crow i and 

hiding place 𝒎𝒊,𝒊𝒕𝒆𝒓 of target crow j i.e. best known location in its 
memory.  In that case the next position of crow 𝒊 is on the left side 

of the dash line between 𝒙𝒊,𝒊𝒕𝒆𝒓
 and 𝒎𝒊,𝒊𝒕𝒆𝒓 resulting in Local Search. 

(b) If the value of 𝒇𝒍 is selected larger than the distance between 

current position 𝒙𝒊,𝒊𝒕𝒆𝒓  of crow 𝒊  and memory location 𝒎𝒊,𝒊𝒕𝒆𝒓   of 
target crow 𝒋, the next position of crow 𝒊 is on the right side of the 
dash line which results in Global Search. 
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probability of target crow being aware of the fact that it is 

being followed. This is addressed in algorithm with a 

parameter named awareness probability 𝐴𝑃 . If the target 

crow knows it is being followed then it changes its path to 

random location instead of going to its hiding place, i.e. the 

best location from its memory hence, introducing 

randomness which in turn enhances the exploration of 

algorithm. If the crow being followed does not know that it 

is being followed, the crow finally lands to its hidden food 

location or in case of our algorithm, location of the best 

solution achieved so far, from its memory. As a result, the 

other crow will follow it and will land to a nearby location 

(not exact location). This aids to the exploitation capacity 

of the search algorithm. In the first scenario, where the 

crow was not familiar that it is being followed. The landing 

position of the follower crow depends upon a parameter 

known as flight length 𝑓𝑙. Depending on the 𝑓𝑙, follower 

crow can land before the followed crow’s location or 
farthest from location as depicted in figure 3. If 𝑓𝑙 is shorter 

than the distance between current location of the thief crow 

and the destination of target crow, the thief crow lands 

before reaching the target crow’s food hiding location, 

hence executing local search as shown in figure 3(a). 

Whereas, if 𝑓𝑙 is longer and crow lands farther away, hence 

resulting in global search as shown in figure 3(b). The local 

search and global search, both help exploring the solution 

space by exploiting the experience of the target crow. 

However, the randomness introduced by awareness 

probability, leads to the exploration without regarding the 

experience of target crow. Both of these two parameters 

provide a good balance between exploration and 

exploitation. 

Formally, Crow Search Algorithm can be described by 

assuming that there is a d-dimensional environment having N number of crows. The position of 𝑖𝑡ℎ  crow at iteration iter is defined by a vector 𝑥𝑖,𝑖𝑡𝑒𝑟 as shown in Eq. (1). 

 𝑥𝑖,𝑖𝑡𝑒𝑟(𝑖 = 1, 2, … , 𝑁; 𝑖𝑡𝑒𝑟 = 1, 2, … , 𝑖𝑡𝑒𝑟𝑚𝑎𝑥)          (1) 

 

where, 

  𝑋𝑖,𝑖𝑡𝑒𝑟 = [𝑥1𝑖,𝑖𝑡𝑒𝑟 , 𝑥2𝑖,𝑖𝑡𝑒𝑟 , … , 𝑥𝑑𝑖,𝑖𝑡𝑒𝑟] 
Here 𝑁  is the total number of crows in the flock and, 𝑖𝑡𝑒𝑟𝑚𝑎𝑥  is the maximum number of iterations. The 𝑑 -

dimensional space 𝑋𝑖,𝑖𝑡𝑒𝑟includes all possible locations that 

can be explored by crow 𝑖 in iteration 𝑖𝑡𝑒𝑟. Crows traverse 

this d-dimensional 𝑋𝑖,𝑖𝑡𝑒𝑟  space by following other crows to 

find out their hiding location, hence reaching to the best 

possible solution over multiple iterations. Each crow 

memorizes only the best location they found during the 

search of hidden food. The hiding location in the memory 

of crow 𝑖  at iteration 𝑖𝑡𝑒𝑟  is denoted as 𝑚𝑖,𝑖𝑡𝑒𝑟 .  Now 

assume that crow 𝑗  visits its hiding location  from its 

memory  𝑚𝑗,𝑖𝑡𝑒𝑟  and crow 𝑖 decides to steal from crow 𝑗, it 

will try to follow crow 𝑗 at iteration 𝑖𝑡𝑒𝑟. Now, based on 

the awareness probability of crow 𝑗 two cases may arise: 

Case 1: If crow 𝑗 is unaware of the fact that it is being 

followed by crow 𝑖 , it will keep going towards its hiding 

location 𝑚𝑗,𝑖𝑡𝑒𝑟  (hiding place) and crow 𝑖 will reach a new 

location 𝑥𝑖,𝑖𝑡𝑒𝑟+1  for next iteration as per Eq. (3). 

 𝑓𝑙𝑖,𝑖𝑡𝑒𝑟 =  𝑟𝑖,𝑖𝑡𝑒𝑟  ×  𝑓𝑙𝑚𝑎𝑥  (2) 

  𝑥𝑖,𝑖𝑡𝑒𝑟+1 =  𝑥𝑖,𝑖𝑡𝑒𝑟 + 𝑓𝑙𝑖,𝑖𝑡𝑒𝑟  × (𝑚𝑗,𝑖𝑡𝑒𝑟 −  𝑥𝑖,𝑖𝑡𝑒𝑟) (3) 

Where, 𝑓𝑙𝑚𝑎𝑥  is maximum flight length that a crow can 

fly. This is a parameter that needs to be assigned a value at 

the initialization of the search. While 𝑟𝑖,𝑖𝑡𝑒𝑟 is a random 

number which can have a value between 0 and 1. This 

random number dictates the flight length 𝑓𝑙𝑖,𝑖𝑡𝑒𝑟  of crow 𝑖 
at iteration 𝑖𝑡𝑒𝑟 as shown in Eq. (2). For instance, if 𝑓𝑙𝑚𝑎𝑥  

is set to 100, depending on value of 𝑟𝑖,𝑖𝑡𝑒𝑟 , the value of 𝑓𝑙𝑖,𝑖𝑡𝑒𝑟  may be anywhere between 0 to 100. This way, each 

crow is assigned a different flight length 𝑓𝑙𝑖,𝑖𝑡𝑒𝑟  in each 

iteration. Based on the value of flight length 𝑓𝑙𝑖,𝑖𝑡𝑒𝑟  the 

crow 𝑖  will reach a location nearby the hiding place of 

crow  𝑗 . If 𝑓𝑙𝑖,𝑖𝑡𝑒𝑟  has higher value than   𝑑𝑖𝑓𝑓(𝑚𝑗,𝑖𝑡𝑒𝑟 , 𝑥𝑖,𝑖𝑡𝑒𝑟)   then crow  𝑖 will move past the 

hiding place of crow 𝑗  as shown in figure 3 (a), hence 

conducting global search. If 𝑓𝑙𝑖,𝑖𝑡𝑒𝑟  is smaller than the 

distance between crow  𝑖 and crow 𝑗  then crow 𝑖  will 

conduct local search as shown in figure 3 (b). 

Case 2: If crow 𝑗 is aware of the fact that it is being 

followed by crow  𝑖 , it will divert its path and go to a 

random location in space 𝑑. In effect, crow 𝑖 will also be 

led to a random location, as a result it will explore a new 

location that may be very far from current area of search, 

hence increasing exploration. Both cases are expressed in 

the Eq. (4). 

 𝑥𝑖,𝑖𝑡𝑒𝑟+1 = { 𝑥𝑖,𝑖𝑡𝑒𝑟 + 𝑓𝑙𝑖,𝑖𝑡𝑒𝑟  . (𝑚𝑗,𝑖𝑡𝑒𝑟 − 𝑥𝑖,𝑖𝑡𝑒𝑟),      𝑎𝑝𝑗,𝑖𝑡𝑒𝑟 ≥ 𝐴𝑃𝑎 𝑟𝑎𝑛𝑑𝑜𝑚 𝑝𝑜𝑠𝑡𝑖𝑜𝑛,                                     𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒  

     (4) 

TABLE 1. Pseudo code of original crow search algorithm.  

(1). Input: the refence Dataset 𝐷, number of iterations 𝑇, the number of 

crows in the flock 𝑁, the awareness probability 𝐴𝑃, maximum 

flight length 𝑓𝑙𝑚𝑎𝑥  

(2). Initialization: Generate a flock of 𝑁 crows with randomly assigned 

locations with memory 𝑚𝑒𝑚 = 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 

(3). Evaluation: Evaluate all crows for recognition accuracy of the 

corresponding networks 

(4). 𝑤ℎ𝑖𝑙𝑒 𝑖𝑡𝑒𝑟 <  𝑖𝑡𝑒𝑟𝑚𝑎𝑥 

(5). 𝑓𝑜𝑟 𝑖 = 1: 𝑁 

(6). 𝑐𝑟𝑜𝑤𝑖 = 𝑓𝑙𝑜𝑐𝑘(𝑖) 
(7). 𝑐𝑟𝑜𝑤𝑗 = 𝑟𝑎𝑛𝑑𝑜𝑚(𝑓𝑙𝑜𝑐𝑘) 

(8). 𝑎𝑝𝑗,𝑖𝑡𝑒𝑟 = 𝑟𝑎𝑛𝑑𝑟𝑎𝑛𝑔𝑒(100) 

(9). 𝑖𝑓 𝑎𝑝𝑗,𝑖𝑡𝑒𝑟 ≥ 𝐴𝑃 
(10). 𝑐𝑟𝑜𝑤𝑖. 𝑙𝑜𝑐𝑖𝑡𝑒𝑟+1 = 𝑓𝑜𝑙𝑙𝑜𝑤(𝑐𝑟𝑜𝑤𝑗. 𝑚𝑒𝑚𝑖𝑡𝑒𝑟, 𝑐𝑟𝑜𝑤𝑖. 𝑙𝑜𝑐𝑖𝑡𝑒𝑟) 

(11). 𝑒𝑙𝑠𝑒 

(12). 𝑐𝑟𝑜𝑤𝑖. 𝑙𝑜𝑐𝑖𝑡𝑒𝑟+1 = 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒_𝑟𝑎𝑛𝑑𝑜𝑚_𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛() 
(13). 𝑓𝑜𝑟 𝑖 = 1: 𝑁 

(14). 𝑐𝑟𝑜𝑤𝑖 = 𝑓𝑙𝑜𝑐𝑘(𝑖) 

(15). 𝑐𝑟𝑜𝑤𝑖 . 𝑓𝑖𝑡𝑛𝑒𝑠𝑠 = 𝑒𝑣𝑎𝑙(𝑐𝑟𝑜𝑤𝑖. 𝑙𝑜𝑐𝑖𝑡𝑒𝑟+1) 

(16). 𝑖𝑓 𝑐𝑟𝑜𝑤𝑖. 𝑓𝑖𝑡𝑛𝑒𝑠𝑠 > 𝑐𝑟𝑜𝑤𝑖. 𝑏𝑒𝑠𝑡𝑓𝑖𝑡𝑛𝑒𝑠𝑠 

(17). 𝑐𝑟𝑜𝑤𝑖. 𝑏𝑒𝑠𝑡𝑓𝑖𝑡𝑛𝑒𝑠𝑠 = 𝑐𝑟𝑜𝑤𝑖. 𝑓𝑖𝑡𝑛𝑒𝑠𝑠 

(18). 𝑐𝑟𝑜𝑤𝑖. 𝑚𝑒𝑚𝑖𝑡𝑒𝑟 = 𝑐𝑟𝑜𝑤𝑖. 𝑙𝑜𝑐𝑖𝑡𝑒𝑟+1  

(19). Output: Flock with memory of best locations they explored 
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Where, 𝐴𝑃  is the awareness probability defined at the 

time of initialization and 𝑎𝑝𝑗,𝑖𝑡𝑒𝑟  is a random number within 

the range (0, 𝐴𝑃) that represent the awareness score of crow 𝑗 at iteration 𝑖𝑡𝑒𝑟. Whether or not 𝑎𝑝𝑗,𝑖𝑡𝑒𝑟is higher than the 𝐴𝑃 determines if crow 𝑗 is aware of being followed or not. 

The exploration-exploitation trade-off can be tuned using 

these two parameters i.e. flight length and awareness 

probability. This following mechanism of crows is further 

explained in section II and its implementation for specific 

case of Neural Architecture Search. The pseudo code for 

original crow search algorithm is shown in table 1. 

1) LIMITATIONS OF CROW SEARCH ALGORITHM 

This section describes the limitations of employing 

original crow search algorithm on neural architecture search 

problem. First of all, previously CSA has been applied to 

engineering optimization problems where the goal is to find 

some optimal values for specific parameters. While in a 

previous work [45], CSA was used to search for four 

hyperparameters i.e. number of layers, layer width, optimizer 

and activation function. In such cases various distance 

formulae can be applied trivially to natural numbered values. 

However, CSA was not designed to find solutions in 

complex search spaces such as required by Neural 

Architecture Search (NAS). Because distance between two 

solutions as used by CSA cannot be computed directly in 

case of Neural Architecture Search.  If the distance among 

neural architectures is to be computed, a scheme should be 

devised to interpret the differences among architectures as 

distances. As discussed in previous section, a neural 

architecture can be represented as a binary string using 

binary encoding scheme. This way the distance between 

architectures may be considered as a binary string 

comparison problem. Additionally, new solutions in search 

space may not be computed using simple arithmetic of CSA 

as shown in Eq (4).  

In order to make this CSA mechanism work for the case of 

NAS, a new Binary Crow Search Algorithm (BCSA) is 

proposed to overcome the limitation of CSA.  To measure the 

difference between two architectures being represented by 

binary strings, first a distance metric needs to be employed 

which is capable of comparing binary strings. There exist 

various binary distance metrics such as Levenshtein distance, 

Longest common subsequence (LCS), Hamming Distance, 

and Jaro distance. All these metrics have their own string 

operations and limitations. For instance, Levenshtein distance 

allows deletion, insertion and substitution, longest common 

subsequence (LCS distance) allows insertion and deletion, 

Jaro distance allows only transposition, Damerau-

Levenshtein distance allows insertion, deletion, substitution, 

and the transposition operations, whereas hamming distance 

allows only substitution. Given the requirement of given task, 

two strings (architectures) need to be compared such that, 

compute the difference among them and substitute some bits 

in a string such that its distance can be reduced as compared 

to the other string. Levenshtein distance and its variants have 

the capability to fulfill the said requirement however, a more 

simplistic approach would be ideal. Therefore, hamming 

distance is employed to measure distance between binary 

representations of neural networks which is explained in 

detail in section II. 

Furthermore, as explained in the section I.D. originally 

CSA uses random selection method for target solution. 

However, this introduces too much randomness which makes 

it harder to converge to optimal solutions even over multiple 

iterations. In BCSA, a selection method based on 

tournament-selection is proposed which helps in faster 

convergence to optimal solution. Furthermore, in CSA the 

maximum range of flight length is provided as algorithm 

parameter but in case of a binary string the maximum 

possible changes are equal to the total length of binary string. 

So, the maximum flight length cannot exceed the length of 

binary string. Additionally, a constant range of flight length 

is not an optimal choice, because if a crow is already too 

close to a target, making a random choice for flight length 

may lead astray from the possibly optimal solution. 

Therefore, it is crucial that the choice of flight length is made 

within an optimal range. Finally, the fixed flight length 

parameter is replaced by dynamic flight distribution which 

not only ensures that the flight range remains in optimal 

range but also eliminates one tunable parameter.  A summary 

of our main contributions to solve all these problems is as 

follows: 

 

(1). Crow Search Algorithm [38] is proposed to discover 

complex and novel CNN architectures for the first time. 

(2). Binary Crow Search Algorithm is proposed to solve 

NAS problem in Binary Encoded Search Space. 

(3). Target selection method is improved by introducing 

Tournament Select in baseline implementation of Binary 

CSA. 

(4). Flight Length selection range 𝑓𝑙𝑚𝑎𝑥  is computed 

automatically, hence leaving only one tunable parameter 

named awareness probability 𝐴𝑃 , which makes it 

suitable for automation of neural architecture search 

problem. 

(5). Based on distance of a crow 𝑖  in iteration 𝑖𝑡𝑒𝑟 , from 

target crow 𝑗 , a scaled range of the Flight Length 𝑓𝑙 𝑚𝑎𝑥𝑖,𝑖𝑡𝑒𝑟
is introduced intermediately to improve the 

convergence rate. 

(6). Finally, it is demonstrated that Binary Crow Search 

algorithm outperforms previous Neural Architecture 

Search strategies by achieving comparable performance 

in significantly smaller number of trainings. 

 

All these modifications resulted in a novel algorithm 

which has all the good qualities of CSA and is compatible 

with complex search spaces suitable for NAS. The paper 

presents this new algorithm as Binary Crow Search 

Algorithm. 
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II. PROPOSED APPROACH 

This section presents the Crow Search Algorithm for 

searching state-of-the-art neural architectures. Initially, 

experiments are performed on popular datasets such as 

MNIST [46] and CIFAR10 [47] datasets etc. After initial 

evaluation on MNIST and CIFAR10 datasets, results are 

provided on large-scale datasets such as CIFAR100 and 

Tiny-ImageNet. The authors followed the work of Genetic 

CNN [13] for network representation such that a binary 

string is used to represent an architecture as mentioned in 

section I. Binary Network Representation and basic 

operations used by Binary Crow Search Algorithm are 

explained in this section. Technical details, limitations of 

methods and some examples are also provided in this 

section. 

A. BINARY NETWORK REPRESENTATION 

In this work, binary network representation scheme as 

proposed by [13] is used to represent our search space. The 

string length depends upon the number of stages 𝑆  and 

number of nodes 𝐾𝑛 (𝑛 ∈ {1,2, … , 𝑆})  in each stage. The 

authors experimented with two settings, 𝑆 =  2, and 𝑆 =  3, 

having (𝐾1, 𝐾2) = (3, 5)  and (𝐾1, 𝐾2, 𝐾3) = (3, 4, 5)  nodes 

respectively. The network shown in figure 4 can be 

represented by a string consisting of binary numbers such as "𝑎21𝑎31𝑎32𝑏21𝑏31𝑏32𝑏41𝑏42𝑏43𝑏51𝑏52𝑏53𝑏54" which can be 

divided into parts for the sake of clarity. The string is divided 

into two parts as per the number of stages i.e. "𝑎21𝑎31𝑎32" 

and "𝑏21𝑏31𝑏32𝑏41𝑏42𝑏43𝑏51𝑏52𝑏53𝑏54"  representing 

encoding of stage 1 and 2, respectively.  In the first stage 

there are 3 nodes named 𝐴1, 𝐴2, 𝐴3  and 5 nodes i.e. 

 
 

 
 

(a) 

 
 

(b) (c) 
 

 
(d) (e) 

 
FIGURE 4. (a) A schematic diagram representing two-stage (𝑺 = 𝟐)  network produced from the binary string “1111000100000”. First Stage has 
3 nodes, whereas second stage has 5 nodes. (𝑲𝟏, 𝑲𝟐) = (𝟑, 𝟓). (b), (c), (d), and (e) show some example configurations with their respective 

binary strings. (b) and (c) combine to form the binary string “1010101100011”. (d) and (e) combine to form the binary string “0111100100010”. 
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𝐵1, 𝐵2, 𝐵3, 𝐵5 in the second stage. Here "𝑎21𝑎31𝑎32"can be 

further split node wise i.e.  "𝑎21 − 𝑎31𝑎32" . The first bit "𝑎21" of this 3-bit string represents the connection of 𝐴2 with 𝐴1, second bit "𝑎31" represents the connection of 𝐴3 with 𝐴1 and third bit "𝑎32" represents the connection of 𝐴3 with 𝐴2. If a bit is “set”, it represents a connection in respective 
nodes. The first stage of figure 4(a), gets the final string as 

“1-11”. It is to be noted that the indexing of string starts from 

the second node of the respective stage i.e. 𝐴2 and 𝐵2 for 

stages 1 and 2, respectively. By having a closer look at stage 

2 string, it can be seen that 𝐵2 is connected with 𝐵1 so "𝑏21" 

= “1” on first location. The node B3 which is not connected 

to  𝐵1  and 𝐵2  hence, 𝑏31 = 0, 𝑏32 = 0 , respectively. The 

node 𝐵4 which gets input from 𝐵2 but is disconnected with 𝐵1 and 𝐵3 hence, 𝑏41 = 0, 𝑏42 = 1, 𝑏43 = 0. Finally, 𝐵5 is 

not connected to any of the nodes but directly with input 

node hence the string for node 𝐵5 comes out to be 0000. The 

resultant length of the binary string can be calculated by Eq. 

(5). 𝑙𝑒𝑛𝑔𝑡ℎ 𝑜𝑓 𝑏𝑖𝑛𝑎𝑟𝑦 𝑠𝑡𝑟𝑖𝑛𝑔 =  ∑ ∑(𝑖 − 1)𝐾𝑛
𝑖=1

𝑆
𝑛=1  

(5) 

Where, 𝑆  is the total number of stages and 𝐾𝑛  is the 

number of nodes in the 𝑛𝑡ℎ  stage. For 𝑆 =  2, (𝐾1, 𝐾2) =(3, 5) , the string length will be 13 and for 𝑆 = 3, (𝐾1, 𝐾2, 𝐾3) = (3, 4, 5) , the string length will be 19. 

Alongside these nodes, there are two default nodes in each 

stage, i.e. input node and output node. These nodes are fixed 

by default such that, input node will perform convolution and 

feed forward to any nodes without predecessor. While output 

node will receive inputs from all the nodes without successor. 

As, seen in figure 4, it is possible that search algorithm may 

come up with different configurations commonly found in 

state-of-the-art architectures such as skip connections, 

multiple streams, merging of streams, etc. Depth of each 

stage may also vary depending upon connections. In this 

study experiments are conducted with two settings as 

mentioned above. Furthermore, the number of stages as 

well as number of nodes in each stage can be modified.  

Using aforementioned settings, it is possible to implement 

many popular architectures such as VGGNet [16], ResNet 

[48] and DenseNet [49]. However, for fair comparison with 

Genetic CNN [13], only pooling and convolutional 

operations are used as nodes. 

B. BINARY CROW SEARCH ALGORITHM 

This section explains the basic operations performed by the 

binary crow search algorithm. Some of these operations are 

briefly explained in section I, as per original algorithm 

proposed by [38]. Here, the operations are explained for the 

specific case of Neural Architecture Search domain. 

Furthermore, some improvements are proposed to the 

original algorithm as shown in the table 2. These 

improvements are thoroughly explained in this section.        

A summary of the differences between CSA and Binary CSA  

TABLE 2. Comparison between Crow Search Algorithm and Binary 
Crow Search Algorithm 

Operations 

and 

Parameters 

Crow Search 

Algorithm 

Binary Crow 

Search Algorithm 

Distance 

Formula 

Simple subtraction 

(Not possible for Binary 

Encoded Solutions) 

Binary selection and 

substitution 

Target 

Selection 

Random Tournament Select 

Max Flight 

length 𝑓𝑙𝑚𝑎𝑥 

𝑓𝑙𝑚𝑎𝑥  a parameter of 

algorithm that needs to 

be fine-tuned. 

𝑓𝑙𝑚𝑎𝑥 is set to be 

equal to total length 

of bits in a solution 

Number of 

tuning 

parameters 

2 i.e. Flight Length, 

Awareness Probability 

1 i.e. Awareness 

Probability 

Max Flight 

length in 

Iteration iter  

Constant 

 ( 𝑓𝑙𝑚𝑎𝑥𝑖,𝑖𝑡𝑒𝑟 =  𝑓𝑙𝑚𝑎𝑥) 
𝑓𝑙𝑚𝑎𝑥𝑖,𝑖𝑡𝑒𝑟 is 

dynamically 
computed based on 

Distance from 

Target (Eq. (6)). 

Flight Length 

for 𝑐𝑟𝑜𝑤𝑖𝑖𝑡𝑒𝑟 

𝑓𝑙𝑖,𝑖𝑡𝑒𝑟= 𝑟𝑎𝑛𝑑𝑜𝑚(𝑓𝑙𝑚𝑎𝑥𝑖,𝑖𝑡𝑒𝑟) 

𝑓𝑙𝑖,𝑖𝑡𝑒𝑟= 𝑟𝑎𝑛𝑑𝑜𝑚(𝑓𝑙𝑚𝑎𝑥𝑖,𝑖𝑡𝑒𝑟) 

 

is provided as follows: 

• Introducing tournament select method for faster 

convergence 

• Bound 𝑓𝑙𝑚𝑎𝑥  by total length of bits in solution, hence 

having only algorithm parameter i.e. awareness 

probability 𝐴𝑃 

• Dynamic range of  𝑓𝑙𝑚𝑎𝑥  hence avoiding large flights 

when close to the target 

• Translation of flight formula into binary selection and 

substitution operations. 

These contributions are explained in detail as follows: 

1) INITIALIZATION 

Initially a flock of 𝑁 crows is created where each crow is 

initialized with a given list of nodes (𝐾1, 𝐾2, 𝐾3, . . , 𝐾𝑠) per 

stage 𝑆. Each stage is then represented by a binary string as 

explained in previous section. In first iteration the binary 

string is generated randomly to represent a random location 

in search space. However, in order to compare the results 

with fellow algorithms the initial locations may be assigned 

from a pre-populated list. 

2) INITIAL EVALUATION 

All crows are then evaluated by decoding the binary 

network representation and creating the corresponding 

neural networks as shown in figure 4. Recognition score on 

a given dataset is used as primary evaluation criteria. 

Memory of each crow represents the location of the best 

performing architecture in the search space. In first iteration 

since there is no prior performance data, the current 

location is considered the best location and assigned to the 

crow’s memory. The recognition score is also stored as the 

best achieved performance.  
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3) TARGET SELECTION 

In the original CSA, in each iteration, for each 𝑐𝑟𝑜𝑤𝑖  in the 

flock, a target 𝑐𝑟𝑜𝑤𝑗  is randomly selected to follow. This 

induces too much randomness and higher converging time. 

However, our aim is to gradually improve the performance 

of the crow in every iteration. Therefore, the selection 

process is modified to aid in achieving our goal. Instead of 

selecting the 𝑐𝑟𝑜𝑤𝑗  randomly, it should be selected such 

that it leads to convergence. One approach could be 

selecting the best performing individual in every iteration. 

However, this can cause CSA to converge to sub-optimal 

solution. So, the best performing crow cannot be selected 

naively from the flock to be followed by each crow, 

because it will lead them all to converge in a local region in 

an iteration. Therefore, tournament select procedure was 

followed where a small subset of flock is selected randomly 

for each crow. Among these randomly selected crows, the 

individual with best performance is selected as target crow 

i.e. 𝑐𝑟𝑜𝑤𝑗 . Tournament select method is performed for 

every individual in the flock once per iteration as shown in 

figure 5.  

4) FOLLOWING 

Once a target 𝑐𝑟𝑜𝑤𝑗   is selected for a given 𝑐𝑟𝑜𝑤𝑖  in an 

iteration. There might be two cases as explained in section 

I. In one case the target may be aware that it is being 

followed, while in other case it may not be aware. To 

simulate this phenomenon, the algorithm is initialized with 

an awareness probability 𝐴𝑃. At the time when a crow is 

following its target, a random number is generated in the 

range of 1 to 100. If that number is smaller than the 

awareness probability, the target (𝑐𝑟𝑜𝑤𝑗) is considered to 

be aware of being followed by the 𝑐𝑟𝑜𝑤𝑖 . Otherwise if that 

number is greater than or equal to the awareness probability 

the target (𝑐𝑟𝑜𝑤𝑗 ) is considered to be unaware of being 

followed by the 𝑐𝑟𝑜𝑤𝑖 .   
In the first case the target crow tries to mislead the 

following crow by going to a random location in search 

space. Therefore, the final location of the crow 𝑖  that is 

following the target is also a random location in search 

space, which may be generated randomly just like it was 

done at the time of initialization.  

In the second case the following operation is carried out 

as per Eq. (4). The distance on the current location of 𝑐𝑟𝑜𝑤𝑖  and memory 𝑚𝑗,𝑖𝑡𝑒𝑟  of the target  𝑐𝑟𝑜𝑤𝑗  is computed 

as hamming distance ℎ𝑎𝑚𝑖𝑡𝑒𝑟𝑖,𝑗  in binary strings as shown in 

figure 6(a). It measures the number of bitwise substitutions 

required to match both strings. 

The set of different bits are represented as 𝑑𝑖𝑓𝑓𝑖𝑡𝑒𝑟𝑖,𝑗
. Each 

substitution in these different bits makes it one step closer 

to the target string. The total number of substitutions done 

in each flight is defined by the flight length 𝑓𝑙𝑖,𝑖𝑡𝑒𝑟 . As 

shown in Figure 6(b), 3 bits were substituted, hence 

resulting in new location 𝑥𝑖,𝑖𝑡𝑒𝑟+1 , 3 steps closer to the 

target. If the flight length smaller than the hamming 

distance the 𝑓𝑙𝑖,𝑖𝑡𝑒𝑟   number of bits are randomly selected 

from the different bits 𝑑𝑖𝑓𝑓𝑖𝑡𝑒𝑟𝑖,𝑗 for substitution. This will 

result in local search as explained earlier in section 2, figure 

3. However, if flight length is greater than the hamming 

distance, extra bits will be selected randomly from whole 

binary string in addition to the different bits. This will cause 

excessive substitution and may result in final location 𝑥𝑖,𝑖𝑡𝑒𝑟+1  to be even farther than the target’s destination  𝑚𝑗,𝑖𝑡𝑒𝑟as shown in figure 6 (c). 

Originally crow search algorithm is initialized with the 

maximum allowed flight length 𝑓𝑙𝑚𝑎𝑥 . However, in case of 

binary network representation the maximum flight length 𝑓𝑙𝑚𝑎𝑥  can only mean maximum number of changes possible, 

that is equal to the total length of binary string. Also, in the 

original crow search algorithm, the flight length 𝑓𝑙𝑖,𝑖𝑡𝑒𝑟of a 

crow 𝑖 in iteration 𝑖𝑡𝑒𝑟 is selected within the range of 1 to 𝑓𝑙𝑚𝑎𝑥 . However, there is a huge probability of the flight 

length 𝑓𝑙𝑖,𝑖𝑡𝑒𝑟  to be very big even when the target is very 

close. The red line in figure 7 shows the flight length of 

original CSA. Using the fixed range of flight length (1: 𝑓𝑙𝑚𝑎𝑥)  will make the agent to go far from solution as 

soon as it comes near to convergence. Therefore, a method is 

proposed to scale the maximum flight length 𝑓𝑙𝑚𝑎𝑥  based on 

the  hamming  distance  between  a  crow  and its  target in  

 
(a) (b) (c) 

 
FIGURE 5. Tournament Select illustration for selecting target crow. (a) shows a flock of 20 crows in iteration 𝒊𝒕𝒆𝒓. (b) a pool of 5 crows selected 
randomly from flock for 𝒄𝒓𝒐𝒘𝒊 in iteration 𝒊𝒕𝒆𝒓. (c) best performing crow is selected as target 𝒄𝒓𝒐𝒘𝒋 from pool set. 
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 TABLE 3. Pseudo code of Binary crow search algorithm.  

(1). Input: the refence Dataset 𝐷, number of iterations 𝑇, the number 

of crows in the flock 𝑁, the awareness probability 𝐴𝑃, 𝑡𝑜𝑢𝑟𝑛𝑎𝑚𝑒𝑛𝑡𝑆𝑖𝑧𝑒 

(2). Initialization: Generate a flock of 𝑁 crows with randomly 

assigned locations with memory 𝑚𝑒𝑚 = 𝑐𝑢𝑟𝑟𝑒𝑛𝑡_𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 

(3). Evaluation: Evaluate all crows for recognition accuracy of the 

corresponding networks 

(4). 𝑤ℎ𝑖𝑙𝑒 𝑖𝑡𝑒𝑟 <  𝑖𝑡𝑒𝑟𝑚𝑎𝑥 

(5). 𝑓𝑜𝑟 𝑖 = 1: 𝑁 

(6). 𝑐𝑟𝑜𝑤𝑖 = 𝑓𝑙𝑜𝑐𝑘(𝑖) 

(7). 𝑐𝑟𝑜𝑤𝑗 = 𝑡𝑜𝑢𝑟𝑛𝑎𝑚𝑒𝑛𝑡𝑆𝑒𝑙𝑒𝑐𝑡(𝑟𝑎𝑛𝑑(𝑓𝑙𝑜𝑐𝑘, 𝑡𝑜𝑢𝑟𝑛𝑎𝑚𝑒𝑛𝑡𝑆𝑖𝑧𝑒)) 

(8). 𝑎𝑝𝑗,𝑖𝑡𝑒𝑟 = 𝑟𝑎𝑛𝑑𝑟𝑎𝑛𝑔𝑒(100) 

(9). 𝑖𝑓 𝑎𝑝𝑗,𝑖𝑡𝑒𝑟 ≥ 𝐴𝑃 
(10). 𝑐𝑟𝑜𝑤𝑖 . 𝑙𝑜𝑐𝑖𝑡𝑒𝑟+1 = 𝑓𝑜𝑙𝑙𝑜𝑤(𝑐𝑟𝑜𝑤𝑗. 𝑚𝑒𝑚𝑖𝑡𝑒𝑟, 𝑐𝑟𝑜𝑤𝑖. 𝑙𝑜𝑐𝑖𝑡𝑒𝑟) 

(11). 𝑒𝑙𝑠𝑒 

(12). 𝑐𝑟𝑜𝑤𝑖 . 𝑙𝑜𝑐𝑖𝑡𝑒𝑟+1 = 𝑟𝑎𝑛𝑑𝑜𝑚_𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛( ) 

(13). 𝑓𝑜𝑟 𝑖 = 1: 𝑁 

(14). 𝑐𝑟𝑜𝑤𝑖 = 𝑓𝑙𝑜𝑐𝑘(𝑖) 

(15). 𝑐𝑟𝑜𝑤𝑖. 𝑓𝑖𝑡𝑛𝑒𝑠𝑠 = 𝑒𝑣𝑎𝑙(𝑐𝑟𝑜𝑤𝑖 . 𝑙𝑜𝑐𝑖𝑡𝑒𝑟+1) 

(16). 𝑖𝑓 𝑐𝑟𝑜𝑤𝑖. 𝑓𝑖𝑡𝑛𝑒𝑠𝑠 > 𝑐𝑟𝑜𝑤𝑖 . 𝑏𝑒𝑠𝑡𝑓𝑖𝑡𝑛𝑒𝑠𝑠 

(17). 𝑐𝑟𝑜𝑤𝑖. 𝑏𝑒𝑠𝑡𝑓𝑖𝑡𝑛𝑒𝑠𝑠 = 𝑐𝑟𝑜𝑤𝑖. 𝑓𝑖𝑡𝑛𝑒𝑠𝑠 

(18). 𝑐𝑟𝑜𝑤𝑖. 𝑚𝑒𝑚𝑖𝑡𝑒𝑟 = 𝑐𝑟𝑜𝑤𝑖. 𝑙𝑜𝑐𝑖𝑡𝑒𝑟+1  

(19). Output: Flock with memory of best locations they explored 

TABLE 4. Pseudo code of  𝒇𝒐𝒍𝒍𝒐𝒘(𝒄𝒓𝒐𝒘𝒋 . 𝒎𝒆𝒎𝒊𝒕𝒆𝒓, 𝒄𝒓𝒐𝒘𝒊. 𝒍𝒐𝒄𝒊𝒕𝒆𝒓) method 

used by Binary crow search algorithm.  

(1). 𝑑𝑖𝑓𝑓𝑖𝑡𝑒𝑟𝑖,𝑗 = 𝑐𝑜𝑚𝑝𝑎𝑟𝑒(𝑐𝑟𝑜𝑤𝑗 . 𝑚𝑒𝑚𝑖𝑡𝑒𝑟 , 𝑐𝑟𝑜𝑤𝑖. 𝑙𝑜𝑐𝑖𝑡𝑒𝑟) 

(2). ℎ𝑎𝑚𝑖𝑡𝑒𝑟𝑖,𝑗 = 𝑙𝑒𝑛(𝑑𝑖𝑓𝑓𝑖𝑡𝑒𝑟𝑖,𝑗 ) 

(3). 𝑓𝑙𝑚𝑎𝑥    = 𝑙𝑒𝑛(𝑐𝑟𝑜𝑤𝑖. 𝑙𝑜𝑐𝑖𝑡𝑒𝑟) 

(4). 𝑓𝑙𝑚𝑎𝑥𝑖,𝑖𝑡𝑒𝑟   =  √𝑓𝑙𝑚𝑎𝑥  × ℎ𝑎𝑚𝑖𝑡𝑒𝑟𝑖,𝑗 − 𝑘                 −    Eq. (6) 

(5). 𝑓𝑙𝑖,𝑖𝑡𝑒𝑟   =   𝑟𝑎𝑛𝑑𝑜𝑚(𝑟𝑎𝑛𝑔𝑒(𝑓𝑙𝑚𝑎𝑥𝑖,𝑖𝑡𝑒𝑟)) 

(6). 𝑖𝑓 𝑓𝑙𝑖,𝑖𝑡𝑒𝑟 >  ℎ𝑎𝑚𝑖𝑡𝑒𝑟𝑖,𝑗 : 
(7).           𝑓𝑜𝑟 𝑐𝑜𝑢𝑛𝑡 = 1: 𝑓𝑙𝑖,𝑖𝑡𝑒𝑟 − ℎ𝑎𝑚𝑖𝑡𝑒𝑟𝑖,𝑗

 

(8).                        𝑒𝑥𝑡𝑟𝑎_𝑚𝑖𝑙𝑒 = 𝑟𝑎𝑛𝑑𝑜𝑚(𝑖𝑛𝑑𝑒𝑥𝑒𝑠(𝑐𝑟𝑜𝑤𝑖 . 𝑙𝑜𝑐𝑖𝑡𝑒𝑟)) 

(9).                        𝑑𝑖𝑓𝑓𝑖𝑡𝑒𝑟𝑖,𝑗 . 𝑎𝑝𝑝𝑒𝑛𝑑(𝑒𝑥𝑡𝑟𝑎_𝑚𝑖𝑙𝑒) 

(10). 𝑒𝑙𝑖𝑓 𝑓𝑙𝑖,𝑖𝑡𝑒𝑟 <  ℎ𝑎𝑚𝑖𝑡𝑒𝑟𝑖,𝑗 : 
(11).             𝑓𝑜𝑟 𝑐𝑜𝑢𝑛𝑡 = 1: ℎ𝑎𝑚𝑖𝑡𝑒𝑟𝑖,𝑗 − 𝑓𝑙𝑖,𝑖𝑡𝑒𝑟 

(12).                        𝑒𝑥𝑡𝑟𝑎_𝑚𝑖𝑙𝑒 = 𝑟𝑎𝑛𝑑𝑜𝑚(𝑑𝑖𝑓𝑓𝑖𝑡𝑒𝑟𝑖,𝑗 ) 

(13).                        𝑑𝑖𝑓𝑓𝑖𝑡𝑒𝑟𝑖,𝑗 . 𝑟𝑒𝑚𝑜𝑣𝑒(𝑒𝑥𝑡𝑟𝑎_𝑚𝑖𝑙𝑒) 

(14). ℎ𝑎𝑚𝑖𝑡𝑒𝑟𝑖,𝑗 = 𝑙𝑒𝑛(𝑑𝑖𝑓𝑓𝑖𝑡𝑒𝑟𝑖,𝑗 ) 

(15). 𝑎𝑠𝑠𝑒𝑟𝑡(𝑓𝑙𝑖,𝑖𝑡𝑒𝑟 ==  ℎ𝑎𝑚𝑖𝑡𝑒𝑟𝑖,𝑗 ) 

(16). 𝑐𝑟𝑜𝑤𝑖 . 𝑙𝑜𝑐𝑖𝑡𝑒𝑟+1 = [ ] 
(17). 𝑓𝑜𝑟 𝑖𝑛𝑑𝑒𝑥 𝑖𝑛 𝑖𝑛𝑑𝑒𝑥𝑒𝑠(𝑐𝑟𝑜𝑤𝑖 . 𝑙𝑜𝑐𝑖𝑡𝑒𝑟): 
(18).              𝑖𝑓 𝑖𝑛𝑑𝑒𝑥 𝑖𝑛 𝑑𝑖𝑓𝑓𝑖𝑡𝑒𝑟𝑖,𝑗 : 
(19).                            𝑐𝑟𝑜𝑤𝑖 . 𝑙𝑜𝑐𝑖𝑡𝑒𝑟+1. 𝑎𝑝𝑝𝑒𝑛𝑑(𝑐𝑟𝑜𝑤𝑗 . 𝑚𝑒𝑚𝑖𝑡𝑒𝑟[𝑖𝑛𝑑𝑒𝑥]) 

(20).              𝑒𝑙𝑠𝑒: 
(21).                                𝑐𝑟𝑜𝑤𝑖 . 𝑙𝑜𝑐𝑖𝑡𝑒𝑟+1. 𝑎𝑝𝑝𝑒𝑛𝑑(𝑐𝑟𝑜𝑤𝑖. 𝑙𝑜𝑐𝑖𝑡𝑒𝑟[𝑖𝑛𝑑𝑒𝑥]) 

(22). 𝑟𝑒𝑡𝑢𝑟𝑛   𝑐𝑟𝑜𝑤𝑖. 𝑙𝑜𝑐𝑖𝑡𝑒𝑟+1 

 

current iteration. Therefore, the maximum flight length 𝑓𝑙𝑚𝑎𝑥𝑖,𝑖𝑡𝑒𝑟
 allowed for crow 𝑖 in iteration 𝑖𝑡𝑒𝑟 can be computed 

as shown in Eq. (6). 𝑓𝑙𝑚𝑎𝑥𝑖,𝑖𝑡𝑒𝑟 =  √𝑓𝑙𝑚𝑎𝑥  × 𝐻𝑎𝑚(𝑥𝑖,𝑖𝑡𝑒𝑟 , 𝑚𝑗,𝑖𝑡𝑒𝑟) − 𝑘  (6) 

 

5) EVALUATION 

Similar to the initial evaluation, corresponding locations for 

all crows are decoded and used to build and compile the 

neural network models. These networks are trained on given 

dataset and their evaluation score is used as the fitness of the 

crow on current location.  
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FIGURE 6. (a) Flight distance is calculated as hamming distance 

between binary strings. (b) If flight length 𝑓𝑙𝑖,𝑖𝑡𝑒𝑟is smaller than the 

hamming distance, the final location is not too far from origin thus 

resulting in local search. (c) If flight length 𝑓𝑙𝑖,𝑖𝑡𝑒𝑟is bigger than 

hamming distance than final location maybe even farther than the 
target hence, resulting in global search. 
 
 
 

 
 
 
 

FIGURE 7. Scaling of maximum flight length 𝑓𝑙𝑚𝑎𝑥  into 𝒇𝒍𝒎𝒂𝒙𝒊,𝒊𝒕𝒆𝒓
 

based on hamming distance using Eq. (6). Red line shows the 
maximum flight length 𝑓𝑙𝑚𝑎𝑥 based on original CSA while blue line 

shows the scaled distribution of 𝑓𝑙𝑚𝑎𝑥𝑖,𝑖𝑡𝑒𝑟 . 
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6) MEMORY UPDATE  

The recognition score achieved for each crow in current 

iteration is compared with their respective best performance 

achieved so far. If a crow’s current performance is better than 
its prior best achieved performance, then its memory is 

assigned the current location of the crow. Best performance 

of the crow is also updated by its current recognition score. 

7) ITERATE 

Steps from 4 to 7 are repeated until the last iteration. After 

final iteration, a flock of crows is obtained which have 

explored the search space and memorized the location 

representing the top performing neural network architecture. 

The crow with highest achieved recognition scores has the 

final binary encoded solution in its memory. 

Table 3 shows the pseudocode for Binary Crow Search 

Algorithm. The pseudo code for the 𝑓𝑜𝑙𝑙𝑜𝑤() method used 

by binary crow search algorithm is represented in table 4. 

Furthermore, flowchart of BCSA is provided in the appendix, 

figure 14. 

III. EXPERIMENTS 

Training is performed on a cluster of 10 computers (clients) 

with GTX 1080 Ti, such that the search algorithm runs on the 

server and clients are responsible for training and evaluation. 

Server passes the binary string representation to each client 

which is then decoded into a CNN architecture. After 

training and evaluation are done on the clients, the results are 

sent back to the server. Based on these evaluation results, 

server performs Binary CSA operations and computes new 

binary strings which are sent to the clients for next iteration.  

Results are compared with Genetic CNN [13] and for fair 

comparison the same initial population is used for both 

methods. Furthermore, the authors experimented with two-

stage 𝑆 = 2, (𝐾1,  𝐾2) = (3, 5)  and three-stage 𝑆 = 3,(𝐾1,  𝐾2,  𝐾3) = (3, 4, 5)  network representations for 

popular image classification datasets including MNIST, 

CIFAR10, CIFAR100 and Tiny-ImageNet. MNIST is a 

well-known handwritten optical character recognition 

dataset containing 10 classes, each class representing one 

decimal number. There are total 60,000 training images and 

10,000 test images. CIFAR10 and CIFAR100 are popular 

image classification datasets. CIFAR10 contains 10 object 

classes with 6000 images per class. Out of 60,000 total 

images, 50,000 are used for training while 10,000 are used 

as test images. CIFAR100 contains 100 classes of common 

objects with 600 images per class. Out of total 60,000 

images, 50,000 are used as training and 10,000 are used as 

test images. Tiny-ImageNet contains 200 image classes, 

with a training split of 100,000 images, validation split of 

10,000 images and test split of 10,000 images. For MNIST, 

CIFAR10 and CIFAR100, 10% of training images are used 

as validation split. Small-scale datasets are used to evaluate 

our algorithm as it will be very time-consuming to evaluate 

search algorithms on large datasets. The number of filters 

and kernel sizes are also fixed to match the scope of 

experiment in Genetic CNN [13]. For instance, for MNIST, 

the number of filters is fixed to 32 and 64 whereas, for 

CIFAR10 and CIFAR100, 32, 64 and 128 (for three stage 

architectures) are used. The kernel of size (3, 3) is used in 

all experiments. The dense units are also fixed as 512, 

1024, 2048 and 4096 for MNIST, CIFAR10, CIFAR100 

and Tiny-ImageNet experiments. However, these 

hyperparameters may also be encoded in the search space 

and then searched using Binary CSA as demonstrated in 

[37]. Furthermore, the ablation experiments are performed 

to study the impact of tournament select method over 

random selection and our proposed dynamic flight length 

distribution 𝑓𝑙𝑚𝑎𝑥𝑖,𝑖𝑡𝑒𝑟
 (Eq. 6) over static flight length 𝑓𝑙𝑚𝑎𝑥 as 

used in original CSA.  

A. MNIST EXPERIMENTS 

In the first phase of experiments, the proposed approach is 

validated on MNIST dataset. The two-stage 𝑆 =2, (𝐾1,  𝐾2) = (3, 5)  binary representation is used with 3 and 

5 nodes for stage 1 and 2, respectively. Results are shown in 

table 5 and figure 8. 

TABLE 5. Recognition accuracy on the MNIST Dataset (test split). Settings 
used are 𝑆 = 2, where (𝐾1, 𝐾2) = (3, 5) 

Iteration Memory Max Min Average 
Standard 
Deviation 

0 0.9962 0.9962 0.9962 0.9962 0.0003 

2 0.9971 0.9971 0.9961 0.9970 0.0002 

4 0.9971 0.9969 0.9961 0.9965 0.0003 

6 0.9976 0.9976 0.9961 0.9966 0.0003 

8 0.9978 0.9978 0.9967 0.9976 0.0003 

10 0.9978 0.9972 0.9961 0.9968 0.0003 

12 0.9981 0.9981 0.9962 0.9975 0.0002 

14 0.9982 0.9982 0.9971 0.9976 0.0003 

16 0.9982 0.9973 0.9965 0.9971 0.0003 

 
 
FIGURE 8. MNIST results using Binary Crow Search Algorithm 
using two-stage representation 𝑺 = 𝟐, (𝑲𝟏 , 𝑲𝟐) = (𝟑, 𝟓). The orange 
and purple bars here represent the difference of baseline accuracy 
with maximum achieve accuracy in an iteration and minimum 
accuracy in an iteration, respectively. While the blue line shows 
the progress of best achieve performance over the experiment. 
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TABLE 6. Recognition accuracy on the CIFAR10 Dataset (test split). 
Settings used are 𝑺 = 𝟐, where (𝑲𝟏, 𝑲𝟐, ) = (𝟑, 𝟓) 

Iteration Memory Max Min Average 
Standard 

Deviation 

0 0.9134 0.9134 0.9000 0.9041 0.0038 

1 0.9134 0.9098 0.9000 0.9043 0.0037 

2 0.9144 0.9144 0.9000 0.9048 0.0046 

3 0.9144 0.9128 0.9000 0.9048 0.0044 

4 0.9154 0.9154 0.9019 0.9075 0.0039 

5 0.9154 0.9144 0.9000 0.9091 0.0048 

6 0.9154 0.9138 0.9000 0.9094 0.0044 

7 0.9155 0.9155 0.9000 0.9099 0.0049 

8 0.9155 0.9142 0.9000 0.9102 0.004 

9 0.9155 0.9152 0.9000 0.9088 0.005 

10 0.9155 0.9145 0.9000 0.9086 0.0052 

11 0.9157 0.9157 0.9000 0.9095 0.0052 

12 0.9157 0.9146 0.9000 0.9087 0.005 

13 0.9157 0.9147 0.9000 0.9101 0.0046 

14 0.9157 0.9151 0.9020 0.9103 0.0037 

15 0.9157 0.9141 0.9000 0.9101 0.0042 

16 0.9157 0.9142 0.9000 0.9091 0.0046 

17 0.9178 0.9178 0.9001 0.9099 0.004 

18 0.9178 0.9155 0.9000 0.9105 0.0044 

19 0.9178 0.9157 0.9000 0.9098 0.0042 

 
B. CIFAR10 EXPERIMENTS 

For CIFAR10, experiments were performed with two 

different settings with 𝑆 =  2 𝑎𝑛𝑑 𝑆 =  3 . For 2-stage 

experiment, the number of nodes per stage were identical to 

the MNIST experiments i.e. (𝐾1, 𝐾2)  = (3, 5). Results for 

two-stage experiment are shown in figure 9 and table 6. 

Furthermore, experiments are conducted with three stage 

networks i.e. 𝑆 = 3 and number of nodes as (𝐾1, 𝐾2, 𝐾3)  =(3, 4, 5)  for stages 1, 2, and 3, respectively. The 

experiments with Tournament Select and impact of Flight 

Length are discussed further in subsection C and D.  

C. TOURNAMENT SELECT 

In order to select the target crow 𝑗 , the original CSA 

algorithm randomly selects a crow from entire population, 

and it is assigned to a crow 𝑖. 
However, as the experiments are conducted with different 

configurations, it is noted that this favors to the exploration 

and reduces the exploitation capability of CSA, hence 

convergence time increases. For target selection, tournament 

select method is used which is described in section II.B.3.and 

figure 5. The tournament select method is configured such 

that, a pool of 5 crows is randomly selected from the entire 

population and among them the best performing individual is 

selected as target crow i.e. crow 𝑗. Now, crow 𝑖, will follow 

crow 𝑗  and perform all the Binary CSA operations. This 

intuitively introduces a balance between exploration and 

exploitation such that it keeps randomness along with 

prioritizing well-performing individuals. Figure 12 (c) shows 

the search results of Binary CSA performed with tournament 

select method. When compared with vanilla Binary CSA 

(figure 12(b)), it shows improvement in the form of early 

convergence as well as improved accuracy for final solution. 

This improvement can be credited to slight improvement in 

exploitation, due to tournament-based target selection. 

D. DYNAMIC FLIGHT LENGTH DISTRIBUTION 

As discussed earlier, the original implementation of CSA 

uses a fixed range of flight length 𝑓𝑙𝑚𝑎𝑥 , and each crow in 

each iteration choses a flight length 𝑓𝑙𝑖,𝑖𝑡𝑒𝑟 within this range. 

While our proposed method introduces a dynamic 

distribution for range of flight length 𝑓𝑙𝑚𝑎𝑥𝑖,𝑖𝑡𝑒𝑟
 shown in Eq. 

(6). The 3-stage experiments are conducted with these two 

configurations. Empirical results have shown an 

improvement in accuracy and decrease in convergence time 

as shown in the figure 12 (d).  Binary CSA along with 

dynamic flight length distribution have outperformed genetic 

algorithm, vanilla Binary CSA and Binary CSA with 

Tournament Select as shown in figure 12 and figure 13. 

To further analyze the results, in-depth data is recorded 

about crow travel history during the complete run. The 

distance between the follower crow 𝑖  and target crow 𝑗  is 

measured at every iteration 𝑖𝑡𝑒𝑟  and then computed the 

distance they actually travelled as shown in figure 10. 

This analysis showed that if the range of flight length is 

fixed, the crow 𝑖 may fly a very long distance even when it is 

already very near to the target crow hence, missing the 

optimal solution. In an ideal scenario, the chosen flight 

length for a crow 𝑖 should not be too long when the distance 

between follower and target crow 𝑗 is small. Otherwise it will 

 
 
FIGURE 9. CIFAR10 results using Binary Crow Search Algorithm 
using two-stage representation 𝑺 = 𝟐, (𝑲𝟏 , 𝑲𝟐) = (𝟑, 𝟓). The orange 

and purple bars here represent the difference of baseline accuracy 
with maximum achieve accuracy in an iteration and minimum 
accuracy in an iteration, respectively. The blue line shows the 
progress of best achieve performance over the experiment. While 
green line shows that progress of average performance of each 
iteration. 
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just keep bouncing between locations instead of converging 

to an optimal solution.  

The impact of both choices for range of flight length on 

the test accuracy is also recorded. For this purpose, the 

overall average improvement in accuracy was computed for 

all crows in all iterations at various distances from their 

targets. Figure 11 shows improvement in accuracy along the 

y-axis for each choice of flight range at given distances. It is 

evident from figure 10 and 11 that for a given distance from 

the target, a crow may choose a different flight length based 

on the selected range of flight lengths. Eventually, they may 

land on different solutions and their results could be quite 

different. It may be concluded that employing dynamic range 

of flight length as per Eq. (6) has enhanced the performance 

of Crow Search Algorithm. 

IV. RESULTS AND DISCUSSION 

The proposed approach is tested on MNIST, CIFAR and 

Tiny ImageNet datasets. On the MNIST dataset, our 

algorithm was able to find the best possible architecture in 15 

iterations. In the first iteration, the maximum performing 

architecture achieved 99.62% accuracy. The maximum 

accuracy achieved on the 15th iteration was 99.82%. 

Although, experiments were conducted for more iterations, 

but CSA could not find any better architecture after 15th 

iteration as shown in figure 8. This is also evident in the 

Figure 8, that binary CSA is not greedy search like GA and 

PSO. When it finds a good architecture, it still explores other 

possible solutions that may have low performance but 

because of memory module, it remembers the best-found 

architectures and does not diverge while exploring. Table 5 

shows that in every iteration, CSA is keeping track of best-

found architectures in memory while it keeps exploring the 

search space. As it finds better performing architectures, 

memory is updated duly. 

In the case of CIFAR10, the results are presented for two 

experiments. One with 2-stage architecture space i.e. 𝑺 =𝟐, (𝑲𝟏, 𝑲𝟐) = (𝟑, 𝟓), which is identical to the settings used 

for MNIST. Cross validation accuracy is shown in figure 9. 

Second with 3-stage architecture space i.e. 𝑺 =𝟑, (𝑲𝟏, 𝑲𝟐,, 𝑲𝟑) = (𝟑, 𝟒, 𝟓) . In the 2-stage experiments, 

the convergence is achieved in the 18th iteration as shown in 

figure 9. The architectures found in the first iteration had 

satisfactory performance. The best-performing architecture in 

the first iteration achieved 91.34% accuracy while the 

minimum was at 90% accuracy which stayed same 

throughout the experiment except 4th and 15th iteration. 

These results show that better-performing architectures may 

not exist in 2-stage search space. To verify this conclusion, 

further experiments were conducted for 50 iterations, but 

CSA did not find better performing architectures (locations). 

2-stage experiment results for CIFAR10 are summarized in 

table 6 and 3-stage experiment results in table 7. To solve 

this problem, the search space is increased by using three-

stage architecture space which allowed us to generate further 

deeper architectures. Experiment results for 3-stage 

configuration are shown in figure 12. It can be seen that the 

accuracy improved significantly by increasing the depth of 

the search space. Figure 12 (a) shows the cross-validation 

accuracy of 93.75% achieved by applying genetic algorithm 

on the CIFAR10 dataset while keeping the same 

configuration as Binary Crow Search Algorithm. The binary 

CSA outperformed genetic algorithm significantly, in terms 

of higher accuracy and faster convergence. It is shown in 

Figure 12 (b), that Binary CSA surpassed the GA in 26th 

iteration and achieved final architecture with cross-validation 

accuracy of 94.88%. Extensive experiments were conducted 

with tournament select method and dynamic flight length 

distribution to verify that both modification work well with 

each other. Figure 12 (c) shows even faster convergence due 

to better selection of more promising targets to be followed. 

The Binary CSA with Tournament Select found an 

 

 
 
FIGURE 10. Comparison between constant range of flight length 
and dynamic range of flight length distribution (Eq. 6) of actual 
distance moved by 𝒄𝒓𝒐𝒘𝒊 against the distance from target 𝒄𝒓𝒐𝒘𝒋 
on CIFAR10 using two-stage configuration 𝑺 = 𝟑, (𝑲𝟏,  𝑲𝟐,  𝑲𝟑) =(𝟑, 𝟒, 𝟓). 
 
 

 
 
FIGURE 11. Impact of the choice of Flight Range on average 
improvement in test accuracy using constant flight length and 
dynamic flight length (Eq. 6). 
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architecture that outperformed the final solution found by 

GA only in 13th iteration whereas, it found an architecture 

that outperformed the solution by vanilla Binary CSA only in 

28th iteration. The final solution found by Binary CSA with 

Tournament Select achieved 96.25% accuracy. As discussed 

in the paper, our proposed distribution of flight length 

ensures that every flight made in the direction of target finds 

a solution in the vicinity of the target solution.  This addition 

in the algorithm resulted in even faster convergence.  The 

final version of Binary CSA that uses both tournament select 

and dynamic flight length outperformed GA only in 7th 

iteration, while it outperformed vanilla Binary CSA

Table 7. Comparison results on CIFAR-10 

Algorithm Test Error Evaluation Time (GPU Days) Model Size  

Genetic CNN [13] 6.25 16.6 156 M  

CNAS [50] 4.23 1 2.95 M  

LEMONADE II [33] 3.50 56 3.98 M  

Darts random [36] 3.49 - 3.16 M  

Darts [36] 2.83 4 3.4 M  

Binary Crow Search Algorithm (Ours) 5.12 6.41 8 M  

Binary CSA with Tournament Select (Ours) 3.75 5.16 8.8 M  

Binary CSA with Tournament Select and Dynamic Flight Length Distribution (Ours) 3.48 3  8 M  

            
(a) Genetic Algorithm (b) Binary Crow Search Algorithm 

 

            
(c) Binary Crow Search Algorithm with Tournament Select Method for 

target Crow selection 

(d) Binary Crow Search Algorithm with Tournament Select and 

Dynamic Flight Distribution using Eq. 5 
 
FIGURE 12. Comparison of cross-validation accuracy on CIFAR10 using (a) Genetic Algorithm (b) Binary CSA (c) Binary CSA with Tournament 
Select and (d) Binary CSA with Tournament Select and Dynamic Flight Distribution. All above used three-stage configuration 𝑺 = 𝟑, where the 
number of nodes per stage are (𝑲𝟏,  𝑲𝟐,  𝑲𝟑) = (𝟑, 𝟒, 𝟓). The orange and purple bars here represent the difference of baseline accuracy with 

maximum achieve accuracy in an iteration and minimum accuracy in an iteration, respectively. The blue line shows the progress of best achieve 
performance over the experiment. While green line shows that progress of average performance of each iteration. 
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in 27th iteration and outperformed the Binary CSA with 

Tournament Select only in 33rd iteration by achieving 

96.52% accuracy and sustained this performance until the 

final iteration. Comparison results of different versions of 

Binary CSA along with Genetic Algorithm are summarized 

in table 8 and figure 13, such that the iteration number at 

which each algorithm surpasses the highest achieved 

accuracy of rest of the algorithms is mentioned. Comparison 

results of some previous NAS methods on CIFAR10 are 

presented in the table 7. While table 8 shows the results 

based on the number of iterations each method took to 

outperform other variations. Binary CSA has shown better 

performance in terms of test error as compared to previous 

methods. However, CNAS [50] has achieved similar 

performance with less number of parameters. Binary CSA 

can achieve better results in the terms of a smaller number of 

parameters as well if applied to a more efficient search space.  

For now, search space is the bottleneck of our algorithm as it 

is not possible to find an architecture if it does not exist in the 

search space.  

Search results on CIFAR-100 are presented in table 9, 

where Binary CSA has outperformed previous algorithms by 

a significant margin however, the model size of architecture 

searched by Binary CSA is approximately 3 times larger than 

the one found by CNAS which again is the limitation on the 

end of search space. Table 10 presents medium-scale transfer 

experiments. For medium-scale transfer experiments on Tiny 

ImageNet, the BCSA population is initialized with the 20 

best performing individuals found in the last iteration of 

CIFAR100 search experiments. This helped in saving many 

GPU hours. Searching for architectures on small datasets and 

then instead of re-using them as previous methods have done, 

it is proposed to initiate the population using already 

searched top-performing architectures. The results are 

comparable to state-of-the-art however, the proposed 

approach does not involve any meta-architecture as required 

by other state-of-the-art methods. Finally, the test error rate 

results are presented on all the datasets as shown in table 11. 

In the future, Binary CSA can be integrated with a more 

sophisticated search space to generate more efficient 

architectures.  

Such a system can be implemented to provide completely 

automated AI solutions for various applications such as 

automatic AI system training from data collection by users of 

mobile applications. The data may belong to a wide range of 

applications such as plant disease classification, accidental 

car damage attribution, used furniture and appliances 

condition evaluation etc. 

Table 8. Comparison results of Genetic CNN along with different versions of Binary CSA based on iterations to outperform the preceding algorithm. 

Algorithm 

(Iter – Max ACC) 

GA 

(50 - 93.75 %) 

Vanilla BCSA 

(41 - 94.88 %) 

BCSA-TS 

(44 - 96.25 %) 

Vanilla BCSA 26 – 93.78 % 41 – 94.88 % - 

BCSA with TS 13 – 93.88 % 28 – 94.92 % 44 – 96.25 % 

BCSA with DFL 07 – 93.81 % 27 – 95.26 % 33 – 96.52 % 

 
Table 9. Comparison results on CIFAR-100 

Algorithm Test Error Evaluation Time (GPU Days) Model Size 

Genetic CNN [13] (transferred from CIFAR10) 25.12 - 156 M 

CNAS [50] 22.24 1 3.67 M 

Darts [36] 23.22 12 3.03 M 

AmoebaNet-BC [51] 15.80 3150 34.9 M 

Large-scale Evolution [52] 23.70 2600 40.4 M 

NASNet-A [34] 16.03 1800 50.9 M 

PNAS [35] 17.63 225 3.2 M 

NAONet [53] 14.75 200 128 M 

Neuro-Cell-based Evolution [54] 21.74 1 5.3 M 

GDAS(FRC) [37] 18.13 0.17 2.5 M 

EENA [32] (transferred from CIFAR-10) 17.71 - 8.49 M 

Binary CSA with Tournament Select and Dynamic Flight Length Distribution (Ours) 15.64 4.166 10 M 

Table 10. Comparison results on Tiny ImageNet 

Algorithm Test Error Evaluation Time (GPU Days) Model Size 

CNAS [50] 36 3.5 3.67 M 

Darts [36] 38.6 3.75 3.03 M 

Binary CSA with Tournament Select and Dynamic Flight Length Distribution (Ours)+ 34.43 3 13 M 

+ top performing architectures on CIFAR100 were used to populate the first generation 
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Table 11. Classification error rate for Binary Crow Search Algorithm on different datasets  

Dataset Architecture Test Error (%) Evaluation Time (GPU Days) Model Size 

MNIST* 'S_1': '100', 'S_2': '010000' 0.18 0.8 8 M 

CIFAR-10† 'S_1': '010', 'S_2': '011010', 'S_3': '1000000010' 3.48 3 8 M 

CIFAR-100† 'S_1': '101', 'S_2': '001100', 'S_3': '0111010001' 15.64 4.166 10 M 

Tiny-ImageNet†+ 'S_1': '111', 'S_2': '100111', 'S_3': '1010100110' 34.43 3 13 M 

* 2-stage network representation, † 3-stage network representation, + top performing architectures on CIFAR100 were used to populate the first generation 

 

The central system for each application may automatically 

construct a deep learning model that suites the data 

provided by users e.g. labeled pictures of leaves, car 

scratches and damaged furniture. Hence no technical 

knowledge of machine learning and artificial intelligence 

will be required to deploy each time a new application is 

required. The binary crow search algorithm will 

automatically find a deep learning model that best suites the 

data-based application. 

V. RESULT ANALYSIS 

Our proposed approach was able to find comparable 

architectures to other NAS methods. However, there is one 

thing to be noticed that the size of models found by our 

approach is larger than some of the NAS approaches. It is 

to be noted that the number of parameters (model size) or 

the type of model that can be produced is solely dependent 

upon the search space design. As far as the comparison of 

parameters is concerned, our approach uses the same search 

space as used by Genetic CNN. Models found by BCSA 

have significantly small number of parameters, i.e. the 

model found for MNIST data has only 8 million parameters 

whereas Genetic CNN achieves the best accuracy with 156 

million parameters, similarly for CIFAR10, CIFAR100 and 

Tiny ImageNet, BCSA outperforms Genetic CNN in terms 

of accuracy, model size and faster convergence to optimal 

solution. As for the other NAS methods, such as Darts and 

CNAS, our method achieves slightly better accuracy, but 

the model size is larger. Figure 13 presents the amount of 

trainings required by one approach to outperform the other 

approaches. It is clear that, BCSA with flight length 

distribution algorithm along with tournament select 

significantly outperforms BCSA with original flight length 

and target selection methods. Moreover, to validate the 

performance of BCSA and its variants, a statistical analysis 

is provided in the next section.  

1. EFFECT OF TOURNAMENT SELECT AND DYNAMIC 
FLIGHT LENGTH 

In order to validate the results, several experiments were 

performed to conduct statistical analysis about the 

improvement in positive changes of the fitness for 

candidate solutions in an experiment compared to another. 

For this purpose, difference in improvement is computed 

for each individual/crow in each generation/iteration in 

different experiments as shown in table 12.  

 

Then each experiment is compared to another and 

counted the solutions explored in the search space with 

better and worst fitness in a pairwise manner to roughly 

estimate the effects of choosing each variation over another 

according to the statistical results. The overall effect of 

choosing each algorithm and its operations is summarized 

in table 13. In order to verify the significance of each 

action, i.e. BCSA is significantly better than GA, 

Tournament Selection is better than using Random 

Selection and, Dynamic Flight Length improves the 

performance  of BCSA,  two tailed  Wilcoxon  Signed Rank 

tests were performed, a nonparametric statistical analysis 

on our experiment results. The null and alternative 

hypotheses for these tests are: 

 

Test 1: GA vs BCSA Vanilla 𝑯𝟎: The new solutions computed using follow operation 

of BCSA do not show significant improvement compared 

to overall exploration done using crossover and mutation 

operations of GA. 𝑯𝟏:  BCSA’s follow operation demonstrates significant 
improvement for overall explored search space locations. 

 

 
 

 
FIGURE 13. Comparison of convergence rate of different versions 
of Binary CSA along with GA. The colored dot represents the 
iteration number at which an algorithm outperformed other 
algorithms. For example, a blue dot on green line represents the 
iteration at which vanilla CSA outperformed the best accuracy of 
GA. It can be seen that Binary CSA DFL found GA equivalent 
architecture in 7 iterations which shows a significant improvement 
in convergence rate. 
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Table 12. Improvement in fitness of each individual in the final iteration (𝒊𝒕𝒆𝒓 = 𝟐𝟎) of each experiment.  

Individual / 

Crow GA BCSA (Vanilla) BCSA (TS) BCSA (Dynamic FL) 

0 
0.0096 -0.0016 -0.003 0.0038 

1 
0.0072 0.0011 0.004 0.003 

2 
0.0044 -0.0005 0.0069 -0.0006 

3 
-0.0038 0.0012 -0.0008 0.001 

4 
-0.0106 -0.0007 0.003 0.0002 

5 
-0.0033 0.0009 0.0067 0.002 

6 
0.0121 0.0015 0.0075 0.001 

7 
0.0027 0.0014 0.0063 0.0018 

8 
-0.0009 0.0005 0.0119 0.0044 

9 
-0.0003 0.0006 0 0.0024 

10 
-0.0017 0.0008 -0.002 -0.001 

11 
0.0004 -0.0008 0.0025 0.0064 

12 
0.0135 0.0005 0.0066 0.0012 

13 
0.0041 0.0025 0.0079 0.0014 

14 
0.0042 0.0004 0.0032 0.0046 

15 
0.0027 0.0022 -0.0007 -0.0002 

16 
-0.0023 -0.0003 0.0027 -0.0006 

17 
-0.0095 0.0003 -0.0028 0.0002 

18 
-0.0066 -0.0007 0.0041 0.0038 

19 
-0.0049 -0.0012 0.0033 -0.0004 

 
 
Table 13. Effects of choosing BCSA and its each variation against GA 
and each other in terms of total count of Better and Worst changes in 
the fitness of all individuals/crows in all the generations/iteration of the 
experiment. 

Comparison Pair Better Worst 

GA – BCSA (Vanilla) 236 (59.0 %)  164 (41.0 %)  

BCSA Vanilla – BCSA TS 244 (61.0 %)   156 (39.0 %)  

BCSA TS – BCSA Dynamic FL 246 (61.5 %)   154 (38.5 %)  

 

Table 14. Wilcoxon Signed Rank test results show that in each 
comparison pair the latter introduces significant improvement in the 
performance. Here W+ is the total rank score of the positive changes, 
W- is the total rank score of the negative changes. 

Tests 𝑾 + 𝑾 − 𝒁𝒔𝒕𝒂𝒕 𝒑-value Result 

1 46316 -33884 2.686 0.0491 Reject 𝑯𝟎 

2 48165 -32035 3.485 0.0471 Reject 𝑯𝟎 

3 48373 -31827 3.575 0.0487 Reject 𝑯𝟎 

Test 2: Random Select vs Tournament Select 𝑯𝟎: Target selection using Tournament Select in BCSA 

has no impact on the likeability of reaching a better 

location as compared to the Random Select. 𝑯𝟏: Target selection using Tournament Select in BCSA 

significantly improves the likeability of reaching a better 

location as compared to using Random Select. 

Test 3: Fixed Flight Length vs Dynamic Flight Length 𝑯𝟎: Choosing a range of flight length dynamically based 

on the distance from target has no impact on the 

likeability of reaching a better location as compared to a 

fixed range of flight length. 𝑯𝟏: Choosing a range of flight length dynamically based 

on the distance from target significantly improves the 

likeability of reaching a better location as compared to 

using a fixed range of flight length. 

The results for these tests are shown in table 14. 𝒁𝒔𝒕𝒂𝒕  is 

computed using large-sample approximation formula Eq. 

(7) for Wilcoxon Signed Ranked Test. The 𝑝 -value is 

calculated using the normal approximation. The null 

hypothesis 𝑯𝟎 is rejected if 𝒁𝒔𝒕𝒂𝒕> 1.96 and 𝑝-value is less 

than 𝜶 = 𝟎. 𝟎𝟓.  

 𝒁𝒔𝒕𝒂𝒕 =  𝑾 −  𝒏′ (𝒏′ + 𝟏)𝟒√𝒏′(𝒏′ + 𝟏)(𝟐𝒏′ + 𝟏)𝟐𝟒           (7) 

VI. CONCLUSION 

The study presented in this paper suggests the use of Binary 

Crow Search Algorithm for Neural Architecture Search. In 

this study, it is shown that Binary CSA based neural 

architecture search can achieve comparable accuracy in 

significantly smaller number of trainings. Furthermore, 

statistical analysis is performed using Wilcoxon signed rank 

test and the performance of BCSA with GA and variants of 

BCSA is compared. The results of Wilcoxon signed rank test 

prove that the improvement introduced by BCSA and its 

variants is significantly better than other alternatives as 

shown in table 14. Current NAS approaches do not use any 

domain knowledge for finding optimal solution. A search 

method which exploits domain knowledge will intuitively 

perform better than a blind method which does not use any 

domain knowledge. In future, this problem can be addressed 

by introducing guided search methods instead of blind 

search. The algorithm responsible for searching for neural 

networks should understand the impact of hyperparameters, 

layers, blocks, different types of activation functions, and 

architectural choices prior to training and evaluating them. 

Moreover, NAS can be formulated as a multi-objective 

optimization problem, which can minimize error and model 

size simultaneously. BCSA can be used with other more 

sophisticated search spaces such as NASNet or DAG based 

search spaces. Another multi-objective scheme can be 

devised which can search for cell architecture as well as, 

meta-architecture (currently manually designed in cell-based 

search spaces) which will help reduce the need for manual 

interventions.  
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