
This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2020.3031599, IEEE Access

VOLUME XX, 2017 1

Date of publication xxxx 00, 0000, date of current version xxxx 00, 0000.

Digital Object Identifier 10.1109/ACCESS.2017.Doi Number

Image Classification Based on Automatic
Neural Architecture Search using Binary Crow
Search Algorithm

MOBEEN AHMAD, MUHAMMAD ABDULLAH, HYEONJOON MOON, SEONG JOON YOO,
AND DONGIL HAN (Member, IEEE)
Department of Computer Engineering, Sejong University, Seoul 05006, South Korea

Corresponding author: Dongil Han (dihan@sejong.ac.kr)

This work was supported in part by the National Research Foundation of Korea Grant funded by the Korean Government under Grant NRF-

2017R1D1A1B03028394, and in part by the Institute of Information and Communications Technology Planning and Evaluation (IITP) Grant funded by the

Korean Government (MSIT), Development of AI-Convergence Technologies for Smart City Industry Productivity Innovation, under Grant 2019-0-00136.

ABSTRACT Neural architectures have accelerated the advancement in various domains by enabling

automatic pattern detection, image classification, audio recognition, and face recognition etc. However,

they are computationally expensive to design and expert knowledge in various domains is required. In this

paper, a swarm intelligence algorithm is proposed to search for novel architectures without human

intervention that can achieve comparable performance to those of human-designed architectures. This work

is inspired by current neural architecture search approaches based on reinforcement learning and genetic

algorithm. However, not much attention is paid towards swarm intelligence metaheuristics-based neural

architecture search. A framework is proposed for automatically designing neural architectures based on a

swarm intelligence metaheuristic: Crow Search Algorithm. First, Crow Search Algorithm is integrated with

binary network representation. To make it compatible for Neural Architecture Search, the original distance

metric is replaced with hamming distance-based similarity measure. Second, the tuning parameters of Crow

Search Algorithm are reduced by replacing the static flight length parameter with our dynamic flight length

distribution algorithm. Third, the target selection method (random selection) is replaced by tournament

select method. The proposed framework is used to search for architectures on MNIST, CIFAR10, and

CIFAR100 datasets and achieved 0.18%, 3.48%, and 15.64% test error, respectively. Furthermore, small-

scale transfer experiments are conducted to search architectures for Tiny ImageNet and achieved 34.43%

test error. Nonparametric statistical analysis is performed to validate the impact of each modification in

improving the quality of search space exploration. The proposed framework has achieved comparable

performance with the state-of-the-art approaches, with a comparatively simpler approach and minimum

human intervention. The proposed framework can be used to develop completely automated systems for

designing architectures for various data-based classification applications.

INDEX TERMS Neural architecture Search, hyperparameter optimization, AutoML, crow search

algorithm, metaheuristic, image classification, deep learning

I. INTRODUCTION

Deep learning models have solved various practical problems

in a wide range of areas, such as image recognition, speech

recognition, reinforcement learning and many more.

However, they are hard to design, mainly because of

underlying complexities and their inherent dependency on a

bunch of hyperparameters. Currently, neural networks are

hand-engineered and then tested rigorously with several

values for the hyperparameters to get the best performance

on a given task. In the early days of machine learning, data

features were hand-engineered by experts to identify unique

patterns and structures which were then used to train models.

With the inception of neural networks, it became possible to

let the algorithms decide which features are important for a

specific task. Neural networks extract features on different

abstraction levels depending upon the network depth. So, it is

not wrong to say that neural networks have paved a path

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2020.3031599, IEEE Access

VOLUME XX, 2017 2

towards automating the machine learning to an extent.

Designing a neural network takes expert knowledge such as

high-level expertise in mathematics, statistics, and algorithm

design. Engineers are required to design an accurate and

computationally low-cost architecture for each classification

problem. After the design of Neural Network is finalized,

engineers iteratively experiment with cumbersome

hyperparameter values to tune the model for best possible

performance. This practice of finding the optimal

hyperparameters for a specific model can be automated with

the help of some search algorithms, thus called

Hyperparameter Optimization (HPO). Previously, most

widely used strategy for HPO was a combination of grid

search and manual search [1]. Later Bergstra et al. [2]

proposed random search for HPO, which proved to be

efficient and more plausible as compared to grid and manual

search. However, these approaches are extremely expensive

as they have small chance to just stumble upon a set of

hyperparameters that will work for a given problem. Also, it

will spend a lot of time just wastefully training on under-

performing choices. Another technique explored for HPO is

Bayesian optimization [3], which outperformed both manual

and random search. It builds a probabilistic model of the

function mapping from hyperparameter values to the

objective evaluated on a held-out validation set. More

recently, there are gradient-based approaches for HPO.

Maclaurin et al. [4] proposed to compute exact gradients of

cross-validation performance with respect to all

hyperparameters by demonstrating the applicability of

gradient-based HPO to high-dimensional problems. For

example, simultaneously optimizing the parameter

responsible for weight initialization for each layer, the 𝐿2 penalty for each parameter in logistic regression, the

learning rate for each iteration and each layer in a neural

network. Franceschi et al. [5] proposed a method for forward

and reverse gradient based HPO. This method uses a similar

technique as [4] for reverse mode, following a classical

Lagrangian approach used to derive backpropagation

algorithm [6]. Furthermore, they propose that the forward-

mode procedure is suitable for real-time hyperparameter

optimization. Recent studies [7] on gradient based HPO has

shown robust performance and have outperformed previous

Bayesian optimization techniques. However, hyperparameter

optimization alone is not a complete solution for machine

learning automation, as it still requires a human-engineered

network architecture to begin with.

For a Convolutional Neural Network (CNN), a typical

neural network for image classification, it may take a long

time to iteratively design, train, test, validate and finalize the

model before applying any HPO technique. So, there must be

a method to automatically produce neural network

architectures. This dates back to 1988 when Fernando et al.

[8] proposed self-organizing neural networks (SONN) for the

problem of model identification. SONN was a flexible

structure capable of adjusting its structure depending upon

input data. Neural Architecture Search (NAS) is a domain

which specifically aims to solve this problem by employing a

technique to generate architectures automatically. NAS

methods mainly comprise of (i) search-based, (ii)

reinforcement learning-based, or (iii) gradient-based methods

to automate the design of Neural networks. Elsken et al. [9]

has categorized NAS approaches based on three dimensions

namely, (i) search space, (ii) search strategy and (iii)

performance estimation strategy. The search space defines

what kind of networks are discoverable and directly

translates to the architecture’s complexity level. Some of the

recent state-of-the-art architectures include complex blocks

having unique and modern layers. ResNet [10] for instance,

consists of Residual block, which implements skip

connections which have shown to mitigate gradient

vanishing. Then, there are InceptionNet [11], SENet [12],

etc. introducing further complex architectures. An

architecture that can perform up to the par with such

architectures needs to be adequately complex. Such an

architecture can only be designed if the search space is

complex enough. Usually, search spaces are designed to be

as inclusive as possible which causes them to be hyper-

dimensional. An efficient yet effective search strategy should

be devised to traverse a hyper-dimensional search space. This

strategy revolves around the age-old exploration-exploitation

dilemma. Finally, there must be a performance estimation

strategy to evaluate the discovered architectures. Usually, in

the case of NAS, the evaluation strategy consists of some

machine learning metrics (validation loss or validation

accuracy etc.) as fitness function for search algorithm.

A. SEARCH SPACE

The search space dictates the kind of architectures that can be

designed (generated) by the said NAS framework. A search

space includes a finite set of networks that can be generated.

A search space is defined such that a network N ∈ 𝑑

dimensional search space.

Different kinds of networks can be categorized based on

their underlying design-complexity. A rather simple

architecture design is a sequential or chain-like architecture.

In such networks, layers are connected in a sequential

manner such that layer 𝐿𝑖 receives input from layer 𝐿𝑖−1 and

sends output to layer 𝐿𝑖+1 as shown in Figure 1(a). Then,

there are some network architectures that are not as simple as

chain-like architectures. Most of the modern state-of-the-art

architectures have multiple paths as shown in the Figure 1(b).

In order to incorporate such modern designs in NAS, the

search space needs to be designed with consideration for

modern design elements like skip connections. Modern NAS

methods use search spaces capable of implementing modern

design elements like skip connections, residual or identity

blocks, etc. In order to construct a search space which

includes such type of multi-path architectures, Genetic CNN

[13] has proposed a binary encoding scheme which will be

discussed in later section. A search space which includes

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2020.3031599, IEEE Access

VOLUME XX, 2017 3

complex architectures needs to be very complex, as a result

such a space will be very large to efficiently search for. One

way to reduce search space is to encode some information

about what kind of human-made architectures generally

perform well. One such example is constructing a meta-

architecture by using cells or motifs in a recursive manner

[14]. Then the architecture for these cells is searched for.

However, this introduces human bias which is a hindrance in

automation of machine learning. Besides automation, this

will simply divert the human effort from basic architecture

design to meta-architecture design.

The intuition behind cell-based search space is that, almost

all well-performing human-engineered neural architectures

are usually constructed by repeating motifs or blocks. So,

instead of searching for full architectures, Zoph et. al [14]

proposed NASNet search space, which finds generic cells

that can be repeated in series and should also be scalable

further to larger datasets. Instead of searching for whole

networks, they search for two kinds of cells, (i) normal cell -

that preserves the spatial dimensions of input and a (ii)

reduction cell - that reduces the spatial dimensionality.

Finally, they manually stack these cells in a predefined

manner. Reinforcement learning based search method is

employed for finding such generic cells. These cells can be

constructed of convolution layers, non-linearities, etc.

Another approach could be to fix the architecture of motifs

and look for meta-architecture. A recent work [15] proposed

to find meta-architectures by searching for configurations of

fixed architecture blocks such as VGG Block, Residual

Block, Convolutional Block, etc. However, as this study is

aimed to progress the automation of machine learning,

methods which include minimum human intervention are

explored. To enable the search algorithms, traverse the search

space, the search space needs to be represented in a

structured way using a sophisticated encoding scheme.

1) ENCODING SCHEMES

To implement any metaheuristic algorithm, there are mainly

two pre-requisites, (i) a representation of the solution

domain, (ii) a heuristic or objective function (cost). In this

section, representation of the solution domain is discussed.

Solution domain can be represented by employing an

encoding scheme. Genetic CNN [13] uses binary encoding

scheme, where a network structure is represented by a fixed-

length binary string. This scheme can be applied to network

structures which can be divided into stages e.g. Deep

Residual Networks [10] and VGG [16]. Furthermore, in each

stage 𝑖, there are several numbered nodes where each node

corresponds to a convolutional layer. There are two default

nodes in each stage i.e. input and output nodes. The input

node receives data from previous stage, performs

convolution and sends to all the nodes without a predecessor,

and output node takes input from all the nodes without any

successor and passes on to the next stage. Architecture of a

single stage is shown in Figure 2. The intermediate nodes and

their underlying connections are represented as a binary

encoded string. Genetic CNN explores the search space of

binary strings to form a suitable combination of connection

between nodes. The connections are only allowed from a

lower-numbered node to a higher-numbered node. Recently,

Ahmad et al. [15], proposed an encoding scheme based on a

search space consisting of fixed blocks most commonly used

in modern CNNs e.g. residual block [10], Convolution block

etc. They fixed the structure of individual blocks and

formulated the search strategy to look for architectures by

discovering different configurations or meta-architectures to

arrange these blocks. This study follows the work of [13] and

designs the search space by dividing network architectures in

multiple stages.

(a) (b)

FIGURE 1. (a) Sequential (chain-like) Architectures. (b) Modern architectures can have multiple paths.

Li

Li-1

Li+1

Input

Output

L3

L1

L6

Input

L8

L2

L4

L5

L7

Output

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2020.3031599, IEEE Access

VOLUME XX, 2017 4

B. PERFORMANCE ESTIMATION STRATEGY

The performance estimation strategy evaluates the

performance of a possible CNN from its design. Performance

estimation strategy concerns about objective function to be

optimized. In the case of NAS, performance can be estimated

by using several machine learning (deep learning) metrics.

Most commonly used metrics are training accuracy,

validation accuracy, training loss and validation loss. This

work is based on optimizing the search strategy using these

typical machine learning metrics.

C. SEARCH STRATEGY

A search strategy focuses on maximizing the heuristic

function. A search strategy is directly dictated by the search

algorithm employed to find the solution. Some of the known

search strategies come under the umbrella of evolutionary

methods, reinforcement learning (RL) and gradient-based

methods.

Evolutionary Algorithms based Neural Architecture

Search

Evolutionary search algorithms follow a process inspired

by the biological concept of evolution where they try to

evolve candidate individuals over several generations using

concepts like mutation and cross-over etc. These algorithms

have gained attraction for their proven efficiency for solving

optimization problems. Some of the evolutionary

metaheuristics are discussed in this section. Genetic

Algorithm (GA) [17], takes its inspiration from natural

process of evolution using basic operations such as mutation

and cross-over. With the help of these operations, good

performing traits are passed over to the next generations,

eventually improving the performance of overall population

over a certain number of iterations. Particle Swarm

Optimization (PSO) [18] is a swarm intelligence algorithm,

where the particles (potential solutions) move in the search

space and improve their position iteratively depending on

their individual positions as well as swarm’s overall position.
PSO faces a problem when several objectives are conflicting

with each other. Many Objective Particle Swarm

Optimization (MOPSO) [19] tried to solve this problem by

using a set of reference points dynamically determined

depending upon the search process. Harmony Search (HS)

[20] is based on the concept of harmony in music, and its

main parameters are memory, pitch adjusting and

randomization. Differential Evolution [21] is a global

numerical optimization metaheuristic based on the mutation

operation. Recently, there has been a trend of nature-inspired

metaheuristics to solve optimization problems in various

domains. Seouza et al. [22] proposed a modified version of

crow search algorithm for feature selection where they

reduce the continuous search space to discrete search space

by restricting the movement of crows to only discrete

lcoations. Nowdeh et al. [23] proposed to use matrix moth-

flame algorithm for optimal reconfiguration of distribution

networks and placement of solar and wind renewable

sources. Jahannoosh et al. [24] proposed a new meta-

heuristic algorithm for reliable and cos-effective designing of

energy systems. Naderipour et al. [25] used grey wolf

optimizer algorithm for optimal energy system design.

Firefly and harmony search algorithms are also used for

optimal power damping [26]. Genetic algorithm is proposed

to optimize granular neural network parameters for pattern

recognition [27] such as bird swarm optimization [28] for

heart-rate classification, firefly algorithm [29] for

optimization of modular granular neural networks and grey

wolf optimizer [30] for optimizing granular neural networks

for human recognition. Sanchez et al. [31] proposed to use

particle swarm optimization with its fuzzy dynamic

parameter adaptation to design modular granular neural

network architectures. In the domain of NAS, Genetic CNN

FIGURE 2. A representation of a stage having 𝒏 + 𝟏 number of nodes. Connections among these nodes can be searched by using Crow Search
Algorithm or Genetic CNN.

Input node Output nodenodennode0

noden-3

node2

Stage i

node3

node1

noden-2

noden-1

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2020.3031599, IEEE Access

VOLUME XX, 2017 5

[13] uses an evolutionary search strategy on a binary encoded

search space such that a set of candidate models are

initialized in the form of a fixed size binary string, either

randomly or by using Bernoulli distribution. Then these

candidate individuals undergo genetic crossover by selecting

a partner each and produce a child individual. Based on

crossover probability and crossover rate child individual

inherits a combination of genes from both parent candidates.

These individuals may undergo mutation procedure based on

mutation probability, which results in randomly flipping the

bits in individual’s genes in accordance with the mutation
rate. Finally, these individuals become candidate for next

generation and are evaluated for their fitness for the objective

function on a pre-defined dataset. EENA [32] proposes to

efficiently evolve populations by modifying crossover and

mutation operations of genetic algorithm. Amoeba-Net was

the first to outperform human design networks on ImageNet.

They apply a modified evolutionary algorithm on NASNet

[14] search space. LEMONADE [33] is based on

Lamarckian evolution and applies network morphisms

operations to produce offspring which help in reducing the

training time of individual networks. Furthermore,

LEMONADE formulates the NAS as a multi-objective

problem which simultaneously minimizes the test error and

model size.

Reinforcement Learning based Neural Architecture

Search

Among Reinforcement learning based methods, NAS

using reinforcement learning [14] and NASNet [34] are

popular methods. In [14], it is proposed to use a RNN as

controller which can design a string to specify architectures,

however, this requires extensive computational power. In

order to reduce the required computation, NASNet

introduces a new search space which also allows

transferability from one dataset to another. They achieve this

by limiting the search space to a cell. They search for two

cells, namely, normal cell and reduced cell. Normal cell

maintains the dimensionality across input and output while

reduction cell reduces the dimensionality. Furthermore,

PNAS [35] utilizes the same search space and propose a

method to progressively search for architectures in increasing

order of complexity. Reinforcement learning based methods

aim to reduce the search space by focusing on architecture

search for small cells or units which can be further repeated

based on a meta-architecture. The meta-architecture is

designed manually depending upon the dataset. Cell-based

architecture search methods help reduce the search space

because they only search for cell architecture. This also

allows to re-use the cells for different architectures.

However, cell-based architecture search methods divert

human effort from global architecture search to meta-

architecture search and thus cannot substitute fully automated

NAS. Reinforcement Learning based methods are

computationally demanding even though they have achieved

state-of-the-art performances.

Differential Evolution based Neural Architecture Search

Among Differential evolution methods, DARTS is quite

notable for its less computational requirement and simplicity.

Liu et al. [36] proposed a differentiable architecture search

(DARTS) method which can achieve up-to-the-par

performance with orders of magnitude less computational

resources. This method is also simpler than RL based

methods as it does not involve controller. GDAS [37]

proposes to use a differentiable architecture sampler and

applies it to directed acyclic graphs (DAGs).

In an effort to reduce the search space both RL based

methods and DARTS search for cell architectures. However,

this study emphasizes on reducing human effort by

employing search methods which look for complete

architecture, not only a block or cell which has to be arranged

and placed in a pre-defined manner. In this way, the problem

is formulated to improve the search strategy instead of

reducing search space.

Among evolutionary algorithms, swarm optimization

algorithms are not yet explored in the domain of NAS. A

swarm intelligence algorithm named Crow Search Algorithm

(CSA) is proposed by Askarzadeh et al. [38]. CSA is inspired

by the methodology used by crows for seeking, hiding their

own food, and stealing other’s food. CSA replaces concepts
like (i) mutation and (ii) crossover with (i) following the

better performing candidate (ii) flying to random locations.

CSA also incorporates a memory associated with individual

crow which also sets apart from other search algorithms. In

GA, in every generation new offspring are produced

however, in CSA, crows are produced once at the time of

initialization. Individuals update their memory as they

explore the search space.

CSA resembles some of the previous algorithms e.g. GA,

PSO and HS in many aspects. Some are briefly mentioned

here. It creates an initial population of seekers to explore the

search space. It is also not a greedy algorithm. Unlike GA,

CSA includes memory unit to keep track of well-performing

solutions found during exploration which is also the case

with PSO and HS. In order to keep a balance between

exploration and exploitation, CSA uses randomness and

gradients [39]. CSA has only 2 decision parameters: flight

length and awareness probability as compared to 4, 3 and 6

decision parameters required for PSO, HS and GA,

respectively. This makes it much easier to optimize CSA as

compared to other search algorithms.

Among previous evolutionary algorithms as mentioned

before GA is well-explored in the NAS domain. Many

studies have suggested the use of CSA because of its

characteristics such as less parameter settings, easy

implementation, and relatively strong development capacity

in the search process [40]. It has already been applied to

solve several engineering problems. In [38], authors solved 6

constrained engineering problems using CSA and it

outperformed Genetic Algorithm and Particle Swarm

Optimization. In [41], CSA was applied to power distribution

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2020.3031599, IEEE Access

VOLUME XX, 2017 6

network to find the optimal position to place the capacitors

and their sizes, and experiments show that solutions found by

CSA were accurate than other search methods. In computer

vision domain CSA is also used by [42] to find the threshold

for image segmentation. This helped in avoiding premature

convergence and achieving automatic MRI segmentation.

Recently, CSA is also applied for finding input weight of

Extreme Learning Machine (ELM) and finding the threshold

values for hidden layers [43]. Chiwen et al. [40] proposed

and improved CSA based on neighborhood search of non-

inferior solution set and applied on pressure vessel design

problem and tension-compression spring. Xiaxio et al. [44]

proposed an improved CSA based on spiral search

mechanism and applied to engineering optimization

problems. However, Crow Search Algorithm (CSA) was not

explored in NAS domain until recently. In [45], Abdullah et.

al proposed Crow-search algorithm for hyperparameter

optimization for image classification on MNIST and CIFAR-

10 datasets. According to results, CSA outperformed GA

with slightly improved results and in a smaller number of

total trainings.

This work aims to develop a neural network search

framework that is able to find complex architectures without

needing any meta-architecture. For this purpose, Crow

Search Algorithm (CSA) [38] is implemented on Binary

encoded search space proposed by Genetic CNN [13]. The

adaptation to binary search space to CSA has various

constraints, assumptions, and modifications. Therefore, this

new variation of CSA is named Binary CSA to distinguish it

from original implementation of CSA. This study suggests

applying Binary CSA on top of architecture search paradigm

for complete architecture design search. This paper will

compare the performance of two nature-inspired algorithms,

Firstly, Genetic Algorithm (GA), a well-renowned algorithm

based on evolution mechanics where every generation tries to

improve individuals. Secondly, Crow Search Algorithm,

which is based on lifestyle of crows, where they try to find

food by following other crows and memorize their location

of finding the food, eventually converging to the best

possible location. Furthermore, some enhancements in

Binary CSA are introduced for better convergence rate,

which are discussed in later sections. In the next subsection

crow search algorithm is discussed from the viewpoint of

neural architecture search.

D. CROW SEARCH ALGORITHM

Crow Search Algorithm (CSA) is a population-based swarm

intelligence algorithm, inspired by intelligent behavior of

crows for hiding their food and following other birds to steal

their food [38]. Crows watch other birds, observe where the

other birds hide their food, and steal it once the owner leaves.

The principles of CSA are listed as follows:

• Crows live in the form of flock (group).

• Crows hide their food at a good place.

• Crows memorize their hiding places.

• Crows follow each other to do the thievery.

• Crows use their experience to protect their catch.

• Crows memorize the hiding places other crows.

As crows are thieves themselves, they know well the

behavior of a thief and act accordingly to avoid being the

victim. When a crow follows another crow there is a

(a)

(b)

FIGURE 3. (a) If the value of flight length (𝒇𝒍) is selected smaller

than the distance between current position 𝒙𝒊,𝒊𝒕𝒆𝒓
 of crow i and

hiding place 𝒎𝒊,𝒊𝒕𝒆𝒓 of target crow j i.e. best known location in its
memory. In that case the next position of crow 𝒊 is on the left side

of the dash line between 𝒙𝒊,𝒊𝒕𝒆𝒓
 and 𝒎𝒊,𝒊𝒕𝒆𝒓 resulting in Local Search.

(b) If the value of 𝒇𝒍 is selected larger than the distance between

current position 𝒙𝒊,𝒊𝒕𝒆𝒓 of crow 𝒊 and memory location 𝒎𝒊,𝒊𝒕𝒆𝒓 of
target crow 𝒋, the next position of crow 𝒊 is on the right side of the
dash line which results in Global Search.

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2020.3031599, IEEE Access

VOLUME XX, 2017 7

probability of target crow being aware of the fact that it is

being followed. This is addressed in algorithm with a

parameter named awareness probability 𝐴𝑃 . If the target

crow knows it is being followed then it changes its path to

random location instead of going to its hiding place, i.e. the

best location from its memory hence, introducing

randomness which in turn enhances the exploration of

algorithm. If the crow being followed does not know that it

is being followed, the crow finally lands to its hidden food

location or in case of our algorithm, location of the best

solution achieved so far, from its memory. As a result, the

other crow will follow it and will land to a nearby location

(not exact location). This aids to the exploitation capacity

of the search algorithm. In the first scenario, where the

crow was not familiar that it is being followed. The landing

position of the follower crow depends upon a parameter

known as flight length 𝑓𝑙. Depending on the 𝑓𝑙, follower

crow can land before the followed crow’s location or
farthest from location as depicted in figure 3. If 𝑓𝑙 is shorter

than the distance between current location of the thief crow

and the destination of target crow, the thief crow lands

before reaching the target crow’s food hiding location,

hence executing local search as shown in figure 3(a).

Whereas, if 𝑓𝑙 is longer and crow lands farther away, hence

resulting in global search as shown in figure 3(b). The local

search and global search, both help exploring the solution

space by exploiting the experience of the target crow.

However, the randomness introduced by awareness

probability, leads to the exploration without regarding the

experience of target crow. Both of these two parameters

provide a good balance between exploration and

exploitation.

Formally, Crow Search Algorithm can be described by

assuming that there is a d-dimensional environment having N number of crows. The position of 𝑖𝑡ℎ crow at iteration iter is defined by a vector 𝑥𝑖,𝑖𝑡𝑒𝑟 as shown in Eq. (1).

 𝑥𝑖,𝑖𝑡𝑒𝑟(𝑖 = 1, 2, … , 𝑁; 𝑖𝑡𝑒𝑟 = 1, 2, … , 𝑖𝑡𝑒𝑟𝑚𝑎𝑥) (1)

where,

 𝑋𝑖,𝑖𝑡𝑒𝑟 = [𝑥1𝑖,𝑖𝑡𝑒𝑟 , 𝑥2𝑖,𝑖𝑡𝑒𝑟 , … , 𝑥𝑑𝑖,𝑖𝑡𝑒𝑟]
Here 𝑁 is the total number of crows in the flock and, 𝑖𝑡𝑒𝑟𝑚𝑎𝑥 is the maximum number of iterations. The 𝑑 -

dimensional space 𝑋𝑖,𝑖𝑡𝑒𝑟includes all possible locations that

can be explored by crow 𝑖 in iteration 𝑖𝑡𝑒𝑟. Crows traverse

this d-dimensional 𝑋𝑖,𝑖𝑡𝑒𝑟 space by following other crows to

find out their hiding location, hence reaching to the best

possible solution over multiple iterations. Each crow

memorizes only the best location they found during the

search of hidden food. The hiding location in the memory

of crow 𝑖 at iteration 𝑖𝑡𝑒𝑟 is denoted as 𝑚𝑖,𝑖𝑡𝑒𝑟 . Now

assume that crow 𝑗 visits its hiding location from its

memory 𝑚𝑗,𝑖𝑡𝑒𝑟 and crow 𝑖 decides to steal from crow 𝑗, it

will try to follow crow 𝑗 at iteration 𝑖𝑡𝑒𝑟. Now, based on

the awareness probability of crow 𝑗 two cases may arise:

Case 1: If crow 𝑗 is unaware of the fact that it is being

followed by crow 𝑖 , it will keep going towards its hiding

location 𝑚𝑗,𝑖𝑡𝑒𝑟 (hiding place) and crow 𝑖 will reach a new

location 𝑥𝑖,𝑖𝑡𝑒𝑟+1 for next iteration as per Eq. (3).

 𝑓𝑙𝑖,𝑖𝑡𝑒𝑟 = 𝑟𝑖,𝑖𝑡𝑒𝑟 × 𝑓𝑙𝑚𝑎𝑥 (2)

 𝑥𝑖,𝑖𝑡𝑒𝑟+1 = 𝑥𝑖,𝑖𝑡𝑒𝑟 + 𝑓𝑙𝑖,𝑖𝑡𝑒𝑟 × (𝑚𝑗,𝑖𝑡𝑒𝑟 − 𝑥𝑖,𝑖𝑡𝑒𝑟) (3)

Where, 𝑓𝑙𝑚𝑎𝑥 is maximum flight length that a crow can

fly. This is a parameter that needs to be assigned a value at

the initialization of the search. While 𝑟𝑖,𝑖𝑡𝑒𝑟 is a random

number which can have a value between 0 and 1. This

random number dictates the flight length 𝑓𝑙𝑖,𝑖𝑡𝑒𝑟 of crow 𝑖
at iteration 𝑖𝑡𝑒𝑟 as shown in Eq. (2). For instance, if 𝑓𝑙𝑚𝑎𝑥

is set to 100, depending on value of 𝑟𝑖,𝑖𝑡𝑒𝑟 , the value of 𝑓𝑙𝑖,𝑖𝑡𝑒𝑟 may be anywhere between 0 to 100. This way, each

crow is assigned a different flight length 𝑓𝑙𝑖,𝑖𝑡𝑒𝑟 in each

iteration. Based on the value of flight length 𝑓𝑙𝑖,𝑖𝑡𝑒𝑟 the

crow 𝑖 will reach a location nearby the hiding place of

crow 𝑗 . If 𝑓𝑙𝑖,𝑖𝑡𝑒𝑟 has higher value than 𝑑𝑖𝑓𝑓(𝑚𝑗,𝑖𝑡𝑒𝑟 , 𝑥𝑖,𝑖𝑡𝑒𝑟) then crow 𝑖 will move past the

hiding place of crow 𝑗 as shown in figure 3 (a), hence

conducting global search. If 𝑓𝑙𝑖,𝑖𝑡𝑒𝑟 is smaller than the

distance between crow 𝑖 and crow 𝑗 then crow 𝑖 will

conduct local search as shown in figure 3 (b).

Case 2: If crow 𝑗 is aware of the fact that it is being

followed by crow 𝑖 , it will divert its path and go to a

random location in space 𝑑. In effect, crow 𝑖 will also be

led to a random location, as a result it will explore a new

location that may be very far from current area of search,

hence increasing exploration. Both cases are expressed in

the Eq. (4).

 𝑥𝑖,𝑖𝑡𝑒𝑟+1 = { 𝑥𝑖,𝑖𝑡𝑒𝑟 + 𝑓𝑙𝑖,𝑖𝑡𝑒𝑟 . (𝑚𝑗,𝑖𝑡𝑒𝑟 − 𝑥𝑖,𝑖𝑡𝑒𝑟), 𝑎𝑝𝑗,𝑖𝑡𝑒𝑟 ≥ 𝐴𝑃𝑎 𝑟𝑎𝑛𝑑𝑜𝑚 𝑝𝑜𝑠𝑡𝑖𝑜𝑛, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (4)

TABLE 1. Pseudo code of original crow search algorithm.

(1). Input: the refence Dataset 𝐷, number of iterations 𝑇, the number of

crows in the flock 𝑁, the awareness probability 𝐴𝑃, maximum

flight length 𝑓𝑙𝑚𝑎𝑥

(2). Initialization: Generate a flock of 𝑁 crows with randomly assigned

locations with memory 𝑚𝑒𝑚 = 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛

(3). Evaluation: Evaluate all crows for recognition accuracy of the

corresponding networks

(4). 𝑤ℎ𝑖𝑙𝑒 𝑖𝑡𝑒𝑟 < 𝑖𝑡𝑒𝑟𝑚𝑎𝑥

(5). 𝑓𝑜𝑟 𝑖 = 1: 𝑁

(6). 𝑐𝑟𝑜𝑤𝑖 = 𝑓𝑙𝑜𝑐𝑘(𝑖)
(7). 𝑐𝑟𝑜𝑤𝑗 = 𝑟𝑎𝑛𝑑𝑜𝑚(𝑓𝑙𝑜𝑐𝑘)

(8). 𝑎𝑝𝑗,𝑖𝑡𝑒𝑟 = 𝑟𝑎𝑛𝑑𝑟𝑎𝑛𝑔𝑒(100)

(9). 𝑖𝑓 𝑎𝑝𝑗,𝑖𝑡𝑒𝑟 ≥ 𝐴𝑃
(10). 𝑐𝑟𝑜𝑤𝑖. 𝑙𝑜𝑐𝑖𝑡𝑒𝑟+1 = 𝑓𝑜𝑙𝑙𝑜𝑤(𝑐𝑟𝑜𝑤𝑗. 𝑚𝑒𝑚𝑖𝑡𝑒𝑟, 𝑐𝑟𝑜𝑤𝑖. 𝑙𝑜𝑐𝑖𝑡𝑒𝑟)

(11). 𝑒𝑙𝑠𝑒

(12). 𝑐𝑟𝑜𝑤𝑖. 𝑙𝑜𝑐𝑖𝑡𝑒𝑟+1 = 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒_𝑟𝑎𝑛𝑑𝑜𝑚_𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛()
(13). 𝑓𝑜𝑟 𝑖 = 1: 𝑁

(14). 𝑐𝑟𝑜𝑤𝑖 = 𝑓𝑙𝑜𝑐𝑘(𝑖)

(15). 𝑐𝑟𝑜𝑤𝑖 . 𝑓𝑖𝑡𝑛𝑒𝑠𝑠 = 𝑒𝑣𝑎𝑙(𝑐𝑟𝑜𝑤𝑖. 𝑙𝑜𝑐𝑖𝑡𝑒𝑟+1)

(16). 𝑖𝑓 𝑐𝑟𝑜𝑤𝑖. 𝑓𝑖𝑡𝑛𝑒𝑠𝑠 > 𝑐𝑟𝑜𝑤𝑖. 𝑏𝑒𝑠𝑡𝑓𝑖𝑡𝑛𝑒𝑠𝑠

(17). 𝑐𝑟𝑜𝑤𝑖. 𝑏𝑒𝑠𝑡𝑓𝑖𝑡𝑛𝑒𝑠𝑠 = 𝑐𝑟𝑜𝑤𝑖. 𝑓𝑖𝑡𝑛𝑒𝑠𝑠

(18). 𝑐𝑟𝑜𝑤𝑖. 𝑚𝑒𝑚𝑖𝑡𝑒𝑟 = 𝑐𝑟𝑜𝑤𝑖. 𝑙𝑜𝑐𝑖𝑡𝑒𝑟+1

(19). Output: Flock with memory of best locations they explored

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2020.3031599, IEEE Access

VOLUME XX, 2017 8

Where, 𝐴𝑃 is the awareness probability defined at the

time of initialization and 𝑎𝑝𝑗,𝑖𝑡𝑒𝑟 is a random number within

the range (0, 𝐴𝑃) that represent the awareness score of crow 𝑗 at iteration 𝑖𝑡𝑒𝑟. Whether or not 𝑎𝑝𝑗,𝑖𝑡𝑒𝑟is higher than the 𝐴𝑃 determines if crow 𝑗 is aware of being followed or not.

The exploration-exploitation trade-off can be tuned using

these two parameters i.e. flight length and awareness

probability. This following mechanism of crows is further

explained in section II and its implementation for specific

case of Neural Architecture Search. The pseudo code for

original crow search algorithm is shown in table 1.

1) LIMITATIONS OF CROW SEARCH ALGORITHM

This section describes the limitations of employing

original crow search algorithm on neural architecture search

problem. First of all, previously CSA has been applied to

engineering optimization problems where the goal is to find

some optimal values for specific parameters. While in a

previous work [45], CSA was used to search for four

hyperparameters i.e. number of layers, layer width, optimizer

and activation function. In such cases various distance

formulae can be applied trivially to natural numbered values.

However, CSA was not designed to find solutions in

complex search spaces such as required by Neural

Architecture Search (NAS). Because distance between two

solutions as used by CSA cannot be computed directly in

case of Neural Architecture Search. If the distance among

neural architectures is to be computed, a scheme should be

devised to interpret the differences among architectures as

distances. As discussed in previous section, a neural

architecture can be represented as a binary string using

binary encoding scheme. This way the distance between

architectures may be considered as a binary string

comparison problem. Additionally, new solutions in search

space may not be computed using simple arithmetic of CSA

as shown in Eq (4).

In order to make this CSA mechanism work for the case of

NAS, a new Binary Crow Search Algorithm (BCSA) is

proposed to overcome the limitation of CSA. To measure the

difference between two architectures being represented by

binary strings, first a distance metric needs to be employed

which is capable of comparing binary strings. There exist

various binary distance metrics such as Levenshtein distance,

Longest common subsequence (LCS), Hamming Distance,

and Jaro distance. All these metrics have their own string

operations and limitations. For instance, Levenshtein distance

allows deletion, insertion and substitution, longest common

subsequence (LCS distance) allows insertion and deletion,

Jaro distance allows only transposition, Damerau-

Levenshtein distance allows insertion, deletion, substitution,

and the transposition operations, whereas hamming distance

allows only substitution. Given the requirement of given task,

two strings (architectures) need to be compared such that,

compute the difference among them and substitute some bits

in a string such that its distance can be reduced as compared

to the other string. Levenshtein distance and its variants have

the capability to fulfill the said requirement however, a more

simplistic approach would be ideal. Therefore, hamming

distance is employed to measure distance between binary

representations of neural networks which is explained in

detail in section II.

Furthermore, as explained in the section I.D. originally

CSA uses random selection method for target solution.

However, this introduces too much randomness which makes

it harder to converge to optimal solutions even over multiple

iterations. In BCSA, a selection method based on

tournament-selection is proposed which helps in faster

convergence to optimal solution. Furthermore, in CSA the

maximum range of flight length is provided as algorithm

parameter but in case of a binary string the maximum

possible changes are equal to the total length of binary string.

So, the maximum flight length cannot exceed the length of

binary string. Additionally, a constant range of flight length

is not an optimal choice, because if a crow is already too

close to a target, making a random choice for flight length

may lead astray from the possibly optimal solution.

Therefore, it is crucial that the choice of flight length is made

within an optimal range. Finally, the fixed flight length

parameter is replaced by dynamic flight distribution which

not only ensures that the flight range remains in optimal

range but also eliminates one tunable parameter. A summary

of our main contributions to solve all these problems is as

follows:

(1). Crow Search Algorithm [38] is proposed to discover

complex and novel CNN architectures for the first time.

(2). Binary Crow Search Algorithm is proposed to solve

NAS problem in Binary Encoded Search Space.

(3). Target selection method is improved by introducing

Tournament Select in baseline implementation of Binary

CSA.

(4). Flight Length selection range 𝑓𝑙𝑚𝑎𝑥 is computed

automatically, hence leaving only one tunable parameter

named awareness probability 𝐴𝑃 , which makes it

suitable for automation of neural architecture search

problem.

(5). Based on distance of a crow 𝑖 in iteration 𝑖𝑡𝑒𝑟 , from

target crow 𝑗 , a scaled range of the Flight Length 𝑓𝑙 𝑚𝑎𝑥𝑖,𝑖𝑡𝑒𝑟
is introduced intermediately to improve the

convergence rate.

(6). Finally, it is demonstrated that Binary Crow Search

algorithm outperforms previous Neural Architecture

Search strategies by achieving comparable performance

in significantly smaller number of trainings.

All these modifications resulted in a novel algorithm

which has all the good qualities of CSA and is compatible

with complex search spaces suitable for NAS. The paper

presents this new algorithm as Binary Crow Search

Algorithm.

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2020.3031599, IEEE Access

VOLUME XX, 2017 9

II. PROPOSED APPROACH

This section presents the Crow Search Algorithm for

searching state-of-the-art neural architectures. Initially,

experiments are performed on popular datasets such as

MNIST [46] and CIFAR10 [47] datasets etc. After initial

evaluation on MNIST and CIFAR10 datasets, results are

provided on large-scale datasets such as CIFAR100 and

Tiny-ImageNet. The authors followed the work of Genetic

CNN [13] for network representation such that a binary

string is used to represent an architecture as mentioned in

section I. Binary Network Representation and basic

operations used by Binary Crow Search Algorithm are

explained in this section. Technical details, limitations of

methods and some examples are also provided in this

section.

A. BINARY NETWORK REPRESENTATION

In this work, binary network representation scheme as

proposed by [13] is used to represent our search space. The

string length depends upon the number of stages 𝑆 and

number of nodes 𝐾𝑛 (𝑛 ∈ {1,2, … , 𝑆}) in each stage. The

authors experimented with two settings, 𝑆 = 2, and 𝑆 = 3,

having (𝐾1, 𝐾2) = (3, 5) and (𝐾1, 𝐾2, 𝐾3) = (3, 4, 5) nodes

respectively. The network shown in figure 4 can be

represented by a string consisting of binary numbers such as "𝑎21𝑎31𝑎32𝑏21𝑏31𝑏32𝑏41𝑏42𝑏43𝑏51𝑏52𝑏53𝑏54" which can be

divided into parts for the sake of clarity. The string is divided

into two parts as per the number of stages i.e. "𝑎21𝑎31𝑎32"

and "𝑏21𝑏31𝑏32𝑏41𝑏42𝑏43𝑏51𝑏52𝑏53𝑏54" representing

encoding of stage 1 and 2, respectively. In the first stage

there are 3 nodes named 𝐴1, 𝐴2, 𝐴3 and 5 nodes i.e.

(a)

(b) (c)

(d) (e)

FIGURE 4. (a) A schematic diagram representing two-stage (𝑺 = 𝟐) network produced from the binary string “1111000100000”. First Stage has
3 nodes, whereas second stage has 5 nodes. (𝑲𝟏, 𝑲𝟐) = (𝟑, 𝟓). (b), (c), (d), and (e) show some example configurations with their respective

binary strings. (b) and (c) combine to form the binary string “1010101100011”. (d) and (e) combine to form the binary string “0111100100010”.

Input
Input
Input

Input
Input
POOL_1

Input
Input
POOL_1

Input
Input
POOL_2

A0

A1

A2

A3 A4

B0

B1

B3

B2 B4

B6B5

Stage 1

Stage 2

1-11

1-00-010-0000

A0

A1

A2

A3 A4

1-01

B0

B1

B5

B3

B6

B4

0-10-110-0011

B2

A0

A1

A2

A3 A4

0-11

B0

B1

B5

B3

B6

B4

1-10-010-0010

B2

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2020.3031599, IEEE Access

VOLUME XX, 2017 10

𝐵1, 𝐵2, 𝐵3, 𝐵5 in the second stage. Here "𝑎21𝑎31𝑎32"can be

further split node wise i.e. "𝑎21 − 𝑎31𝑎32" . The first bit "𝑎21" of this 3-bit string represents the connection of 𝐴2 with 𝐴1, second bit "𝑎31" represents the connection of 𝐴3 with 𝐴1 and third bit "𝑎32" represents the connection of 𝐴3 with 𝐴2. If a bit is “set”, it represents a connection in respective
nodes. The first stage of figure 4(a), gets the final string as

“1-11”. It is to be noted that the indexing of string starts from

the second node of the respective stage i.e. 𝐴2 and 𝐵2 for

stages 1 and 2, respectively. By having a closer look at stage

2 string, it can be seen that 𝐵2 is connected with 𝐵1 so "𝑏21"

= “1” on first location. The node B3 which is not connected

to 𝐵1 and 𝐵2 hence, 𝑏31 = 0, 𝑏32 = 0 , respectively. The

node 𝐵4 which gets input from 𝐵2 but is disconnected with 𝐵1 and 𝐵3 hence, 𝑏41 = 0, 𝑏42 = 1, 𝑏43 = 0. Finally, 𝐵5 is

not connected to any of the nodes but directly with input

node hence the string for node 𝐵5 comes out to be 0000. The

resultant length of the binary string can be calculated by Eq.

(5). 𝑙𝑒𝑛𝑔𝑡ℎ 𝑜𝑓 𝑏𝑖𝑛𝑎𝑟𝑦 𝑠𝑡𝑟𝑖𝑛𝑔 = ∑ ∑(𝑖 − 1)𝐾𝑛
𝑖=1

𝑆
𝑛=1

(5)

Where, 𝑆 is the total number of stages and 𝐾𝑛 is the

number of nodes in the 𝑛𝑡ℎ stage. For 𝑆 = 2, (𝐾1, 𝐾2) =(3, 5) , the string length will be 13 and for 𝑆 = 3, (𝐾1, 𝐾2, 𝐾3) = (3, 4, 5) , the string length will be 19.

Alongside these nodes, there are two default nodes in each

stage, i.e. input node and output node. These nodes are fixed

by default such that, input node will perform convolution and

feed forward to any nodes without predecessor. While output

node will receive inputs from all the nodes without successor.

As, seen in figure 4, it is possible that search algorithm may

come up with different configurations commonly found in

state-of-the-art architectures such as skip connections,

multiple streams, merging of streams, etc. Depth of each

stage may also vary depending upon connections. In this

study experiments are conducted with two settings as

mentioned above. Furthermore, the number of stages as

well as number of nodes in each stage can be modified.

Using aforementioned settings, it is possible to implement

many popular architectures such as VGGNet [16], ResNet

[48] and DenseNet [49]. However, for fair comparison with

Genetic CNN [13], only pooling and convolutional

operations are used as nodes.

B. BINARY CROW SEARCH ALGORITHM

This section explains the basic operations performed by the

binary crow search algorithm. Some of these operations are

briefly explained in section I, as per original algorithm

proposed by [38]. Here, the operations are explained for the

specific case of Neural Architecture Search domain.

Furthermore, some improvements are proposed to the

original algorithm as shown in the table 2. These

improvements are thoroughly explained in this section.

A summary of the differences between CSA and Binary CSA

TABLE 2. Comparison between Crow Search Algorithm and Binary
Crow Search Algorithm

Operations

and

Parameters

Crow Search

Algorithm

Binary Crow

Search Algorithm

Distance

Formula

Simple subtraction

(Not possible for Binary

Encoded Solutions)

Binary selection and

substitution

Target

Selection

Random Tournament Select

Max Flight

length 𝑓𝑙𝑚𝑎𝑥

𝑓𝑙𝑚𝑎𝑥 a parameter of

algorithm that needs to

be fine-tuned.

𝑓𝑙𝑚𝑎𝑥 is set to be

equal to total length

of bits in a solution

Number of

tuning

parameters

2 i.e. Flight Length,

Awareness Probability

1 i.e. Awareness

Probability

Max Flight

length in

Iteration iter

Constant

 (𝑓𝑙𝑚𝑎𝑥𝑖,𝑖𝑡𝑒𝑟 = 𝑓𝑙𝑚𝑎𝑥)
𝑓𝑙𝑚𝑎𝑥𝑖,𝑖𝑡𝑒𝑟 is

dynamically
computed based on

Distance from

Target (Eq. (6)).

Flight Length

for 𝑐𝑟𝑜𝑤𝑖𝑖𝑡𝑒𝑟

𝑓𝑙𝑖,𝑖𝑡𝑒𝑟= 𝑟𝑎𝑛𝑑𝑜𝑚(𝑓𝑙𝑚𝑎𝑥𝑖,𝑖𝑡𝑒𝑟)

𝑓𝑙𝑖,𝑖𝑡𝑒𝑟= 𝑟𝑎𝑛𝑑𝑜𝑚(𝑓𝑙𝑚𝑎𝑥𝑖,𝑖𝑡𝑒𝑟)

is provided as follows:

• Introducing tournament select method for faster

convergence

• Bound 𝑓𝑙𝑚𝑎𝑥 by total length of bits in solution, hence

having only algorithm parameter i.e. awareness

probability 𝐴𝑃

• Dynamic range of 𝑓𝑙𝑚𝑎𝑥 hence avoiding large flights

when close to the target

• Translation of flight formula into binary selection and

substitution operations.

These contributions are explained in detail as follows:

1) INITIALIZATION

Initially a flock of 𝑁 crows is created where each crow is

initialized with a given list of nodes (𝐾1, 𝐾2, 𝐾3, . . , 𝐾𝑠) per

stage 𝑆. Each stage is then represented by a binary string as

explained in previous section. In first iteration the binary

string is generated randomly to represent a random location

in search space. However, in order to compare the results

with fellow algorithms the initial locations may be assigned

from a pre-populated list.

2) INITIAL EVALUATION

All crows are then evaluated by decoding the binary

network representation and creating the corresponding

neural networks as shown in figure 4. Recognition score on

a given dataset is used as primary evaluation criteria.

Memory of each crow represents the location of the best

performing architecture in the search space. In first iteration

since there is no prior performance data, the current

location is considered the best location and assigned to the

crow’s memory. The recognition score is also stored as the

best achieved performance.

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2020.3031599, IEEE Access

VOLUME XX, 2017 11

3) TARGET SELECTION

In the original CSA, in each iteration, for each 𝑐𝑟𝑜𝑤𝑖 in the

flock, a target 𝑐𝑟𝑜𝑤𝑗 is randomly selected to follow. This

induces too much randomness and higher converging time.

However, our aim is to gradually improve the performance

of the crow in every iteration. Therefore, the selection

process is modified to aid in achieving our goal. Instead of

selecting the 𝑐𝑟𝑜𝑤𝑗 randomly, it should be selected such

that it leads to convergence. One approach could be

selecting the best performing individual in every iteration.

However, this can cause CSA to converge to sub-optimal

solution. So, the best performing crow cannot be selected

naively from the flock to be followed by each crow,

because it will lead them all to converge in a local region in

an iteration. Therefore, tournament select procedure was

followed where a small subset of flock is selected randomly

for each crow. Among these randomly selected crows, the

individual with best performance is selected as target crow

i.e. 𝑐𝑟𝑜𝑤𝑗 . Tournament select method is performed for

every individual in the flock once per iteration as shown in

figure 5.

4) FOLLOWING

Once a target 𝑐𝑟𝑜𝑤𝑗 is selected for a given 𝑐𝑟𝑜𝑤𝑖 in an

iteration. There might be two cases as explained in section

I. In one case the target may be aware that it is being

followed, while in other case it may not be aware. To

simulate this phenomenon, the algorithm is initialized with

an awareness probability 𝐴𝑃. At the time when a crow is

following its target, a random number is generated in the

range of 1 to 100. If that number is smaller than the

awareness probability, the target (𝑐𝑟𝑜𝑤𝑗) is considered to

be aware of being followed by the 𝑐𝑟𝑜𝑤𝑖 . Otherwise if that

number is greater than or equal to the awareness probability

the target (𝑐𝑟𝑜𝑤𝑗) is considered to be unaware of being

followed by the 𝑐𝑟𝑜𝑤𝑖 .
In the first case the target crow tries to mislead the

following crow by going to a random location in search

space. Therefore, the final location of the crow 𝑖 that is

following the target is also a random location in search

space, which may be generated randomly just like it was

done at the time of initialization.

In the second case the following operation is carried out

as per Eq. (4). The distance on the current location of 𝑐𝑟𝑜𝑤𝑖 and memory 𝑚𝑗,𝑖𝑡𝑒𝑟 of the target 𝑐𝑟𝑜𝑤𝑗 is computed

as hamming distance ℎ𝑎𝑚𝑖𝑡𝑒𝑟𝑖,𝑗 in binary strings as shown in

figure 6(a). It measures the number of bitwise substitutions

required to match both strings.

The set of different bits are represented as 𝑑𝑖𝑓𝑓𝑖𝑡𝑒𝑟𝑖,𝑗
. Each

substitution in these different bits makes it one step closer

to the target string. The total number of substitutions done

in each flight is defined by the flight length 𝑓𝑙𝑖,𝑖𝑡𝑒𝑟 . As

shown in Figure 6(b), 3 bits were substituted, hence

resulting in new location 𝑥𝑖,𝑖𝑡𝑒𝑟+1 , 3 steps closer to the

target. If the flight length smaller than the hamming

distance the 𝑓𝑙𝑖,𝑖𝑡𝑒𝑟 number of bits are randomly selected

from the different bits 𝑑𝑖𝑓𝑓𝑖𝑡𝑒𝑟𝑖,𝑗 for substitution. This will

result in local search as explained earlier in section 2, figure

3. However, if flight length is greater than the hamming

distance, extra bits will be selected randomly from whole

binary string in addition to the different bits. This will cause

excessive substitution and may result in final location 𝑥𝑖,𝑖𝑡𝑒𝑟+1 to be even farther than the target’s destination 𝑚𝑗,𝑖𝑡𝑒𝑟as shown in figure 6 (c).

Originally crow search algorithm is initialized with the

maximum allowed flight length 𝑓𝑙𝑚𝑎𝑥 . However, in case of

binary network representation the maximum flight length 𝑓𝑙𝑚𝑎𝑥 can only mean maximum number of changes possible,

that is equal to the total length of binary string. Also, in the

original crow search algorithm, the flight length 𝑓𝑙𝑖,𝑖𝑡𝑒𝑟of a

crow 𝑖 in iteration 𝑖𝑡𝑒𝑟 is selected within the range of 1 to 𝑓𝑙𝑚𝑎𝑥 . However, there is a huge probability of the flight

length 𝑓𝑙𝑖,𝑖𝑡𝑒𝑟 to be very big even when the target is very

close. The red line in figure 7 shows the flight length of

original CSA. Using the fixed range of flight length (1: 𝑓𝑙𝑚𝑎𝑥) will make the agent to go far from solution as

soon as it comes near to convergence. Therefore, a method is

proposed to scale the maximum flight length 𝑓𝑙𝑚𝑎𝑥 based on

the hamming distance between a crow and its target in

(a) (b) (c)

FIGURE 5. Tournament Select illustration for selecting target crow. (a) shows a flock of 20 crows in iteration 𝒊𝒕𝒆𝒓. (b) a pool of 5 crows selected
randomly from flock for 𝒄𝒓𝒐𝒘𝒊 in iteration 𝒊𝒕𝒆𝒓. (c) best performing crow is selected as target 𝒄𝒓𝒐𝒘𝒋 from pool set.

90%

88%

92%

81%

92%

89%

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2020.3031599, IEEE Access

VOLUME XX, 2017 12

 TABLE 3. Pseudo code of Binary crow search algorithm.

(1). Input: the refence Dataset 𝐷, number of iterations 𝑇, the number

of crows in the flock 𝑁, the awareness probability 𝐴𝑃, 𝑡𝑜𝑢𝑟𝑛𝑎𝑚𝑒𝑛𝑡𝑆𝑖𝑧𝑒

(2). Initialization: Generate a flock of 𝑁 crows with randomly

assigned locations with memory 𝑚𝑒𝑚 = 𝑐𝑢𝑟𝑟𝑒𝑛𝑡_𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛

(3). Evaluation: Evaluate all crows for recognition accuracy of the

corresponding networks

(4). 𝑤ℎ𝑖𝑙𝑒 𝑖𝑡𝑒𝑟 < 𝑖𝑡𝑒𝑟𝑚𝑎𝑥

(5). 𝑓𝑜𝑟 𝑖 = 1: 𝑁

(6). 𝑐𝑟𝑜𝑤𝑖 = 𝑓𝑙𝑜𝑐𝑘(𝑖)

(7). 𝑐𝑟𝑜𝑤𝑗 = 𝑡𝑜𝑢𝑟𝑛𝑎𝑚𝑒𝑛𝑡𝑆𝑒𝑙𝑒𝑐𝑡(𝑟𝑎𝑛𝑑(𝑓𝑙𝑜𝑐𝑘, 𝑡𝑜𝑢𝑟𝑛𝑎𝑚𝑒𝑛𝑡𝑆𝑖𝑧𝑒))

(8). 𝑎𝑝𝑗,𝑖𝑡𝑒𝑟 = 𝑟𝑎𝑛𝑑𝑟𝑎𝑛𝑔𝑒(100)

(9). 𝑖𝑓 𝑎𝑝𝑗,𝑖𝑡𝑒𝑟 ≥ 𝐴𝑃
(10). 𝑐𝑟𝑜𝑤𝑖 . 𝑙𝑜𝑐𝑖𝑡𝑒𝑟+1 = 𝑓𝑜𝑙𝑙𝑜𝑤(𝑐𝑟𝑜𝑤𝑗. 𝑚𝑒𝑚𝑖𝑡𝑒𝑟, 𝑐𝑟𝑜𝑤𝑖. 𝑙𝑜𝑐𝑖𝑡𝑒𝑟)

(11). 𝑒𝑙𝑠𝑒

(12). 𝑐𝑟𝑜𝑤𝑖 . 𝑙𝑜𝑐𝑖𝑡𝑒𝑟+1 = 𝑟𝑎𝑛𝑑𝑜𝑚_𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛()

(13). 𝑓𝑜𝑟 𝑖 = 1: 𝑁

(14). 𝑐𝑟𝑜𝑤𝑖 = 𝑓𝑙𝑜𝑐𝑘(𝑖)

(15). 𝑐𝑟𝑜𝑤𝑖. 𝑓𝑖𝑡𝑛𝑒𝑠𝑠 = 𝑒𝑣𝑎𝑙(𝑐𝑟𝑜𝑤𝑖 . 𝑙𝑜𝑐𝑖𝑡𝑒𝑟+1)

(16). 𝑖𝑓 𝑐𝑟𝑜𝑤𝑖. 𝑓𝑖𝑡𝑛𝑒𝑠𝑠 > 𝑐𝑟𝑜𝑤𝑖 . 𝑏𝑒𝑠𝑡𝑓𝑖𝑡𝑛𝑒𝑠𝑠

(17). 𝑐𝑟𝑜𝑤𝑖. 𝑏𝑒𝑠𝑡𝑓𝑖𝑡𝑛𝑒𝑠𝑠 = 𝑐𝑟𝑜𝑤𝑖. 𝑓𝑖𝑡𝑛𝑒𝑠𝑠

(18). 𝑐𝑟𝑜𝑤𝑖. 𝑚𝑒𝑚𝑖𝑡𝑒𝑟 = 𝑐𝑟𝑜𝑤𝑖. 𝑙𝑜𝑐𝑖𝑡𝑒𝑟+1

(19). Output: Flock with memory of best locations they explored

TABLE 4. Pseudo code of 𝒇𝒐𝒍𝒍𝒐𝒘(𝒄𝒓𝒐𝒘𝒋 . 𝒎𝒆𝒎𝒊𝒕𝒆𝒓, 𝒄𝒓𝒐𝒘𝒊. 𝒍𝒐𝒄𝒊𝒕𝒆𝒓) method

used by Binary crow search algorithm.

(1). 𝑑𝑖𝑓𝑓𝑖𝑡𝑒𝑟𝑖,𝑗 = 𝑐𝑜𝑚𝑝𝑎𝑟𝑒(𝑐𝑟𝑜𝑤𝑗 . 𝑚𝑒𝑚𝑖𝑡𝑒𝑟 , 𝑐𝑟𝑜𝑤𝑖. 𝑙𝑜𝑐𝑖𝑡𝑒𝑟)

(2). ℎ𝑎𝑚𝑖𝑡𝑒𝑟𝑖,𝑗 = 𝑙𝑒𝑛(𝑑𝑖𝑓𝑓𝑖𝑡𝑒𝑟𝑖,𝑗)

(3). 𝑓𝑙𝑚𝑎𝑥 = 𝑙𝑒𝑛(𝑐𝑟𝑜𝑤𝑖. 𝑙𝑜𝑐𝑖𝑡𝑒𝑟)

(4). 𝑓𝑙𝑚𝑎𝑥𝑖,𝑖𝑡𝑒𝑟 = √𝑓𝑙𝑚𝑎𝑥 × ℎ𝑎𝑚𝑖𝑡𝑒𝑟𝑖,𝑗 − 𝑘 − Eq. (6)

(5). 𝑓𝑙𝑖,𝑖𝑡𝑒𝑟 = 𝑟𝑎𝑛𝑑𝑜𝑚(𝑟𝑎𝑛𝑔𝑒(𝑓𝑙𝑚𝑎𝑥𝑖,𝑖𝑡𝑒𝑟))

(6). 𝑖𝑓 𝑓𝑙𝑖,𝑖𝑡𝑒𝑟 > ℎ𝑎𝑚𝑖𝑡𝑒𝑟𝑖,𝑗 :
(7). 𝑓𝑜𝑟 𝑐𝑜𝑢𝑛𝑡 = 1: 𝑓𝑙𝑖,𝑖𝑡𝑒𝑟 − ℎ𝑎𝑚𝑖𝑡𝑒𝑟𝑖,𝑗

(8). 𝑒𝑥𝑡𝑟𝑎_𝑚𝑖𝑙𝑒 = 𝑟𝑎𝑛𝑑𝑜𝑚(𝑖𝑛𝑑𝑒𝑥𝑒𝑠(𝑐𝑟𝑜𝑤𝑖 . 𝑙𝑜𝑐𝑖𝑡𝑒𝑟))

(9). 𝑑𝑖𝑓𝑓𝑖𝑡𝑒𝑟𝑖,𝑗 . 𝑎𝑝𝑝𝑒𝑛𝑑(𝑒𝑥𝑡𝑟𝑎_𝑚𝑖𝑙𝑒)

(10). 𝑒𝑙𝑖𝑓 𝑓𝑙𝑖,𝑖𝑡𝑒𝑟 < ℎ𝑎𝑚𝑖𝑡𝑒𝑟𝑖,𝑗 :
(11). 𝑓𝑜𝑟 𝑐𝑜𝑢𝑛𝑡 = 1: ℎ𝑎𝑚𝑖𝑡𝑒𝑟𝑖,𝑗 − 𝑓𝑙𝑖,𝑖𝑡𝑒𝑟

(12). 𝑒𝑥𝑡𝑟𝑎_𝑚𝑖𝑙𝑒 = 𝑟𝑎𝑛𝑑𝑜𝑚(𝑑𝑖𝑓𝑓𝑖𝑡𝑒𝑟𝑖,𝑗)

(13). 𝑑𝑖𝑓𝑓𝑖𝑡𝑒𝑟𝑖,𝑗 . 𝑟𝑒𝑚𝑜𝑣𝑒(𝑒𝑥𝑡𝑟𝑎_𝑚𝑖𝑙𝑒)

(14). ℎ𝑎𝑚𝑖𝑡𝑒𝑟𝑖,𝑗 = 𝑙𝑒𝑛(𝑑𝑖𝑓𝑓𝑖𝑡𝑒𝑟𝑖,𝑗)

(15). 𝑎𝑠𝑠𝑒𝑟𝑡(𝑓𝑙𝑖,𝑖𝑡𝑒𝑟 == ℎ𝑎𝑚𝑖𝑡𝑒𝑟𝑖,𝑗)

(16). 𝑐𝑟𝑜𝑤𝑖 . 𝑙𝑜𝑐𝑖𝑡𝑒𝑟+1 = []
(17). 𝑓𝑜𝑟 𝑖𝑛𝑑𝑒𝑥 𝑖𝑛 𝑖𝑛𝑑𝑒𝑥𝑒𝑠(𝑐𝑟𝑜𝑤𝑖 . 𝑙𝑜𝑐𝑖𝑡𝑒𝑟):
(18). 𝑖𝑓 𝑖𝑛𝑑𝑒𝑥 𝑖𝑛 𝑑𝑖𝑓𝑓𝑖𝑡𝑒𝑟𝑖,𝑗 :
(19). 𝑐𝑟𝑜𝑤𝑖 . 𝑙𝑜𝑐𝑖𝑡𝑒𝑟+1. 𝑎𝑝𝑝𝑒𝑛𝑑(𝑐𝑟𝑜𝑤𝑗 . 𝑚𝑒𝑚𝑖𝑡𝑒𝑟[𝑖𝑛𝑑𝑒𝑥])

(20). 𝑒𝑙𝑠𝑒:
(21). 𝑐𝑟𝑜𝑤𝑖 . 𝑙𝑜𝑐𝑖𝑡𝑒𝑟+1. 𝑎𝑝𝑝𝑒𝑛𝑑(𝑐𝑟𝑜𝑤𝑖. 𝑙𝑜𝑐𝑖𝑡𝑒𝑟[𝑖𝑛𝑑𝑒𝑥])

(22). 𝑟𝑒𝑡𝑢𝑟𝑛 𝑐𝑟𝑜𝑤𝑖. 𝑙𝑜𝑐𝑖𝑡𝑒𝑟+1

current iteration. Therefore, the maximum flight length 𝑓𝑙𝑚𝑎𝑥𝑖,𝑖𝑡𝑒𝑟
 allowed for crow 𝑖 in iteration 𝑖𝑡𝑒𝑟 can be computed

as shown in Eq. (6). 𝑓𝑙𝑚𝑎𝑥𝑖,𝑖𝑡𝑒𝑟 = √𝑓𝑙𝑚𝑎𝑥 × 𝐻𝑎𝑚(𝑥𝑖,𝑖𝑡𝑒𝑟 , 𝑚𝑗,𝑖𝑡𝑒𝑟) − 𝑘 (6)

5) EVALUATION

Similar to the initial evaluation, corresponding locations for

all crows are decoded and used to build and compile the

neural network models. These networks are trained on given

dataset and their evaluation score is used as the fitness of the

crow on current location.

(a)

(b)

(c)

FIGURE 6. (a) Flight distance is calculated as hamming distance

between binary strings. (b) If flight length 𝑓𝑙𝑖,𝑖𝑡𝑒𝑟is smaller than the

hamming distance, the final location is not too far from origin thus

resulting in local search. (c) If flight length 𝑓𝑙𝑖,𝑖𝑡𝑒𝑟is bigger than

hamming distance than final location maybe even farther than the
target hence, resulting in global search.

FIGURE 7. Scaling of maximum flight length 𝑓𝑙𝑚𝑎𝑥 into 𝒇𝒍𝒎𝒂𝒙𝒊,𝒊𝒕𝒆𝒓

based on hamming distance using Eq. (6). Red line shows the
maximum flight length 𝑓𝑙𝑚𝑎𝑥 based on original CSA while blue line

shows the scaled distribution of 𝑓𝑙𝑚𝑎𝑥𝑖,𝑖𝑡𝑒𝑟 .

1 0 1 1 0 1 0 1 0 0 1 0 0 0 1 0 0 1 0

1 0 1 1 1 1 0 0 0 0 1 0 1 0 0 0 0 1 0

x i,iter

m j,iter

1 0 1 1 0 1 0 1 0 0 1 0 0 0 1 0 0 1 0

1 0 1 1 1 1 0 1 0 0 1 0 1 0 0 0 0 1 0

1 0 1 1 1 1 0 0 0 0 1 0 1 0 0 0 0 1 0

x i,iter

x i,iter+1

m j,iter

1 0 1 1 0 1 0 1 0 0 1 0 0 0 1 0 0 1 0

1 1 1 1 1 1 0 0 0 0 1 0 1 0 0 0 0 0 0

1 0 1 1 1 1 0 0 0 0 1 0 1 0 0 0 0 1 0

x i,iter

x i,iter+1

m j,iter

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2020.3031599, IEEE Access

VOLUME XX, 2017 13

6) MEMORY UPDATE

The recognition score achieved for each crow in current

iteration is compared with their respective best performance

achieved so far. If a crow’s current performance is better than
its prior best achieved performance, then its memory is

assigned the current location of the crow. Best performance

of the crow is also updated by its current recognition score.

7) ITERATE

Steps from 4 to 7 are repeated until the last iteration. After

final iteration, a flock of crows is obtained which have

explored the search space and memorized the location

representing the top performing neural network architecture.

The crow with highest achieved recognition scores has the

final binary encoded solution in its memory.

Table 3 shows the pseudocode for Binary Crow Search

Algorithm. The pseudo code for the 𝑓𝑜𝑙𝑙𝑜𝑤() method used

by binary crow search algorithm is represented in table 4.

Furthermore, flowchart of BCSA is provided in the appendix,

figure 14.

III. EXPERIMENTS

Training is performed on a cluster of 10 computers (clients)

with GTX 1080 Ti, such that the search algorithm runs on the

server and clients are responsible for training and evaluation.

Server passes the binary string representation to each client

which is then decoded into a CNN architecture. After

training and evaluation are done on the clients, the results are

sent back to the server. Based on these evaluation results,

server performs Binary CSA operations and computes new

binary strings which are sent to the clients for next iteration.

Results are compared with Genetic CNN [13] and for fair

comparison the same initial population is used for both

methods. Furthermore, the authors experimented with two-

stage 𝑆 = 2, (𝐾1, 𝐾2) = (3, 5) and three-stage 𝑆 = 3,(𝐾1, 𝐾2, 𝐾3) = (3, 4, 5) network representations for

popular image classification datasets including MNIST,

CIFAR10, CIFAR100 and Tiny-ImageNet. MNIST is a

well-known handwritten optical character recognition

dataset containing 10 classes, each class representing one

decimal number. There are total 60,000 training images and

10,000 test images. CIFAR10 and CIFAR100 are popular

image classification datasets. CIFAR10 contains 10 object

classes with 6000 images per class. Out of 60,000 total

images, 50,000 are used for training while 10,000 are used

as test images. CIFAR100 contains 100 classes of common

objects with 600 images per class. Out of total 60,000

images, 50,000 are used as training and 10,000 are used as

test images. Tiny-ImageNet contains 200 image classes,

with a training split of 100,000 images, validation split of

10,000 images and test split of 10,000 images. For MNIST,

CIFAR10 and CIFAR100, 10% of training images are used

as validation split. Small-scale datasets are used to evaluate

our algorithm as it will be very time-consuming to evaluate

search algorithms on large datasets. The number of filters

and kernel sizes are also fixed to match the scope of

experiment in Genetic CNN [13]. For instance, for MNIST,

the number of filters is fixed to 32 and 64 whereas, for

CIFAR10 and CIFAR100, 32, 64 and 128 (for three stage

architectures) are used. The kernel of size (3, 3) is used in

all experiments. The dense units are also fixed as 512,

1024, 2048 and 4096 for MNIST, CIFAR10, CIFAR100

and Tiny-ImageNet experiments. However, these

hyperparameters may also be encoded in the search space

and then searched using Binary CSA as demonstrated in

[37]. Furthermore, the ablation experiments are performed

to study the impact of tournament select method over

random selection and our proposed dynamic flight length

distribution 𝑓𝑙𝑚𝑎𝑥𝑖,𝑖𝑡𝑒𝑟
 (Eq. 6) over static flight length 𝑓𝑙𝑚𝑎𝑥 as

used in original CSA.

A. MNIST EXPERIMENTS

In the first phase of experiments, the proposed approach is

validated on MNIST dataset. The two-stage 𝑆 =2, (𝐾1, 𝐾2) = (3, 5) binary representation is used with 3 and

5 nodes for stage 1 and 2, respectively. Results are shown in

table 5 and figure 8.

TABLE 5. Recognition accuracy on the MNIST Dataset (test split). Settings
used are 𝑆 = 2, where (𝐾1, 𝐾2) = (3, 5)

Iteration Memory Max Min Average
Standard
Deviation

0 0.9962 0.9962 0.9962 0.9962 0.0003

2 0.9971 0.9971 0.9961 0.9970 0.0002

4 0.9971 0.9969 0.9961 0.9965 0.0003

6 0.9976 0.9976 0.9961 0.9966 0.0003

8 0.9978 0.9978 0.9967 0.9976 0.0003

10 0.9978 0.9972 0.9961 0.9968 0.0003

12 0.9981 0.9981 0.9962 0.9975 0.0002

14 0.9982 0.9982 0.9971 0.9976 0.0003

16 0.9982 0.9973 0.9965 0.9971 0.0003

FIGURE 8. MNIST results using Binary Crow Search Algorithm
using two-stage representation 𝑺 = 𝟐, (𝑲𝟏 , 𝑲𝟐) = (𝟑, 𝟓). The orange
and purple bars here represent the difference of baseline accuracy
with maximum achieve accuracy in an iteration and minimum
accuracy in an iteration, respectively. While the blue line shows
the progress of best achieve performance over the experiment.

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2020.3031599, IEEE Access

VOLUME XX, 2017 14

TABLE 6. Recognition accuracy on the CIFAR10 Dataset (test split).
Settings used are 𝑺 = 𝟐, where (𝑲𝟏, 𝑲𝟐,) = (𝟑, 𝟓)

Iteration Memory Max Min Average
Standard

Deviation

0 0.9134 0.9134 0.9000 0.9041 0.0038

1 0.9134 0.9098 0.9000 0.9043 0.0037

2 0.9144 0.9144 0.9000 0.9048 0.0046

3 0.9144 0.9128 0.9000 0.9048 0.0044

4 0.9154 0.9154 0.9019 0.9075 0.0039

5 0.9154 0.9144 0.9000 0.9091 0.0048

6 0.9154 0.9138 0.9000 0.9094 0.0044

7 0.9155 0.9155 0.9000 0.9099 0.0049

8 0.9155 0.9142 0.9000 0.9102 0.004

9 0.9155 0.9152 0.9000 0.9088 0.005

10 0.9155 0.9145 0.9000 0.9086 0.0052

11 0.9157 0.9157 0.9000 0.9095 0.0052

12 0.9157 0.9146 0.9000 0.9087 0.005

13 0.9157 0.9147 0.9000 0.9101 0.0046

14 0.9157 0.9151 0.9020 0.9103 0.0037

15 0.9157 0.9141 0.9000 0.9101 0.0042

16 0.9157 0.9142 0.9000 0.9091 0.0046

17 0.9178 0.9178 0.9001 0.9099 0.004

18 0.9178 0.9155 0.9000 0.9105 0.0044

19 0.9178 0.9157 0.9000 0.9098 0.0042

B. CIFAR10 EXPERIMENTS

For CIFAR10, experiments were performed with two

different settings with 𝑆 = 2 𝑎𝑛𝑑 𝑆 = 3 . For 2-stage

experiment, the number of nodes per stage were identical to

the MNIST experiments i.e. (𝐾1, 𝐾2) = (3, 5). Results for

two-stage experiment are shown in figure 9 and table 6.

Furthermore, experiments are conducted with three stage

networks i.e. 𝑆 = 3 and number of nodes as (𝐾1, 𝐾2, 𝐾3) =(3, 4, 5) for stages 1, 2, and 3, respectively. The

experiments with Tournament Select and impact of Flight

Length are discussed further in subsection C and D.

C. TOURNAMENT SELECT

In order to select the target crow 𝑗 , the original CSA

algorithm randomly selects a crow from entire population,

and it is assigned to a crow 𝑖.
However, as the experiments are conducted with different

configurations, it is noted that this favors to the exploration

and reduces the exploitation capability of CSA, hence

convergence time increases. For target selection, tournament

select method is used which is described in section II.B.3.and

figure 5. The tournament select method is configured such

that, a pool of 5 crows is randomly selected from the entire

population and among them the best performing individual is

selected as target crow i.e. crow 𝑗. Now, crow 𝑖, will follow

crow 𝑗 and perform all the Binary CSA operations. This

intuitively introduces a balance between exploration and

exploitation such that it keeps randomness along with

prioritizing well-performing individuals. Figure 12 (c) shows

the search results of Binary CSA performed with tournament

select method. When compared with vanilla Binary CSA

(figure 12(b)), it shows improvement in the form of early

convergence as well as improved accuracy for final solution.

This improvement can be credited to slight improvement in

exploitation, due to tournament-based target selection.

D. DYNAMIC FLIGHT LENGTH DISTRIBUTION

As discussed earlier, the original implementation of CSA

uses a fixed range of flight length 𝑓𝑙𝑚𝑎𝑥 , and each crow in

each iteration choses a flight length 𝑓𝑙𝑖,𝑖𝑡𝑒𝑟 within this range.

While our proposed method introduces a dynamic

distribution for range of flight length 𝑓𝑙𝑚𝑎𝑥𝑖,𝑖𝑡𝑒𝑟
 shown in Eq.

(6). The 3-stage experiments are conducted with these two

configurations. Empirical results have shown an

improvement in accuracy and decrease in convergence time

as shown in the figure 12 (d). Binary CSA along with

dynamic flight length distribution have outperformed genetic

algorithm, vanilla Binary CSA and Binary CSA with

Tournament Select as shown in figure 12 and figure 13.

To further analyze the results, in-depth data is recorded

about crow travel history during the complete run. The

distance between the follower crow 𝑖 and target crow 𝑗 is

measured at every iteration 𝑖𝑡𝑒𝑟 and then computed the

distance they actually travelled as shown in figure 10.

This analysis showed that if the range of flight length is

fixed, the crow 𝑖 may fly a very long distance even when it is

already very near to the target crow hence, missing the

optimal solution. In an ideal scenario, the chosen flight

length for a crow 𝑖 should not be too long when the distance

between follower and target crow 𝑗 is small. Otherwise it will

FIGURE 9. CIFAR10 results using Binary Crow Search Algorithm
using two-stage representation 𝑺 = 𝟐, (𝑲𝟏 , 𝑲𝟐) = (𝟑, 𝟓). The orange

and purple bars here represent the difference of baseline accuracy
with maximum achieve accuracy in an iteration and minimum
accuracy in an iteration, respectively. The blue line shows the
progress of best achieve performance over the experiment. While
green line shows that progress of average performance of each
iteration.

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2020.3031599, IEEE Access

VOLUME XX, 2017 15

just keep bouncing between locations instead of converging

to an optimal solution.

The impact of both choices for range of flight length on

the test accuracy is also recorded. For this purpose, the

overall average improvement in accuracy was computed for

all crows in all iterations at various distances from their

targets. Figure 11 shows improvement in accuracy along the

y-axis for each choice of flight range at given distances. It is

evident from figure 10 and 11 that for a given distance from

the target, a crow may choose a different flight length based

on the selected range of flight lengths. Eventually, they may

land on different solutions and their results could be quite

different. It may be concluded that employing dynamic range

of flight length as per Eq. (6) has enhanced the performance

of Crow Search Algorithm.

IV. RESULTS AND DISCUSSION

The proposed approach is tested on MNIST, CIFAR and

Tiny ImageNet datasets. On the MNIST dataset, our

algorithm was able to find the best possible architecture in 15

iterations. In the first iteration, the maximum performing

architecture achieved 99.62% accuracy. The maximum

accuracy achieved on the 15th iteration was 99.82%.

Although, experiments were conducted for more iterations,

but CSA could not find any better architecture after 15th

iteration as shown in figure 8. This is also evident in the

Figure 8, that binary CSA is not greedy search like GA and

PSO. When it finds a good architecture, it still explores other

possible solutions that may have low performance but

because of memory module, it remembers the best-found

architectures and does not diverge while exploring. Table 5

shows that in every iteration, CSA is keeping track of best-

found architectures in memory while it keeps exploring the

search space. As it finds better performing architectures,

memory is updated duly.

In the case of CIFAR10, the results are presented for two

experiments. One with 2-stage architecture space i.e. 𝑺 =𝟐, (𝑲𝟏, 𝑲𝟐) = (𝟑, 𝟓), which is identical to the settings used

for MNIST. Cross validation accuracy is shown in figure 9.

Second with 3-stage architecture space i.e. 𝑺 =𝟑, (𝑲𝟏, 𝑲𝟐,, 𝑲𝟑) = (𝟑, 𝟒, 𝟓) . In the 2-stage experiments,

the convergence is achieved in the 18th iteration as shown in

figure 9. The architectures found in the first iteration had

satisfactory performance. The best-performing architecture in

the first iteration achieved 91.34% accuracy while the

minimum was at 90% accuracy which stayed same

throughout the experiment except 4th and 15th iteration.

These results show that better-performing architectures may

not exist in 2-stage search space. To verify this conclusion,

further experiments were conducted for 50 iterations, but

CSA did not find better performing architectures (locations).

2-stage experiment results for CIFAR10 are summarized in

table 6 and 3-stage experiment results in table 7. To solve

this problem, the search space is increased by using three-

stage architecture space which allowed us to generate further

deeper architectures. Experiment results for 3-stage

configuration are shown in figure 12. It can be seen that the

accuracy improved significantly by increasing the depth of

the search space. Figure 12 (a) shows the cross-validation

accuracy of 93.75% achieved by applying genetic algorithm

on the CIFAR10 dataset while keeping the same

configuration as Binary Crow Search Algorithm. The binary

CSA outperformed genetic algorithm significantly, in terms

of higher accuracy and faster convergence. It is shown in

Figure 12 (b), that Binary CSA surpassed the GA in 26th

iteration and achieved final architecture with cross-validation

accuracy of 94.88%. Extensive experiments were conducted

with tournament select method and dynamic flight length

distribution to verify that both modification work well with

each other. Figure 12 (c) shows even faster convergence due

to better selection of more promising targets to be followed.

The Binary CSA with Tournament Select found an

FIGURE 10. Comparison between constant range of flight length
and dynamic range of flight length distribution (Eq. 6) of actual
distance moved by 𝒄𝒓𝒐𝒘𝒊 against the distance from target 𝒄𝒓𝒐𝒘𝒋
on CIFAR10 using two-stage configuration 𝑺 = 𝟑, (𝑲𝟏, 𝑲𝟐, 𝑲𝟑) =(𝟑, 𝟒, 𝟓).

FIGURE 11. Impact of the choice of Flight Range on average
improvement in test accuracy using constant flight length and
dynamic flight length (Eq. 6).

0

2

4

6

8

10

12

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

D
is

ta
n

ce
 c

o
v
e

re
d

Distance from Target

Average Distance Moved

Dynamic Flight Range Constant Flight Range

0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

0.01

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

C
h

a
n

g
e

 i
n

 T
e

st
 A

cc
u

ra
cy

Distance from Target

Average Improvement in Accuracy

Dynamic Flight Range Constant Flight Range

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2020.3031599, IEEE Access

VOLUME XX, 2017 16

architecture that outperformed the final solution found by

GA only in 13th iteration whereas, it found an architecture

that outperformed the solution by vanilla Binary CSA only in

28th iteration. The final solution found by Binary CSA with

Tournament Select achieved 96.25% accuracy. As discussed

in the paper, our proposed distribution of flight length

ensures that every flight made in the direction of target finds

a solution in the vicinity of the target solution. This addition

in the algorithm resulted in even faster convergence. The

final version of Binary CSA that uses both tournament select

and dynamic flight length outperformed GA only in 7th

iteration, while it outperformed vanilla Binary CSA

Table 7. Comparison results on CIFAR-10

Algorithm Test Error Evaluation Time (GPU Days) Model Size

Genetic CNN [13] 6.25 16.6 156 M

CNAS [50] 4.23 1 2.95 M

LEMONADE II [33] 3.50 56 3.98 M

Darts random [36] 3.49 - 3.16 M

Darts [36] 2.83 4 3.4 M

Binary Crow Search Algorithm (Ours) 5.12 6.41 8 M

Binary CSA with Tournament Select (Ours) 3.75 5.16 8.8 M

Binary CSA with Tournament Select and Dynamic Flight Length Distribution (Ours) 3.48 3 8 M

(a) Genetic Algorithm (b) Binary Crow Search Algorithm

(c) Binary Crow Search Algorithm with Tournament Select Method for

target Crow selection

(d) Binary Crow Search Algorithm with Tournament Select and

Dynamic Flight Distribution using Eq. 5

FIGURE 12. Comparison of cross-validation accuracy on CIFAR10 using (a) Genetic Algorithm (b) Binary CSA (c) Binary CSA with Tournament
Select and (d) Binary CSA with Tournament Select and Dynamic Flight Distribution. All above used three-stage configuration 𝑺 = 𝟑, where the
number of nodes per stage are (𝑲𝟏, 𝑲𝟐, 𝑲𝟑) = (𝟑, 𝟒, 𝟓). The orange and purple bars here represent the difference of baseline accuracy with

maximum achieve accuracy in an iteration and minimum accuracy in an iteration, respectively. The blue line shows the progress of best achieve
performance over the experiment. While green line shows that progress of average performance of each iteration.

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2020.3031599, IEEE Access

VOLUME XX, 2017 17

in 27th iteration and outperformed the Binary CSA with

Tournament Select only in 33rd iteration by achieving

96.52% accuracy and sustained this performance until the

final iteration. Comparison results of different versions of

Binary CSA along with Genetic Algorithm are summarized

in table 8 and figure 13, such that the iteration number at

which each algorithm surpasses the highest achieved

accuracy of rest of the algorithms is mentioned. Comparison

results of some previous NAS methods on CIFAR10 are

presented in the table 7. While table 8 shows the results

based on the number of iterations each method took to

outperform other variations. Binary CSA has shown better

performance in terms of test error as compared to previous

methods. However, CNAS [50] has achieved similar

performance with less number of parameters. Binary CSA

can achieve better results in the terms of a smaller number of

parameters as well if applied to a more efficient search space.

For now, search space is the bottleneck of our algorithm as it

is not possible to find an architecture if it does not exist in the

search space.

Search results on CIFAR-100 are presented in table 9,

where Binary CSA has outperformed previous algorithms by

a significant margin however, the model size of architecture

searched by Binary CSA is approximately 3 times larger than

the one found by CNAS which again is the limitation on the

end of search space. Table 10 presents medium-scale transfer

experiments. For medium-scale transfer experiments on Tiny

ImageNet, the BCSA population is initialized with the 20

best performing individuals found in the last iteration of

CIFAR100 search experiments. This helped in saving many

GPU hours. Searching for architectures on small datasets and

then instead of re-using them as previous methods have done,

it is proposed to initiate the population using already

searched top-performing architectures. The results are

comparable to state-of-the-art however, the proposed

approach does not involve any meta-architecture as required

by other state-of-the-art methods. Finally, the test error rate

results are presented on all the datasets as shown in table 11.

In the future, Binary CSA can be integrated with a more

sophisticated search space to generate more efficient

architectures.

Such a system can be implemented to provide completely

automated AI solutions for various applications such as

automatic AI system training from data collection by users of

mobile applications. The data may belong to a wide range of

applications such as plant disease classification, accidental

car damage attribution, used furniture and appliances

condition evaluation etc.

Table 8. Comparison results of Genetic CNN along with different versions of Binary CSA based on iterations to outperform the preceding algorithm.

Algorithm

(Iter – Max ACC)

GA

(50 - 93.75 %)

Vanilla BCSA

(41 - 94.88 %)

BCSA-TS

(44 - 96.25 %)

Vanilla BCSA 26 – 93.78 % 41 – 94.88 % -

BCSA with TS 13 – 93.88 % 28 – 94.92 % 44 – 96.25 %

BCSA with DFL 07 – 93.81 % 27 – 95.26 % 33 – 96.52 %

Table 9. Comparison results on CIFAR-100

Algorithm Test Error Evaluation Time (GPU Days) Model Size

Genetic CNN [13] (transferred from CIFAR10) 25.12 - 156 M

CNAS [50] 22.24 1 3.67 M

Darts [36] 23.22 12 3.03 M

AmoebaNet-BC [51] 15.80 3150 34.9 M

Large-scale Evolution [52] 23.70 2600 40.4 M

NASNet-A [34] 16.03 1800 50.9 M

PNAS [35] 17.63 225 3.2 M

NAONet [53] 14.75 200 128 M

Neuro-Cell-based Evolution [54] 21.74 1 5.3 M

GDAS(FRC) [37] 18.13 0.17 2.5 M

EENA [32] (transferred from CIFAR-10) 17.71 - 8.49 M

Binary CSA with Tournament Select and Dynamic Flight Length Distribution (Ours) 15.64 4.166 10 M

Table 10. Comparison results on Tiny ImageNet

Algorithm Test Error Evaluation Time (GPU Days) Model Size

CNAS [50] 36 3.5 3.67 M

Darts [36] 38.6 3.75 3.03 M

Binary CSA with Tournament Select and Dynamic Flight Length Distribution (Ours)+ 34.43 3 13 M

+ top performing architectures on CIFAR100 were used to populate the first generation

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2020.3031599, IEEE Access

VOLUME XX, 2017 18

Table 11. Classification error rate for Binary Crow Search Algorithm on different datasets

Dataset Architecture Test Error (%) Evaluation Time (GPU Days) Model Size

MNIST* 'S_1': '100', 'S_2': '010000' 0.18 0.8 8 M

CIFAR-10† 'S_1': '010', 'S_2': '011010', 'S_3': '1000000010' 3.48 3 8 M

CIFAR-100† 'S_1': '101', 'S_2': '001100', 'S_3': '0111010001' 15.64 4.166 10 M

Tiny-ImageNet†+ 'S_1': '111', 'S_2': '100111', 'S_3': '1010100110' 34.43 3 13 M

* 2-stage network representation, † 3-stage network representation, + top performing architectures on CIFAR100 were used to populate the first generation

The central system for each application may automatically

construct a deep learning model that suites the data

provided by users e.g. labeled pictures of leaves, car

scratches and damaged furniture. Hence no technical

knowledge of machine learning and artificial intelligence

will be required to deploy each time a new application is

required. The binary crow search algorithm will

automatically find a deep learning model that best suites the

data-based application.

V. RESULT ANALYSIS

Our proposed approach was able to find comparable

architectures to other NAS methods. However, there is one

thing to be noticed that the size of models found by our

approach is larger than some of the NAS approaches. It is

to be noted that the number of parameters (model size) or

the type of model that can be produced is solely dependent

upon the search space design. As far as the comparison of

parameters is concerned, our approach uses the same search

space as used by Genetic CNN. Models found by BCSA

have significantly small number of parameters, i.e. the

model found for MNIST data has only 8 million parameters

whereas Genetic CNN achieves the best accuracy with 156

million parameters, similarly for CIFAR10, CIFAR100 and

Tiny ImageNet, BCSA outperforms Genetic CNN in terms

of accuracy, model size and faster convergence to optimal

solution. As for the other NAS methods, such as Darts and

CNAS, our method achieves slightly better accuracy, but

the model size is larger. Figure 13 presents the amount of

trainings required by one approach to outperform the other

approaches. It is clear that, BCSA with flight length

distribution algorithm along with tournament select

significantly outperforms BCSA with original flight length

and target selection methods. Moreover, to validate the

performance of BCSA and its variants, a statistical analysis

is provided in the next section.

1. EFFECT OF TOURNAMENT SELECT AND DYNAMIC
FLIGHT LENGTH

In order to validate the results, several experiments were

performed to conduct statistical analysis about the

improvement in positive changes of the fitness for

candidate solutions in an experiment compared to another.

For this purpose, difference in improvement is computed

for each individual/crow in each generation/iteration in

different experiments as shown in table 12.

Then each experiment is compared to another and

counted the solutions explored in the search space with

better and worst fitness in a pairwise manner to roughly

estimate the effects of choosing each variation over another

according to the statistical results. The overall effect of

choosing each algorithm and its operations is summarized

in table 13. In order to verify the significance of each

action, i.e. BCSA is significantly better than GA,

Tournament Selection is better than using Random

Selection and, Dynamic Flight Length improves the

performance of BCSA, two tailed Wilcoxon Signed Rank

tests were performed, a nonparametric statistical analysis

on our experiment results. The null and alternative

hypotheses for these tests are:

Test 1: GA vs BCSA Vanilla 𝑯𝟎: The new solutions computed using follow operation

of BCSA do not show significant improvement compared

to overall exploration done using crossover and mutation

operations of GA. 𝑯𝟏: BCSA’s follow operation demonstrates significant
improvement for overall explored search space locations.

FIGURE 13. Comparison of convergence rate of different versions
of Binary CSA along with GA. The colored dot represents the
iteration number at which an algorithm outperformed other
algorithms. For example, a blue dot on green line represents the
iteration at which vanilla CSA outperformed the best accuracy of
GA. It can be seen that Binary CSA DFL found GA equivalent
architecture in 7 iterations which shows a significant improvement
in convergence rate.

0.89

0.9

0.91

0.92

0.93

0.94

0.95

0.96

0.97

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48

M
a

xi
m

u
m

 A
ch

ie
v
e

d
 P

e
rf

o
rm

a
n

ce
 (

%
)

Number of Iterations

Convergence Rate Comparison

 GA Vanilla Binary CSA Binary CSA TS Binary CSA DFL

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2020.3031599, IEEE Access

VOLUME XX, 2017 19

Table 12. Improvement in fitness of each individual in the final iteration (𝒊𝒕𝒆𝒓 = 𝟐𝟎) of each experiment.

Individual /

Crow GA BCSA (Vanilla) BCSA (TS) BCSA (Dynamic FL)

0
0.0096 -0.0016 -0.003 0.0038

1
0.0072 0.0011 0.004 0.003

2
0.0044 -0.0005 0.0069 -0.0006

3
-0.0038 0.0012 -0.0008 0.001

4
-0.0106 -0.0007 0.003 0.0002

5
-0.0033 0.0009 0.0067 0.002

6
0.0121 0.0015 0.0075 0.001

7
0.0027 0.0014 0.0063 0.0018

8
-0.0009 0.0005 0.0119 0.0044

9
-0.0003 0.0006 0 0.0024

10
-0.0017 0.0008 -0.002 -0.001

11
0.0004 -0.0008 0.0025 0.0064

12
0.0135 0.0005 0.0066 0.0012

13
0.0041 0.0025 0.0079 0.0014

14
0.0042 0.0004 0.0032 0.0046

15
0.0027 0.0022 -0.0007 -0.0002

16
-0.0023 -0.0003 0.0027 -0.0006

17
-0.0095 0.0003 -0.0028 0.0002

18
-0.0066 -0.0007 0.0041 0.0038

19
-0.0049 -0.0012 0.0033 -0.0004

Table 13. Effects of choosing BCSA and its each variation against GA
and each other in terms of total count of Better and Worst changes in
the fitness of all individuals/crows in all the generations/iteration of the
experiment.

Comparison Pair Better Worst

GA – BCSA (Vanilla) 236 (59.0 %) 164 (41.0 %)

BCSA Vanilla – BCSA TS 244 (61.0 %) 156 (39.0 %)

BCSA TS – BCSA Dynamic FL 246 (61.5 %) 154 (38.5 %)

Table 14. Wilcoxon Signed Rank test results show that in each
comparison pair the latter introduces significant improvement in the
performance. Here W+ is the total rank score of the positive changes,
W- is the total rank score of the negative changes.

Tests 𝑾 + 𝑾 − 𝒁𝒔𝒕𝒂𝒕 𝒑-value Result

1 46316 -33884 2.686 0.0491 Reject 𝑯𝟎

2 48165 -32035 3.485 0.0471 Reject 𝑯𝟎

3 48373 -31827 3.575 0.0487 Reject 𝑯𝟎

Test 2: Random Select vs Tournament Select 𝑯𝟎: Target selection using Tournament Select in BCSA

has no impact on the likeability of reaching a better

location as compared to the Random Select. 𝑯𝟏: Target selection using Tournament Select in BCSA

significantly improves the likeability of reaching a better

location as compared to using Random Select.

Test 3: Fixed Flight Length vs Dynamic Flight Length 𝑯𝟎: Choosing a range of flight length dynamically based

on the distance from target has no impact on the

likeability of reaching a better location as compared to a

fixed range of flight length. 𝑯𝟏: Choosing a range of flight length dynamically based

on the distance from target significantly improves the

likeability of reaching a better location as compared to

using a fixed range of flight length.

The results for these tests are shown in table 14. 𝒁𝒔𝒕𝒂𝒕 is

computed using large-sample approximation formula Eq.

(7) for Wilcoxon Signed Ranked Test. The 𝑝 -value is

calculated using the normal approximation. The null

hypothesis 𝑯𝟎 is rejected if 𝒁𝒔𝒕𝒂𝒕> 1.96 and 𝑝-value is less

than 𝜶 = 𝟎. 𝟎𝟓.

 𝒁𝒔𝒕𝒂𝒕 = 𝑾 − 𝒏′ (𝒏′ + 𝟏)𝟒√𝒏′(𝒏′ + 𝟏)(𝟐𝒏′ + 𝟏)𝟐𝟒 (7)

VI. CONCLUSION

The study presented in this paper suggests the use of Binary

Crow Search Algorithm for Neural Architecture Search. In

this study, it is shown that Binary CSA based neural

architecture search can achieve comparable accuracy in

significantly smaller number of trainings. Furthermore,

statistical analysis is performed using Wilcoxon signed rank

test and the performance of BCSA with GA and variants of

BCSA is compared. The results of Wilcoxon signed rank test

prove that the improvement introduced by BCSA and its

variants is significantly better than other alternatives as

shown in table 14. Current NAS approaches do not use any

domain knowledge for finding optimal solution. A search

method which exploits domain knowledge will intuitively

perform better than a blind method which does not use any

domain knowledge. In future, this problem can be addressed

by introducing guided search methods instead of blind

search. The algorithm responsible for searching for neural

networks should understand the impact of hyperparameters,

layers, blocks, different types of activation functions, and

architectural choices prior to training and evaluating them.

Moreover, NAS can be formulated as a multi-objective

optimization problem, which can minimize error and model

size simultaneously. BCSA can be used with other more

sophisticated search spaces such as NASNet or DAG based

search spaces. Another multi-objective scheme can be

devised which can search for cell architecture as well as,

meta-architecture (currently manually designed in cell-based

search spaces) which will help reduce the need for manual

interventions.

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2020.3031599, IEEE Access

VOLUME XX, 2017 20

APPENDIX

REFERENCES
[1] H. Larochelle, A. Courville, and J. Bergstra, “An empirical

evaluation of deep architectures on problems with many factors
of variation Unsupervised Learning of Speech Representations

View project Optical Neural Network View project,” dl.acm.org,

vol. 227, pp. 473–480, 2007.
[2] J. Bergstra and Y. Bengio, “Random search for hyper-parameter

optimization,” J. Mach. Learn. Res., vol. 13, pp. 281–305, 2012.

[3] J. Snoek, H. Larochelle, and R. P. Adams, “Practical Bayesian
Optimization of Machine Learning Algorithms,” in Proceedings

of the 26th International Conference on Advances in Neural

Information Processing Systems, 2012, pp. 2960–2968.
[4] D. Maclaurin, D. Duvenaud, and R. P. Adams, “Gradient-based

Hyperparameter Optimization through Reversible Learning,” in

Proceedings of the 32nd International Conference on Machine
Learning, 2015, pp. 2113–2122.

[5] L. Franceschi, M. Donini, P. Frasconi, and M. Pontil, “Forward
and reverse gradient-based hyperparameter optimization,” 34th

Int. Conf. Mach. Learn. ICML 2017, vol. 3, pp. 1903–1913,

2017.

[6] Y. Lecun, “A Theoretical Framework for Back-Propagation,” in
Proceedings of the 1988 Connectionist Models Summer School,

CMU, 1988, pp. 21–28.

[7] F. Pedregosa, “Hyperparameter optimization with approximate

gradient,” 33rd Int. Conf. Mach. Learn. ICML 2016, vol. 2, pp.
1150–1159, Feb. 2016.

[8] M. FernandoTenorio and W.-T. Lee, “Self Organizing Neural
Networks for the Identification Problem,” in Proceedings of
Advances in Neural Information Processing Systems 1, 1988, pp.

57–64.

[9] T. Elsken, J. H. Metzen, and F. Hutter, “Neural Architecture
Search: A Survey,” J. Mach. Learn. Res., vol. 20, no. 55, pp. 1–
21, Aug. 2019.

[10] K. He, X. Zhang, S. Ren, and J. Sun, “Deep Residual Learning
for Image Recognition,” in Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition, 2016, pp. 770–
778.

[11] C. Szegedy et al., “Going deeper with convolutions,” in 2015

IEEE Conference on Computer Vision and Pattern Recognition

(CVPR), 2015, pp. 1–9.
[12] J. Hu, L. Shen, and G. Sun, “Squeeze-and-Excitation Networks,”

in Proceedings of the IEEE Computer Society Conference on

Computer Vision and Pattern Recognition, 2017, pp. 7132–
7141.

[13] L. Xie and A. Yuille, “Genetic CNN,” in Proceedings of the

IEEE International Conference on Computer Vision, 2017, pp.
1388–1397.

[14] B. Zoph and Q. V. Le, “Neural architecture search with
reinforcement learning,” in 5th International Conference on

Figure 14. Flowchart of proposed Binary Crow Search Algorithm

Start

Input: the reference Dataset , number of iterations , the

number of crows in the flock , the awareness probability ,

Step 1: Initialize problem and adjustable parameters

Generate a flock of crows with randomly assigned locations

with memory

Step 2: Initialize positions and memories

Evaluate all crows for recognition accuracy of the

corresponding networks

Step 3: Evaluate fitness function

Step 4: Generate new position

Randomly select

crows from flock

Yes

No

Step 5: Evaluate fitness

function for new positions

Calculate the fitness

value for

Step 6: Update memory

Yes

NoDo not

Update

Yes

No

End

Repeat steps

from 4 to 6

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2020.3031599, IEEE Access

VOLUME XX, 2017 21

Learning Representations, ICLR 2017 - Conference Track

Proceedings, 2017.

[15] M. Ahmad, M. Abdullah, and D. Han, “A Novel Encoding
Scheme for Complex Neural Architecture Search,” in 34th

International Technical Conference on Circuits/Systems,

Computers and Communications, ITC-CSCC, 2019.
[16] K. Simonyan, “Very Deep Convolutional Networks for Large-

Scale Image Recognition.,” in Proceedings of International

Conference on Learning Representations. (ICLR), 2015, pp. 1–
14.

[17] J. E. Beasley and P. C. Chu, “A genetic algorithm for the set
covering problem,” Eur. J. Oper. Res., vol. 94, no. 2, pp. 392–
404, Oct. 1996.

[18] Y. Zhang, S. Wang, and G. Ji, “A Comprehensive Survey on
Particle Swarm Optimization Algorithm and Its Applications,”
2015.

[19] E. M. N. Figueiredo, T. B. Ludermir, and C. J. A. Bastos-Filho,

“Many Objective Particle Swarm Optimization,” Inf. Sci. (Ny).,
vol. 374, pp. 115–134, Dec. 2016.

[20] X. S. Yang, “Harmony search as a metaheuristic algorithm,”
Studies in Computational Intelligence, vol. 191. Springer, Berlin,
Heidelberg, pp. 1–14, 2009.

[21] K. Price, R. Storn, and J. Lampinen, Differential evolution: a

practical approach to global optimization. Springer Science &
Business Media, 2006.

[22] R. C. T. De Souza, L. D. S. Coelho, C. A. De MacEdo, and J.
Pierezan, “A V-Shaped Binary Crow Search Algorithm for

Feature Selection,” in 2018 IEEE Congress on Evolutionary

Computation, CEC 2018 - Proceedings, 2018.
[23] A. Jafar-Nowdeh et al., “Meta-heuristic matrix moth–flame

algorithm for optimal reconfiguration of distribution networks

and placement of solar and wind renewable sources considering
reliability,” Environ. Technol. Innov., vol. 20, p. 101118, Nov.

2020.

[24] M. Jahannoosh, S. A. Nowdeh, A. Naderipour, H. Kamyab, I. F.
Davoudkhani, and J. J. Klemeš, “New hybrid meta-heuristic

algorithm for reliable and cost-effective designing of

photovoltaic/wind/fuel cell energy system considering load
interruption probability,” J. Clean. Prod., vol. 278, p. 123406,

Jan. 2021.

[25] A. Naderipour, Z. Abdul-Malek, M. Zahedi Vahid, Z. Mirzaei
Seifabad, M. Hajivand, and S. Arabi-Nowdeh, “Optimal,
Reliable and Cost-Effective Framework of Photovoltaic-Wind-

Battery Energy System Design Considering Outage Concept
Using Grey Wolf Optimizer Algorithm - Case Study for Iran,”
IEEE Access, vol. 7, pp. 182611–182623, 2019.

[26] A. Naderipour, Z. Abdul-Malek, V. K. Ramachandaramurthy,
M. R. Miveh, M. J. H. Moghaddam, and J. M. Guerrero,

“Optimal SSSC-based power damping inter-area oscillations

using firefly and harmony search algorithms,” Sci. Rep., vol. 10,

no. 1, p. 12176, Dec. 2020.

[27] P. Melin and D. Sánchez, “Multi-objective optimization for

modular granular neural networks applied to pattern
recognition,” Inf. Sci. (Ny)., vol. 460–461, pp. 594–610, Sep.

2018.

[28] I. Miramontes, J. Guzman, P. Melin, and G. Prado-Arechiga,
“Optimal Design of Interval Type-2 Fuzzy Heart Rate Level

Classification Systems Using the Bird Swarm Algorithm,”
Algorithms, vol. 11, no. 12, p. 206, Dec. 2018.

[29] D. Sánchez, P. Melin, and O. Castillo, “Optimization of modular
granular neural networks using a firefly algorithm for human

recognition,” Eng. Appl. Artif. Intell., vol. 64, pp. 172–186, Sep.
2017.

[30] D. Sánchez, P. Melin, and O. Castillo, “A grey Wolf optimizer
for modular granular neural networks for human recognition,”
Comput. Intell. Neurosci., vol. 2017, 2017.

[31] D. Sánchez, P. Melin, and O. Castillo, “Comparison of particle
swarm optimization variants with fuzzy dynamic parameter
adaptation for modular granular neural networks for human

recognition,” J. Intell. Fuzzy Syst., vol. 38, no. 3, pp. 3229–3252,

Jan. 2020.
[32] H. Zhu, Z. An, C. Yang, K. Xu, E. Zhao, and Y. Xu, “EENA:

Efficient evolution of neural architecture,” in Proceedings -

2019 International Conference on Computer Vision Workshop,

ICCVW 2019, 2019, pp. 1891–1899.
[33] T. Elsken, J. H. Metzen, and F. Hutter, “Efficient Multi-

objective Neural Architecture Search via Lamarckian

Evolution,” in 7th International Conference on Learning
Representations, ICLR , 2019.

[34] B. Zoph, V. Vasudevan, J. Shlens, and Q. V. Le, “Learning
Transferable Architectures for Scalable Image Recognition,” in
Proceedings of the IEEE Computer Society Conference on

Computer Vision and Pattern Recognition, 2018, pp. 8697–
8710.

[35] C. Liu et al., “Progressive Neural Architecture Search,” in
Proceedings of the European Conference on Computer Vision,

2018, pp. 19–34.
[36] H. Liu, K. S. Deepmind, and Y. Yang, “DARTS: Differentiable

Architecture Search,” in Proceedings of International

Conference on Learning Representations 2019, 2019, pp. 1–12.
[37] X. Dong and Y. Yang, “Searching for A Robust Neural

Architecture in Four GPU Hours,” in 2019 IEEE/CVF

Conference on Computer Vision and Pattern Recognition
(CVPR), 2019.

[38] A. Askarzadeh, “A novel metaheuristic method for solving
constrained engineering optimization problems: Crow search
algorithm,” Comput. Struct., vol. 169, pp. 1–12, Jun. 2016.

[39] G. I. Sayed, A. E. Hassanien, and A. T. Azar, “Feature selection
via a novel chaotic crow search algorithm,” Neural Comput.

Appl., 2019.

[40] C. Qu and Y. Fu, “Crow search algorithm based on
neighborhood search of non-inferior solution set,” IEEE Access,

vol. 7, pp. 52871–52895, 2019.

[41] A. Askarzadeh, “Capacitor placement in distribution systems for
power loss reduction and voltage improvement: A new

methodology,” IET Gener. Transm. Distrib., vol. 10, no. 14, pp.

3631–3638, Nov. 2016.
[42] D. Oliva, S. Hinojosa, E. Cuevas, G. Pajares, O. Avalos, and J.

Gálvez, “Cross entropy based thresholding for magnetic
resonance brain images using Crow Search Algorithm,” Expert
Syst. Appl., vol. 79, pp. 164–180, Aug. 2017.

[43] D. Liu et al., “ELM evaluation model of regional groundwater
quality based on the crow search algorithm,” Ecol. Indic., vol.
81, pp. 302–314, Oct. 2017.

[44] X. Han, Q. Xu, L. Yue, Y. Dong, G. Xie, and X. Xu, “An
Improved Crow Search Algorithm Based on Spiral Search
Mechanism for Solving Numerical and Engineering

Optimization Problems,” IEEE Access, pp. 1–1, Mar. 2020.

[45] M. Abdullah, M. Ahmad, and D. Han, “Neural Architecture
Search using Crow Search Algorithm,” in 34th International

Technical Conference on Circuits/Systems, Computers and

Communications, ITC-CSCC, 2019.

[46] Y. Lecun, L. Eon Bottou, Y. Bengio, and H. Patrick, “Gradient-
Based Learning Applied to Document Recognition,” in
Proceedings of the IEEE 86(11), 1998, pp. 2278–2324.

[47] A. Krizhevsky, “Learning Multiple Layers of Features from Tiny
Images,” Toronto, 2009.

[48] F. Wang et al., “Residual Attention Network for Image
Classification,” in Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition (CVPR), 2017, no. 1,

pp. 3156–3164.
[49] G. Huang, Z. Liu, K. Q. Weinberger, and L. van der Maaten,

“Densely Connected Convolutional Networks,” in Proceedings

of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2017.

[50] Y. Weng, T. Zhou, L. Liu, and C. Xia, “Automatic
Convolutional Neural Architecture Search for Image
Classification under Different Scenes,” IEEE Access, vol. 7, pp.

38495–38506, 2019.

[51] E. Real, A. Aggarwal, Y. Huang, and Q. V. Le, “Regularized
Evolution for Image Classifier Architecture Search,” in
Proceedings of the AAAI Conference on Artificial Intelligence,

2019, vol. 33, no. 01, pp. 4780–4789.
[52] E. Real et al., “Large-Scale Evolution of Image Classifiers,” in

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2020.3031599, IEEE Access

VOLUME XX, 2017 22

Proceedings of the 34th international conference on machine

learning, 2017, pp. 2902–2911.

[53] R. Luo, F. Tian, T. Qin, E. Chen, and T.-Y. Liu, “Neural
Architecture Optimization,” in Advances in neural information

processing systems (NIPS), 2018, pp. 7816–7827.

[54] M. Wistuba, “Deep learning architecture search by neuro-cell-
based evolution with function-preserving mutations,” in Lecture

Notes in Computer Science (including subseries Lecture Notes in

Artificial Intelligence and Lecture Notes in Bioinformatics),
2019, vol. 11052 LNAI, pp. 243–258.

