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Image Classi�cation by a Two Dimensional Hidden Markov Model

Jia Li, Amir Najmi, and Robert M. Gray �

Abstract

For block-based classi�cation, an image is divided into blocks and a feature vector is formed for

each block by grouping statistics extracted from the block. Conventional block-based classi�cation

algorithms decide the class of a block by examining only the feature vector of this block and ignoring

context information. In order to improve classi�cation by context, an algorithm is proposed, which

models images by two dimensional hidden Markov models (HMMs). The HMM considers feature vectors

statistically dependent through an underlying state process assumed to be a Markov mesh, which has

transition probabilities conditioned on the states of neighboring blocks from both horizontal and vertical

directions. Thus, the dependency in two dimensions is reected simultaneously. The HMM parameters

are estimated by the EM algorithm. To classify an image, the classes with maximum a posteriori

probability are searched jointly for all the blocks. Applications of the HMM algorithm to document and

aerial image segmentation show that the algorithm outperforms CARTTM , LVQ, and Bayes VQ.

I Introduction

For most block-based image classi�cation algorithms, such as BVQ [43], images are divided into blocks, and

decisions are made independently for the class of each block. This approach leads to an issue of choosing

block sizes. We do not want to choose a block size too large since this obviously entails crude classi�cation.

On the other hand, if we choose a small block size, only very local properties belonging to the small block

are examined in classi�cation. The penalty then comes from losing information about surrounding regions.

A well known method in signal processing to attack this type of problem is to use context information.

Trellis coding [22] in image compression provides an example. Previous work [19, 31] has looked into ways
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of taking advantage of context information to improve classi�cation performance. Both block sizes and

classi�cation rules can vary according to context. The improvement achieved demonstrates the potential

of context to help classi�cation. In this paper, a two dimensional hidden Markov model (2-D HMM) is

introduced as a general framework for context dependent classi�ers.

I.1 1-D HMM

The theory of hidden Markov models in one dimension (1-D HMMs) was developed in the 1960s by Baum,

Eagon, Petrie, Soules, and Weiss [3, 4, 5, 6]. HMMs have earned their popularity in large part from

successful application to speech recognition [2, 40, 45, 23, 12]. Underlying an HMM is a basic Markov

chain [33]. In fact, an HMM is simply a \Markov Source" as de�ned by Shannon [46] and Gallager [20]:

a conditionally independent process on a Markov chain or, equivalently, a Markov chain viewed through a

memoryless channel. Thus, at any discrete unit of time the system is assumed to exist in one of a �nite

set of states. Transitions between states take place according to a �xed probability depending only on the

state of the system at the unit of time immediately preceding (1-step Markovian). In an HMM, at each

unit of time a single observation is generated from the current state according to a probability distribution

depending only on the state. Thus, in contrast to a Markov model, since the observation is a random

function of the state, it is not in general possible to determine the current state by simply looking at the

current observation. HMMs owe both their name and modeling power to the fact that these states represent

abstract quantities that are themselves never observed. They correspond to "clusters" of contexts having

similar probability distributions of the observation.

Suppose that there are M states f1; :::;Mg and that the probability of transition between states i and

j is ai;j . Hence the probability that at time t the system will be in the state j given that at time t � 1 it

was in state i is ai;j . De�ne ut as the observation of the system at time t. This observation is generated

according to a probability distribution dependent only on the state at time t. Let bi(ut) be the probability

distribution of ut in state i. If �i is the probability of being in state i at time t = 1, then the likelihood of

observing the sequence u = futg
T
t=1 is evaluated by summing over all possible state sequences, that is,

P (u) =
X

s1 ;s2;::;sT

�s1bs1(u1)as1;s2bs2(u2) � � �asT�1 ;sT bsT (uT ) ;

where st represents the state at time t. For simplicity, if the meaning is clear from context, we will be sloppy

with notation P (�). When the argument is continuous, P (�) refers to the probability density function. In
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most continuous density HMM systems used for speech recognition, the density of the observation ut in

a particular state is assumed to be a Gaussian mixture distribution. Further generalization can be made

by assuming single Gaussian distributions since a state with a number of mixture components can be split

into substates with single Gaussian distributions. The density of the observation ut in state i is thus

bi(ut) =
1p

(2�)k det(�i)
e�

1

2
(ut��i)

t��1i (ut��i) ;

where k is the dimension of ut, and where �i and �i are the mean vector and covariance matrix, respectively.

Estimation of 1-D HMM model parameters is usually performed using the Baum-Welch algorithm [6]

(later shown to be a special case of the EM algorithm [13]), which performs maximum likelihood estimation.

Let Li(t) denote the conditional probability of being in state i at time t given the observations, and Hi;j(t)

denote the conditional probability of a transition from state i at time t to state j at time t + 1 given the

observations. The re-estimation formulae for the means, covariances, and the transition probabilities are

�̂i =

PT
t=1 Li(t)utPT
t=1Li(t)

�̂i =

PT
t=1 Li(t)(ut � �̂i)(ut � �̂i)tPT

t=1 Li(t)

âi;j =

PT�1
t=1 Hi;j(t)PT
t=1 Li(t)

:

To apply the above estimation formulae, the probabilities Li(t) and Hi;j(t) must be calculated. This

is done e�ciently by the so-called forward-backward algorithm [6]. De�ne the forward probability �i(t) as

the joint probability of observing the �rst t vectors u� , � = 1; :::; t, and being in state i at time t. This

probability can be evaluated by the following recursive formula

�i(1) = �ibi(u1) 1 � i �M

�i(t) = bi(ut)
MX
j=1

�j(t� 1)aj;i 1 < t � T; 1 � i �M :

De�ne the backward probability �i(t) as the conditional probability of observing the vectors after time t,

u� , � = t+1; :::; T , given the state at time t is i. As with the forward probability, the backward probability
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can be evaluated using the following recursion

�i(T ) = 1

�i(t) =
MX
j=1

ai;jbj(ut+1)�j(t + 1) 1 � t < T :

The probabilities Li(t) and Hi;j(t) are solved by

Li(t) = P (st = i j u) =
P (u; st = i)

P (u)

=
1

P (u)
�i(t)�i(t)

Hi;j(t) = P (st = i; st+1 = j j u)

=
1

P (u)
�i(t)ai;jbj(ut+1)�j(t+ 1) :

For details, see any of the references on speech recognition [40, 45, 23, 52].

An approximation to the maximum likelihood training provided by the Baum-Welch algorithm is what

is often termed Viterbi training [52], in which each observation is assumed (with weight of 1) to have

resulted from the single most likely state sequence that might have caused it. Denote the sequence of

states s = fstg
T
t=1. The state sequence with the maximum conditional probability given the observations

is

s� = max
s

�1P (s j u) = max
s

�1P (s;u) :

The second equality follows as u is �xed for all possible state sequences. The Viterbi algorithm [48] is

applied to maximize P (s;u) since maxs P (s;u) can be computed by the recursive formulae

�i(1) = �ibi(u1) 1 � i � M

�i(t) = max
j
f�j(t� 1)aj;igbi(ut) 1 < t � T; 1 � i � M

max
s

P (s;u) = max
j

�j(T ) :
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The model parameters are then estimated by

�̂i =

PT
t=1 I(s

�
t = i)utPT

t=1 I(s
�
t = i)

�̂i =

PT
t=1 I(s

�
t = i)(ut � �̂i)(ut � �̂i)

t

PT
t=1 I(s

�
t = i)

âi;j =

PT�1
t=1 I(s�t = i)I(s�t+1 = j)PT

t=1 I(s
�
t = i)

:

As usual, I(�) is the indicator function that equals one when the argument is true, and zero otherwise.

Note that the estimation formulae above di�er from the Baum-Welch formulae by substitution of I(s�t = i)

for Li(t) and I(s�t = i)I(s�t+1 = j) for Hi;j(t). Thus, another way to view the Viterbi training is that

the state sequence with the maximum a posteriori probability is assumed to be the real state sequence.

With the real state sequence known, the probability of being in state i at time t, Li(t), is either 1 or 0

depending on whether the real state at t equals i, i.e., Li(t) = I(s�t = i). For the Baum-Welch algorithm,

the assignment of observations to states is \soft" in the sense that each observation is assigned to each state

with a weight Li(t). For the Viterbi training algorithm, however, the observations are uniquely assigned

to the states according to the state sequence with the maximum a posteriori probability.

While more e�cient computationally, Viterbi training does not in general result in maximum likelihood

estimates. Note that an intermediate technique often used is to consider only the N most likely state

sequences for each observation sequence for likelihood weighted training.

I.2 Previous Work on 2-D HMM

To apply the HMM to images, previous work extended the 1-D HMM to a pseudo 2-D HMM [29, 51]. The

model is \pseudo 2-D" in the sense that it is not a fully connected 2-D HMM. The basic assumption is

that there exists a set of \superstates" that are Markovian. Within each superstate there is a set of simple

Markovian states. For 2-D images, �rst the superstate is chosen using a �rst order Markov transition

probability based on the previous superstate. This superstate determines the simple Markov chain to be

used by the entire row. A simple Markov chain is then used to generate observations in the row. Thus,

superstates relate to rows and simple states to columns. In particular applications, this model works better

than the 1-D HMM [29], but we expect the pseudo 2-D HMM to be much more e�ective with regular images,
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such as documents. Since the e�ect of the state of a pixel on the state below it is distributed across the

whole row, the pseudo 2-D model is too constrained for normal image classi�cation.

The e�ort devoted to applying a truly 2-D HMM to image segmentation was �rst made by Devijver [14,

15, 16]. Devijver proposed representing images as hidden Markov models with the state processes being

Markov meshes, in particular, second and third order Markov meshes, the former being the focus of

following sections. Applications to image segmentation, restoration, and compression were explored [16, 17,

18]. In [14], it was noted that the complexity of estimating the models or using them to perform maximum

a posteriori (MAP) classi�cation is exponential in w � w, the size of an image. The analytic solution

for estimating the models was not discussed. Instead, computationally feasible algorithms [14, 15, 16]

were developed by making additional assumptions regarding models or using locally optimal solutions.

Worth noting is the deterministic relaxation algorithm [14] for searching maximum a posteriori states.

The algorithm optimizes states iteratively by making local changes to current states in such a way as

to increase the likelihood of the entire image. The result depends critically on the initial states. In

Section III, we derive analytic formulas for model estimation and show that computation is exponential

in 2w by using a forward-backward-like algorithm. A suboptimal algorithm is described in Section V to

achieve polynomial-time complexity.

Other work based on 2-D HMMs includes an algorithm for character recognition developed by Levin

and Pieraccini [30], and an image decoding system over noisy channels constructed by Park and Miller [39].

In [39], 2-D HMMs with Markov meshes are used to model noisy channels, in which case underlying states,

corresponding to true indices transmitted by an encoder, are observable from training data. Consequently,

it is straightforward to estimate the models, whereas estimation is the main di�culty for situations when

states are unobservable.

I.3 Outline of the Algorithm

An outline of our algorithm is as follows:

1. Training

(a) Divide training images into nonoverlapping blocks with equal size and extract a feature vector

for each block.

(b) Select the number of states for the 2-D HMM.

(c) Estimate model parameters based on the feature vectors and their hand-labeled classes.
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2. Testing

(a) Generate feature vectors (same as step 1a) for the testing image.

(b) Search for the set of classes with maximum a posteriori probability given the feature vectors

according to the trained 2-D HMM.

In Section II, we provide a mathematical formulation of the basic assumptions of the 2-D HMM. Sec-

tion III derives the iterative estimation algorithm for the model according to the general EM algorithm.

Computational complexity is analyzed in Section IV. In Section IV, backward and forward probabilities

in the 2-D case are introduced to e�ciently estimate the model. Our algorithm further lowers the com-

putational complexity by using the Viterbi training. A suboptimal fast version of the Viterbi algorithm

is described in Section V. Two applications of classi�cation based on the 2-D HMM are presented in

Section VI. We conclude in Section VII.

II Assumptions of 2-D HMM

As in all block based classi�cation systems, an image to be classi�ed is divided into blocks and feature

vectors are evaluated as statistics of the blocks. The image is then classi�ed according to the feature

vectors.

The 2-D HMM assumes that the feature vectors are generated by a Markov model which may change

state once every block. Suppose there are M states, f1; :::;Mg, the state of block (i; j) is denoted by si;j .

The feature vector of block (i; j) is ui;j and the class is ci;j . Denote (i0; j0) < (i; j), or (i; j) > (i0; j 0), if

i0 < i, or i0 = i and j 0 < j, in which case we say that block (i0; j0) is before block (i; j). For example, in

the left panel of Fig. 1, the blocks before (i; j) are the shaded blocks. This sense of order is the same as

the raster order of row by row. We would like to point out, however, that this order is introduced only

for stating the assumptions. In classi�cation, blocks are not classi�ed one by one in such an order. The

classi�cation algorithm attempts to �nd the optimal combination of classes jointly for many blocks at once.

A one dimensional approach of joint classi�cation, assuming a scanning order in classi�cation, is usually

suboptimal.
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(i, j)(i, j)

Figure 1: The Markovian property of transitions among states

The �rst assumption made is that

P (si;j j si0 ;j0 ; ui0;j0 : (i
0; j0) 2 	) = am;n;l ; (1)

where 	 = f(i0; j0) : (i0; j0) < (i; j)g

and m = si�1;j ; n = si;j�1; and l = si;j :

The above assumption can be summarized by two points. First, the state si0 ;j0 is a su�cient statistic for

(si0;j0 ; ui0;j0) for estimating transition probabilities, i.e., the u are conditionally memoryless. Second, the

state transition is �rst order Markovian in a two dimensional sense. The probability of the system entering

a particular state depends upon the state of the system at the adjacent observations in both horizontal

and vertical directions. A transition from any state to any state is allowed. Shown in the left panel of

Fig. 1, knowing the states of all the shaded blocks, we need only the states of the two adjacent blocks in

the darker shade to calculate the transition probability to a next state. It is also assumed that there is a

unique mapping from states to classes. Thus, the classes of the blocks are determined once the states are

known.

The second assumption is that for every state, the feature vectors follow a Gaussian mixture distri-

bution. Once the state of a block is known, the feature vector is conditionally independent of the other

blocks. Since any state with an M -component Gaussian mixture can be split into M substates with single

Gaussian distributions, the model restricts us to single Gaussian distributions. For a block with state s

and feature vector u, the distribution has density

bs(u) =
1p

(2�)kj�sj
e�

1

2
(u��s)t�

�1
s (u��s) ; (2)

where �s is the covariance matrix and �s is the mean vector.

The Markovian assumption on state transitions can simplify signi�cantly the evaluation of the prob-
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ability of the states, i.e., Pfsi;j : (i; j) 2 Ng, where N = f(i; j) : 0 � i < w; 0 � j < zg refers to all the

blocks in an image. To expand this probability e�ciently by the conditional probability formula, we �rst

prove that a rotated form of the two dimensional Markovian property holds given the two assumptions.

Recall the de�nition: (i0; j0) < (i; j) if i0 < i or i0 = i, and j 0 < j. We then de�ne a rotated relation of \<",

denoted by \~<", which speci�es (i0; j 0)~<(i; j), or (i; j)~>(i0; j0), if j 0 < j, or j 0 = j and i0 < i. An example

is shown in the right panel of Fig. 1. To prove that

P (si;j j si0 ;j0 ; ui0;j0 : (i0; j0) 2 ~	) = am;n;l ;

where ~	 = f(i0; j0) : (i0; j0)~<(i; j)g

and m = si�1;j ; n = si;j�1; and l = si;j ;

use the previous de�nition 	 = f(i0; j 0) : (i0; j0) < (i; j)g and introduce the following notation:

~	 [	 = f(i0; j0) : (i0; j0) < (i; j) or (i0; j0)~<(i; j)g ;

~	 \	 = f(i0; j0) : (i0; j 0) < (i; j) and (i0; j0)~<(i; j)g ;

~	�	 = f(i0; j0) : (i0; j 0)~<(i; j) and (i0; j0) > (i; j)g :

Note that ~	 = (~	\	)[ (~	�	). Denote 0 = P (si0 ;j0 ; ui0;j0 : (i0; j0) 2 ~	) and 1 = P (si0;j0 ; ui0;j0 : (i0; j0) 2

~	 \ 	). We can then derive

P (si;j j si0;j0 ; ui0;j0 : (i0; j0) 2 ~	)

=
1

0
� P (si;j ; si0;j0 ; ui0;j0 ; si00;j00 ; ui00;j00 : (i0; j0) 2 ~	 \ 	; (i00; j 00) 2 ~	� 	)

=
1
0

� P (si;j j si0;j0 ; ui0;j0 : (i0; j0) 2 ~	 \	) �

P (si00;j00 ; ui00;j00 : (i00; j00) 2 ~	� 	 j si;j ; si0;j0 ; ui0;j0 : (i0; j0) 2 ~	 \	) (3)

=
1
0

� P (si;j j si�1;j ; si;j�1) �

P (si00;j00 ; ui00;j00 : (i00; j00) 2 ~	� 	 j si;j ; si0;j0 ; ui0;j0 : (i0; j0) 2 ~	 \	) (4)

= P (si;j j si�1;j ; si;j�1) �

1
0

� P (si00;j00 ; ui00;j00 : (i00; j 00) 2 ~	� 	 j si0 ;j0 ; ui0;j0 : (i0; j0) 2 ~	 \ 	) (5)

= P (si;j j si�1;j ; si;j�1)

= am;n;l
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where m = si�1;j , n = si;j�1, and l = si;j . Equality (3) follows from the expansion of conditional

probability. Equality (4) follows from the Markovian assumption. Equality (5) holds due to both the

Markovian assumption and the assumption that the feature vector of a block is conditionally independent

of other blocks given its state.

From the derivation, there follows an even stronger statement, that is,

P (si;j j si0;j0 ; ui0;j0 : (i0; j0) 2 ~	 [	) = P (si;j j si�1;j ; si;j�1) : (6)

The reason is that in the derivation, if we change ~	 \	 to 	 and ~	 to ~	 [	, all the equalities still hold.

Since Equation (6) implies obviously the original Markovian assumption and its rotated version, we have

shown the equivalence of the two assumptions:

P (si;j j si0 ;j0 ; ui0;j0 : (i0; j0) 2 	) = P (si;j j si�1;j ; si;j�1) and

P (si;j j si0 ;j0 ; ui0;j0 : (i0; j0) 2 ~	 [	) = P (si;j j si�1;j ; si;j�1) :

We point out that the underlying state process de�ned is a special case of a Markov random �eld (MRF) [26,

21], which was referred to as Markov mesh and proposed by Abend, Harley and Kanal [1, 25] for the

classi�cation of binary random patterns. The Markov mesh is called a \causal" MRF [7, 25, 44] because

states in condition are the states of \past"|blocks above and to the left of a current block. The causality

enables the derivation of an analytic iterative algorithm to estimate an HMM and to estimate states with

the maximum a posteriori probability.

Now we are ready to simplify the expansion of Pfsi;j : (i; j) 2 Ng:

Pfsi;j : (i; j) 2 Ng = P (T0) � P (T1 j T0) � � �P (Tw+z�2 j Tw+z�3; Tw+z�4; : : : ; T0) ; (7)

where Ti denotes the sequence of states for blocks on diagonal i, fsi;0; si�1;1; � � � ; s0;ig, and w and z are

the number of rows and columns respectively, as shown in Fig. 2.

We next show that P (Ti j Ti�1; : : : ; T0) = P (Ti j Ti�1). Without loss of generality, suppose Ti =
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T
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w-1

w w+z-2

Figure 2: Blocks on the diagonals of an image

fsi;0; si�1;1; : : : ; s0;ig; then Ti�1 = fsi�1;0; si�2;1; : : : ; s0;i�1g and

P (Ti j Ti�1; : : : ; T0) = P (si;0; si�1;1; : : : ; s0;i j Ti�1; Ti�2; : : : ; T0)

= P (si;0 j Ti�1; : : : ; T0) � P (si�1;1 j si;0; Ti�1; : : : ; T0)

� � �P (s0;i j s1;i�1; : : : ; si;0; Ti�1; : : : ; T0)

= P (si;0 j si�1;0) � P (si�1;1 j si�2;1; si�1;0) � � �P (s0;i j s0;i�1) :

The last equality is obtained from Equation (6). Since all the states si;j that appear in the conditions are

in Ti�1, it is concluded that

P (Ti j Ti�1; : : : ; T0) = P (Ti j Ti�1) :

Equation (7) simpli�es to

Pfsi;j : (i; j) 2 Ng = P (T0) � P (T1 j T0) � � �P (Tw+z�2 j Tw+z�3) : (8)

The state sequence Ti thus serves as an \isolating" element in the expansion of Pfsi;j : (i; j) 2 Ng,

which plays the role of a state at a single unit of time in the case of a one dimensional Markov model. As

we shall see, this property is essential for developing the algorithm. We may notice that, besides diagonals,

there exist other geometric forms that can serve as \isolating" elements, for example, state sequences on

rows or columns. State sequences Ti on diagonals are preferred for computational reasons which will be

explained in Section V.

The task of the classi�er is to estimate the 2-D HMM from training data and to classify images by �nd-

ing the combination of states with the maximum a posteriori probability given the observed feature vectors.

11



III Parameter Estimation

For the assumed HMM, we need to estimate the following parameters: transition probabilities am;n;l, where

m;n; l = 1; :::;M , and M is the total number of states, the mean vectors �m, and the covariance matrices

�m of the Gaussian distributions, m = 1; :::;M . We de�ne set M = f1; :::;Mg. The parameters are

estimated by the maximum likelihood (ML) criterion using the EM algorithm [13, 50, 6]. First, the EM

algorithm as described in Dempster, Laird and Rubin [13] is introduced briey. The algorithm is then

applied to the particular case to derive a speci�c formula.

The EM algorithm provides an iterative computation of maximum likelihood estimation when the

observed data are incomplete. The term \incomplete" reects the fact that we need to estimate the

distribution of x, in sample space X , but we can only observe x indirectly through y, in sample space Y .

In many cases, there is a mapping x ! y(x) from X to Y , and x is only known to lie in a subset of X ,

denoted by X (y), which is determined by the equation y = y(x). We postulate a family of distribution

f(x j �), with parameters � 2 
, on x. The distribution of y, g(y j �), can be derived as

g(y j �) =

Z
X (y)

f(x j �)dx :

The EM algorithm aims at �nding a � that maximizes g(y j �) given an observed y.

Before describing the algorithm, we introduce a function [13]

Q(�0 j �) = E(log f(x j �0) j y; �) ;

that is, the expected value of log f(x j �0) according to the conditional distribution of x given y and

parameter �. The expectation is assumed to exist for all pairs (�0; �). In particular, it is assumed that

f(x j �) > 0 for � 2 
. The EM iteration �(p) ! �(p+1) is de�ned in [13] as follows:

1. E-step: Compute Q(� j �(p)).

2. M-step: Choose �(p+1) to be a value of � 2 
 that maximizes Q(� j �(p)).

De�ne the following notation:
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1. The set of observed feature vectors for the entire image is u = fui;j : (i; j) 2 Ng.

2. The set of states for the image is s = fsi;j : (i; j) 2 Ng.

3. The set of classes for the image is c = fci;j : (i; j) 2 Ng.

4. The mapping from a state si;j to its class is C(si;j), and the set of classes mapped from states s is

denoted by C(s).

Speci�c to our case, the complete data x are fsi;j ; ui;j : (i; j) 2 Ng, and the incomplete data y are

fci;j; ui;j : (i; j) 2 Ng. The function f(x j �0) is

f(x j �0) = P (s j �0) � P (u j s; �0)

= P (s j a0m;n;l : m;n; l 2M) � P (u j s; �0m;�
0
m : m 2 M)

=
Y

(i;j)2N

a0si�1;j ;si;j�1 ;si;j �
Y

(i;j)2N

P (ui;j j �
0
si;j

;�0
si;j

) :

We then have

log f(x j �0) =
X

(i;j)2N

log a0si�1;j ;si;j�1 ;si;j +
X

(i;j)2N

log P (ui;j j �
0
si;j

;�0
si;j

) : (9)

Given y, x can only take �nite number of values, corresponding to di�erent sets of states s that have

classes consistent with y. The distribution of x is

P (x j y; �(p)) =
1

�
I(C(s) = c) � P (s j �(p)) � P (u j s; �(p))

=
1

�
I(C(s) = c) �

Y
(i;j)2N

a(p)si�1;j ;si;j�1;si;j
�
Y

(i;j)2N

P (ui;j j �
(p)
si;j

;�(p)
si;j

) ;

where � is a normalization constant, and I(�) is the obvious indicator function. From this point, we write

P (x j y; �(p)) as P (s j y; �(p)), assuming that all the ui;j in x are the same as those in y, since otherwise

the conditional probability of x given y is zero.

In the M-step, we set �(p+1) to the �0 that maximizes

E(log f(x j �0) j y; �(p)) =
1

�

X
s

P (s j y; �(p)) �
X

(i;j)2N

log a0si�1;j ;si;j�1 ;si;j +

1

�

X
s

P (s j y; �(p))
X

(i;j)2N

logP (ui;j j �
0
si;j

;�0
si;j

) : (10)
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Equation (10) follows directly from (9). The two items in (10) can be maximized separately by choosing

corresponding parameters. Consider the �rst term

X
s

P (s j y; �(p)) �
X

(i;j)2N

log a0si�1;j ;si;j�1;si;j

=
X
s

P (s j y; �(p)) �
X

m;n;l2M

X
(i;j)2N

log a0m;n;l � I(m = si�1;j ; n = si;j�1; l = si;j)

=
X

m;n;l2M

log a0m;n;l

X
(i;j)2N

X
s

P (s j y; �(p))I(m = si�1;j ; n = si;j�1; l = si;j) : (11)

De�ne

H
(p)
m;n;l

(i; j) =
X
s

I(m = si�1;j ; n = si;j�1; l = si;j)P (s j y; �
(p)) ;

the probability of being in state m at block (i� 1; j), state n at block (i; j � 1), and state l at block (i; j)

given the observed feature vectors, classes, and model �(p). Expression (11) becomes

X
m;n;l2M

log a0m;n;l

X
(i;j)2N

H
(p)
m;n;l

(i; j) ;

which is concave in a0m;n;l. Therefore, to maximize Equation (11) under the linear constraint

MX
l=1

a0m;n;l = 1 ; for all m;n 2 M ;

use a Lagrangian multiplier and take derivatives with respect to a0m;n;l. The conclusion is

a0m;n;l /
X

(i;j)2N

H
(p)
m;n;l

(i; j) ;

which in turn yields

a0m;n;l =

P
(i;j)2NH

(p)
m;n;l

(i; j)PM
l0=1

P
(i;j)2NH

(p)
m;n;l0

(i; j)
:
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Next consider the maximization of the second term in Equation (10):

X
s

P (s j y; �(p)) �
X

(i;j)2N

logP (ui;j j �0si;j ;�
0
si;j

)

=
X
s

P (s j y; �(p)) �
MX

m=1

X
(i;j)2N

log P (ui;j j �0m;�0
m)I(m = si;j)

=
MX

m=1

X
(i;j)2N

X
s

I(m = si;j)P (s j y; �(p)) � log P (ui;j j �
0
m;�

0
m) :

To simplify the above expression, let

L(p)
m (i; j) =

X
s

I(m = si;j)P (s j y; �(p)) ;

which is the probability of being in state m at block (i; j) given the observed feature vectors, classes and

model �(p). The above expression is then

MX
m=1

X
(i;j)2N

L(p)
m (i; j) logP (ui;j j �0m;�

0
m) :

It is known that for Gaussian distributions, the ML estimate of �0m is the sample average of the data, and

the ML estimate of �0
m is the sample covariance matrix of the data [8]. Since in our case, the data are

weighted by L
(p)
m (i; j), the ML estimate of �0m and �0

m are

�0m =

P
i;j L

(p)
m (i; j)ui;jP

i;j L
(p)
m (i; j)

;

�0
m =

P
i;j L

(p)
m (i; j)(ui;j � �0m)(ui;j � �0m)

t

P
i;j L

(p)
m (i; j)

:

In summary, the estimation algorithm iteratively improves the model estimation by the following two

steps:

1. Given the current model estimation �(p), the observed feature vectors ui;j , and classes ci;j , the mean
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vectors and covariance matrices are updated by

�(p+1)m =
�i;jL

(p)
m (i; j)ui;j

�i;jL
(p)
m (i; j)

(12)

�(p+1)
m =

�i;jL
(p)
m (i; j)(ui;j � �

(p+1)
m )(ui;j � �

(p+1)
m )t

�i;jL
(p)
m (i; j)

: (13)

The probability L
(p)
m (i; j) is calculated by

L(p)
m (i; j) =

X
s

I(m = si;j) �
1

�
I(C(s) = c) �

Y
(i0;j0)2N

a(p)si0�1;j0 ;si0 ;j0�1;si0;j0
�
Y

(i0;j0)2N

P (ui0;j0 j �
(p)
si0;j0

;�(p)
si0;j0

) : (14)

2. The transition probabilities are updated by

a
(p+1)
m;n;l

=

P
i;j H

(p)
m;n;l(i; j)PM

l0=1

P
i;j H

(p)
m;n;l0

(i; j)
;

where H
(p)
m;n;l(i; j) is calculated by

H
(p)
m;n;l

(i; j) =
X
s

I(m = si�1;j ; n = si;j�1; l = si;j) �
1

�
I(C(s) = c) �

Y
(i0;j0)2N

a(p)si0�1;j0 ;si0;j0�1;si0 ;j0
�
Y

(i0;j0)2N

P (ui0 ;j0 j �
(p)
si0 ;j0

;�(p)
si0;j0

) : (15)

The iterative algorithm starts by setting an initial state for each feature vector. For every class, feature

vectors labeled as this class are sequenced in a raster order; and the states corresponding to this class are

assigned in a round-robin way to those vectors. In the initial step, since the initial states are assumed to

be true, L
(0)
m (i; j) and H

(0)
m;n;l

(i; j) are computed simply by

L(0)
m (i; j) = I(m = s

(0)
i;j )

H
(0)
m;n;l(i; j) = I(m = s

(0)
i�1;j ; n = s

(0)
i;j�1; l = s

(0)
i;j ) ;

where s
(0)
i;j denotes the initial states.

In the case of a one dimensional HMM as used in speech recognition, the forward-backward algorithm
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is applied to calculate Lm(k) and Hm;l(k) [52] e�ciently. For a 2-D HMM, however, the computation of

Lm(i; j) and Hm;n;l(i; j) is not feasible in view of the two dimensional transition probabilities. In the next

section, we discuss why this is so and how to reduce the computational complexity.

IV Computational Complexity

As is shown in previous section, the calculation of the probabilities H
(p)
m;n;l(i; j) and L

(p)
m (i; j) is the key

for the iterative estimation of the model parameters. If we compute L
(p)
m (i; j) and H

(p)
m;n;l

(i; j) directly

according to Equation (14) and (15), we need to consider all the combinations of states that yield the

same classes as those in the training set. The large number of such combinations of states results in an

infeasible computation. Let us take L
(p)
m (i; j) as an example. Suppose there are M0 states for each class

and the number of blocks in an image is w � z as previously assumed, then the number of admissible

combinations of states that satisfy C(s) = c and si;j = m, is M
(w�z�1)
0 . When applying the HMM

algorithm, although one image is often divided into many sub-images such that w, or z, is the number of

blocks in one column, or one row, in a sub-image, we need to keep w and z su�ciently large to ensure that

an adequate amount of context information is incorporated in classi�cation. In the limit, if w = z = 1,

the algorithm is simply a parametric classi�cation algorithm performed independently on each block. It is

normal to have w = z = 8. In this case, if there are 4 states for each class, the number of the combinations

of states is M
(w�z�1)
0 = 463, which is prohibitive for a straightforward calculation of L

(p)
m (i; j). A similar

di�culty occurs when estimating a one dimensional HMM. The problem is solved by a recursive calculation

of forward and backward probabilities [52].

The idea of using forward and backward probabilities can be extended to the two dimensional HMM

to simplify the computation. Recall Equation (8) in Section II,

Pfsi;j : (i; j) 2 Ng = P (T0) � P (T1 j T0) � � �P (Tw+z�2 j Tw+z�3) :

The fact that the state sequence Ti on a diagonal is an \isolating" element in the expansion of Pfsi;j :

(i; j) 2 Ng enables us to de�ne the forward and backward probabilities and to evaluate them by recursive

formulas.

Let us clarify notation �rst. In addition to the notation provided in the list in Section III, we need the

following de�nitions:

17



1. The diagonal on which block (i; j) lies is denoted by �(i; j).

2. The feature vectors on diagonal d, fui;j : �(i; j) = dg, is denoted by u(d).

3. The state sequence on diagonal d, fsi;j : �(i; j) = dg, is denoted by s(d).

4. For a state sequence T on diagonal d, its value at block (i; j) is T (i; j).

The forward probability �T (d) for some model M is de�ned as

�T (d) = Pfs(d) = T;u(�) : � � d jMg

The forward probability �T (d) is the probability of observing the vectors lying on or above diagonal d and

having state sequence T for blocks on diagonal d.

The backward probability �T (d) is de�ned as

�T (d) = Pfu(�) : � > d j s(d) = T; Mg ;

that is, �T (d) is the conditional probability of observing the vectors lying below diagonal d given the state

sequence on diagonal d is T .

Similar to the case of 1-D HMM, we can derive recursive formulas for calculating �T (d) and �T (d),

which are listed below.

�Td(d) =
X
Td�1

�Td�1(d� 1) � P (Td j Td�1; M) � P (u(d) j Td; M) ; (16)

�Td(d) =
X
Td+1

P (Td+1 j Td; M) � P (u(d+ 1) j Td+1; M) � �Td+1(d+ 1) : (17)

We can then compute Lm(i; j) given model M by

Lm(i; j) = P (si;j = m j u; c; M)

=

8><
>:
P

Td:Td(i;j)=m P (Td j u; c; M) C(m) = ci;j

0 otherwise :

Consider the case C(m) = ci;j . It is assumed in the derivation below that the summation over Td only

18



covers Td that yields consistent classes with the training data.

Lm(i; j) =
X

Td:Td(i;j)=m

P (Td;u jM)

P (u; c jM)

=
X

Td:Td(i;j)=m

�Td(�(i; j)) � �Td(�(i; j))

P (u; c jM)
: (18)

The subscript `d' in Td denotes the diagonal d of block (i; j). In the following calculation of Hm;n;l(i; j),

the summations are always over state sequences with the same classes as those in the training data.

Hm;n;l(i; j) = P (si�1;j = m; si;j�1 = n; si;j = l j u; c; M)

=

8><
>:
P

Td

P
Td�1

P (Td; Td�1 j u; c;M) C(m) = ci�1;j ; C(n) = ci;j�1; C(l) = ci;j

0 otherwise :

We then consider the case C(m) = ci�1;j , C(n) = ci;j�1, and C(l) = ci;j . In the equation below, the

summations over Td and Td�1 are constrained additionally to Td satisfying Td(i; j) = l and Td�1 satisfying

Td�1(i� 1; j) = m, Td�1(i; j � 1) = n.

Hm;n;l(i; j) =
X
Td

X
Td�1

�Td�1(�(i; j)� 1)

P (u; c jM)
�

[P (Td j Td�1; M)P (u(d) j Td; M) � �Td(�(i; j))] : (19)

Although using the forward and backward probabilities signi�cantly reduces the computation for

Lm(i; j) and Hm;n;l(i; j), computational complexity is still high due to the two dimensional aspects. Equa-

tion (16) and (17) for evaluating the forward and backward probabilities are summations over all state

sequences on diagonal d � 1, or d + 1, with classes consistent with the training data. With the increase

of blocks on a diagonal, the number of state sequences increases exponentially. The same problem occurs

with calculating Lm(i; j) and Hm;n;l(i; j). Consequently, an approximation is made in the calculation of

Lm(i; j) and Hm;n;l(i; j) to avoid computing the backward and forward probabilities. Recall the de�nitions

in Section III

H
(p)
m;n;l

(i; j) =
X
s

I(m = si�1;j ; n = si;j�1; l = si;j)P (s j y; �(p)) ;

L(p)
m (i; j) =

X
s

I(m = si;j)P (s j y; �(p)) :
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To simplify the calculation of Lm(i; j) and Hm;n;l(i; j), it is assumed that the single most likely state

sequence accounts for virtually all the likelihood of the observations. We thus aim at �nding the optimal

state sequence that maximizes P (s j y; �(p)), which is accomplished by the Viterbi training algorithm.

V Variable-state Viterbi Algorithm

Using the Viterbi algorithm to maximize P (s j y) is equivalent to maximizing Pfsi;j ; ui;j : (i; j) 2 Ng

constrained to C(si;j) = ci;j during training. When we apply the trained model to classify images (testing

process), we also aim at �nding states fsi;j : (i; j) 2 Ng maximizing Pfsi;j ; ui;j : (i; j) 2 Ng (MAP rule).

The states are then mapped into classes. In testing, since ci;j is to be decided, the previous constraint that

C(si;j) = ci;j is removed.

In the discussion, the unconstrained (testing) case is considered, since in the constrained case the only

di�erence is to shrink the search range of si;j to states corresponding to class ci;j . Expand Pfsi;j ; ui;j :

(i; j) 2 Ng as

Pfsi;j ; ui;j : (i; j) 2 Ng

= Pfsi;j : (i; j) 2 Ng � Pfui;j : (i; j) 2 N j si;j : (i; j) 2 Ng

= Pfsi;j : (i; j) 2 Ng �
Y

(i;j)2N

P (ui;j j si;j)

= P (T0) � P (T1 j T0) � P (T2 j T1) � � �P (Tw+z�2 j Tw+z�3)
Y

(i;j)2N

P (ui;j j si;j); (20)

where Td denotes the sequence of states for blocks lying on diagonal d. The last equality comes from

Equation (7).

Since Td serves as an \isolating" element in the expansion of Pfsi;j : (i; j) 2 Ng, the Viterbi algorithm

can be applied straightforwardly to �nd the combination of states maximizing the likelihood Pfsi;j ; ui;j :

(i; j) 2 Ng. The di�erence from the normal Viterbi algorithm is that the number of possible sequences

of states at every position in the Viterbi transition diagram increases exponentially with the increase of

blocks in Td. If there are M states, the amount of computation and memory are both in the order of

M� , where � is the number of states in Td. Fig. 3 shows an example. Hence, this version of the Viterbi

algorithm is referred to as a variable-state Viterbi algorithm.

The fact that in the two dimension case, only a sequence of states on a diagonal, rather than a single
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Figure 3: The variable-state Viterbi algorithm

block, can serve as an \isolating" element in the expansion of Pfsi;j : (i; j) 2 Ng causes computational

infeasibility for the variable-state Viterbi algorithm. To reduce computation, at every position of the

Viterbi transition diagram, the algorithm only uses N out of all the M� sequences of states, shown in

Fig. 4. The paths are constrained to pass one of these N nodes. To choose the N sequences of states,

the algorithm separates the blocks in the diagonal from the other blocks by ignoring their statistical

dependency. Consequently, the posterior probability of a sequence of states on the diagonal is evaluated

as a product of the posterior probability of every block. Then, the N sequences with the largest posterior

probabilities are chosen as the N nodes allowed in the Viterbi transition diagram. The implicit assumption

in doing this is that the optimal state sequence (the node in the optimal path of the Viterbi transition

diagram) yields high likelihood when the blocks are treated independently. It is also expected that when

the optimal state sequence is not among the N nodes, the chosen suboptimal state sequence coincides with

the optimal sequence at most of the blocks. The sub-optimal version of the algorithm is referred to as

the path-constrained variable-state Viterbi algorithm. This algorithm is di�erent from the M-algorithm

introduced for source coding by Jelinek and Anderson [24] since the N nodes are pre-selected to avoid

calculating the posterior probabilities of all the M� state sequences.

As mentioned in Section II, state sequences on rows or columns can also serve as \isolating" elements in

the expansion of Pfsi;j : (i; j) 2 Ng. Diagonals are chosen for the expansion because intuition suggests that

the pre-selection of N nodes by ignoring dependence among states on a diagonal degrades performance

less than would doing the same for a row or a column. Remember that blocks on a diagonal are not

geometrically as close as blocks on a row or a column.

A fast algorithm is developed for choosing suchN sequences of states. It is not necessary to calculate the
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posterior probabilities of all the M� sequences in order to choose the largest N from them. In the following

discussion, we consider the maximization of the joint log likelihood of states and feature vectors, since

maximizing the posterior probability of the states given the feature vectors is equivalent to maximizing

the joint log likelihood. Also, note that the log likelihood of a sequence of states is equal to the sum

of the log likelihoods of the individual states because we ignore context information in the pre-selection

of nodes. Suppose there are � blocks on a diagonal, and each block exists in one of M states. The

log likelihood of block i being in state m is i;m. The pre-selection of the N nodes is simply to �nd N

state sequences fsi : i = 1; :::; �g with the largest
P�

i=1 i;si . Suppose we want to �nd the state sequence

max�1si:i=1;:::;�

P�
i=1 i;si ; it is unnecessary to calculate

P�
i=1 i;si for all the M

� state sequences. We need

only to �nd max�1si
i;si for each i, then the optimal state sequence is fmax�1si

i;si : i = 1; :::; �g. The idea

can be extended for �nding the N sequences with the largest log likelihood.

To ensure that the path-constrained variable-state Viterbi algorithm yields results su�ciently close to

the variable-state Viterbi algorithm, the parameter N should be larger when there are more blocks in the

2-D Markov chain. As a result, an image is usually divided into sub-images to avoid too many blocks

in one chain. Every sub-image is assumed to be a 2-D Markov chain, but the dependence between sub-

images is ignored. On the other hand, to incorporate any preassigned amount of context information for

classi�cation, the sub-images must contain su�ciently many blocks. The selection of the parameters will

be discussed in the section on experiments.
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VI Applications

VI.1 Intra- and Inter-block Features

Choosing features is a critical issue in classi�cation because features often set the limits of classi�cation

performance. For a classi�er based on the 2-D HMM, both intra-block features and inter-block features

are used. The intra-block features are de�ned according to the pixel intensities in a block. They aim at

describing the statistical properties of the block. Features selected vary greatly for di�erent applications.

Widely used examples include moments in the spatial domain or frequency domain and coe�cients of

transformations, e.g., the discrete cosine transform (DCT).

The inter-block features are de�ned to represent relations between two blocks, for example, the di�er-

ence between the average intensities of the two blocks. The use of the inter-block features is similar to that

of delta and acceleration coe�cients in speech recognition, in which there is ample empirical justi�cation

for the inclusion of these features [52]. The motivation for us to use inter-block features is to compensate

for the strictness of the 2-D HMM. The 2-D HMM assumes constant state transition probabilities. In

practice, however, we expect that a transition to a state may depend on some mutual properties of two

blocks. For instance, if the two blocks have close intensities, then they may be more likely to be in the

same state. Since it is too complicated to estimate models with transition probabilities being functions, we

preserve the constant transition probabilities and o�set this assumption somewhat by incorporating the

mutual properties into feature vectors in such a way that they can inuence the determination of states

through posterior probabilities. In the 2-D HMM, since the states of adjacent blocks right above or to the

left of a block determine the transition probability to a new state, mutual properties between the current

block and these two neighboring blocks are used as inter-block features.

VI.2 Aerial Image Segmentation

VI.2.1 Features

The �rst application of the 2-D HMM algorithm is the segmentation into man-made and natural regions

of aerial images. The images are 512 � 512 gray-scale images with 8 bits per-pixel (bpp). They are the

aerial images of the San Francisco Bay area provided by TRW (formerly ESL, Inc.) [35]. The data set

used contains six images, whose hand-labeled segmented images are used as the truth set of classes. The

six images and their hand-labeled classes are shown in Fig. 6.
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Figure 5: DCT coe�cients of a 4� 4 image block

The images were divided into 4 � 4 blocks, and DCT coe�cients or averages over some of them were

used as features. There are 6 such features. The reason to use DCT coe�cients is that the di�erent energy

distributions in the frequency domain distinguish the two classes better. Denote the DCT coe�cients for

a 4� 4 block by fDi;j : i; j 2 (0; 1; 2; 3)g, shown by Fig. 5. The de�nitions of the 6 features are:

1. f1 = D0;0 ; f2 = jD1;0j ; f3 = jD0;1j ;

2. f4 =
P3

i=2

P1
j=0 jDi;jj=4;

3. f5 =
P1

i=0

P3
j=2 jDi;jj=4 ;

4. f6 =
P3

i=2

P3
j=2 jDi;jj=4 .

In addition, the spatial derivatives of the average intensity values of blocks were used as inter-block features.

In particular, the spatial derivative refers to the di�erence between the average intensity of a block and

that of the block's upper neighbor or left neighbor.

VI.2.2 Results

Six-fold cross-validation [47] was used to evaluate algorithms. For each iteration, one image was used as

test data and the other �ve were used as training data. Performance is evaluated by averaging over all the

iterations. Hidden Markov models with di�erent number of states were trained and tested. Experiments

show that models with 4 to 6 states for the natural class, and 7 to 10 states for the man-made class

yield very similar results. For the result to be given in this section, a model with 5 states for the natural

class and 9 states for the man-made class was used. Setting too many states for each class results in

worse classi�cation for two reasons: the model closest to the truth may not be so sophisticated; and more

complicated models require a larger training set. With a �xed training set, the accuracy of estimation

becomes less with the increase of parameters.
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When training and applying the HMM using the path-constrained 2-D Viterbi algorithm, an image

was divided into square sub-images each containing 16 blocks. The sub-images were considered separate

Markov chains. The number of nodes constrained at each position in the Viterbi transition diagram, N ,

was chosen as 32 for the result provided in this section. We experimented with several Ns. For N from 2

to 16, the performance is gradually enhanced. For N greater than 16, the results, with minor di�erences,

start showing a convergence trend. The classi�cation error rate with N = 16 is about 0:26% higher than

that with N = 32. As classi�cation time is spent mainly on the Viterbi searching process, and the Viterbi

searching time increases at the order of the second power of the number of nodes at every transition step;

the classi�cation time is roughly proportional to N2. Experiments were performed on a Pentium Pro

230MHz PC with LINUX operating system. The average user CPU time to classify an aerial image is 18

seconds for N = 8, 59 seconds for N = 16, and 200 seconds for N = 32.

The 2-D HMM result was compared with those obtained from two popular block-based statistical

classi�ers: CART [10] and the �rst version of Kohonen's learning vector quantization (LVQ) algorithm [27,

28]. The basic idea of CART is to partition a feature space by a tree structure and assign a class to every

cell of the partition. Feature vectors landing in a cell are classi�ed as the class of the cell. Since CART is

developed for general purposes of decision tree design, we can apply it in the scenario of context dependent

classi�cation. As the goal here is to explore how much context improves classi�cation by the 2-D HMM

algorithm, CART was applied in a context independent manner to set a benchmark for comparison. In

the training process, CART was used to partition feature vectors formed for each image block. Images

were then classi�ed by tracing their feature vectors independently through the decision tree. Two types

of decision trees were trained with CART. One was trained on both inter- and intra-block features; the

other was trained on only intra-block features. These two classi�ers are referred to as CART 1 and CART

2 respectively. CART 1 incorporates context information implicitly through inter-block features, but not

as directly and extensively as does the 2-D HMM algorithm.

To compare with LVQ1, we used programs provided by the LVQ PAK software package [28]. As with

CART 1, classi�cation was based on both inter- and intra-block features. The total number of centroids for

the two classes is 1024, and the number for each class is proportional to the empirical a priori probabilities

of the classes. Other parameters were set by default.

The classi�cation results obtained by six-fold cross-validation for 2-D HMM, CART 1, CART 2, and

LVQ1 are shown in Table 1. Suppose the man-made class is the target class, or positive class. Sensitivity
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Algorithm sensitivity speci�city PVP Pe

2-D HMM 0.7795 0.8203 0.8381 0.1880

CART 1 0.8528 0.7126 0.7530 0.2158

CART 2 0.8097 0.7340 0.7505 0.2408

LVQ1 0.8187 0.7419 0.7691 0.2183

Table 1: Comparison of classi�cation performance

is the true positive ratio, i.e., the probability of detecting positive given the truth is positive. Speci�city

is the true negative ratio, i.e., the probability of accepting negative given the truth is negative. Predictive

value positive (PVP) is the probability of being truly positive given a positive detection of the classi�er.

The average percentage of classi�cation error with CART 2 is 24:08%. CART 1 improves the error rate

to 21:58%. LVQ1 achieves an error rate of 21:83%, which is close to the result of CART 1. The 2-D

HMM algorithm further decreases the error rate to 18:80%. The classi�cation results for Image 6, the

image shown in Fig. 6(f), are given in Fig. 7. A visual di�erence to note is that the results of CART 1

and LVQ1 appear \noisy" due to scattered errors caused by classifying blocks independently. Although ad

hoc postprocessing can eliminate isolated errors, it may increase the error rate if clustered errors occur.

Note that at the lower-left corners of Fig. 7(b) and (c), a large continuous region is classi�ed mistakenly

as man-made. If postprocessing techniques, such as closing, were applied, the mistakenly classi�ed region

would be enlarged. Similar clusters of errors can be found in other parts of the image. On the other hand,

if we apply postprocessing after all the three algorithms, the result of the 2-D HMM algorithm provides a

better starting point and is less likely to have error propagation.

The segmentation of aerial images was also studied by Oehler [35] and Perlmutter [41]. In both cases,

the Bayes vector quantizer (BVQ) [35, 41, 36, 37] is used as a classi�er. With the same set of images

and six-fold cross-validation, the best result of simulations with di�erent parameters provides an average

classi�cation error rate of roughly 21:5% [41], comparable to CART 1.

VI.3 Document Image Segmentation

The second application of the 2-D HMM algorithm is to segmentation of document images into text and

photograph. Photograph refers to continuous-tone images such as scanned pictures; and text refers to

normal text, tables, and arti�cial graphs generated by computer software [32]. We refer to the normal text

as text for simplicity if the meaning is clear from context. Images experimented with are 8 bpp gray-scale

images. An example image and its segmented image are shown in Fig. 8. This type of classi�cation is
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(b)
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(d)

(e)

(f)

Figure 6: Aerial images: (a)�(f) Image 1�6. Left: Original 8 bpp images, Right: Hand-labeled classi�ed
images. White: man-made, Gray: natural
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(a)

(b) (c)

Figure 7: Comparison of the classi�cation results of 2-D HMM, CART, and LVQ1 for an aerial image:
(a) HMM with classi�cation error rate 13:39%, (b) CART using both inter- and intra-block features with
classi�cation error rate 20:29%, (c) LVQ1 using both inter- and intra-block features with classi�cation error
rate 18:13%. White: man-made, Gray: natural
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useful in a printing process for separately rendering di�erent local image types. It is also a tool for e�cient

extraction of data from image databases.

Previous work on gray-scale document image segmentation includes Chaddha [11], Williams [49], Perl-

mutter [42, 41], and Ohuchi [38]. Thresholding is used to distinguish image types in [11]. In [49], a modi�ed

quadratic neural network [34] is used for classifying features. In [42, 41], the Bayes VQ algorithm is applied.

As those algorithms were developed particularly for di�erent types of document images, direct comparison

with our algorithm is not provided.

The features we use contain the two features described in detail in [32]. The �rst feature is a measure

of the goodness of match between the empirical distribution of wavelet coe�cients in high frequency bands

and the Laplacian distribution. It is de�ned as a �2 statistics normalized by the sample size. The second

feature measures the likelihood of wavelet coe�cients in high frequency bands being composed by highly

concentrated values. We also use the spatial derivatives of the average intensity values of blocks as features,

which is the same as in the previous application. The block size used is 8� 8. The HMM has 5 states for

each class. Experiments show that models with 2 to 5 states for each class yield similar results.

The result of HMM is compared with that of a classi�cation tree generated by CART with both inter-

and intra-block features. The image set was provided by Hewlett Packard, Inc. [42, 41]. They are RGB

color images with size around 1600� 1300. Each color component is 8 bpp. In the experiments, only the

luminance component (i.e., gray-scale images) was used. For most images tested, both algorithms achieve

very low classi�cation error rates, about 2% on average. More di�erences between the two algorithms

appear with one sample image shown in Fig. 8 because the photograph region in this image is very smooth

in many places, so it resembles text. The classi�cation results of both CART and the 2-D HMM algorithm

are shown in Fig. 8. We see that the result using the HMM is much cleaner than the result using CART,

especially in the photograph regions. This is expected since the classi�cation based on the HMM takes

context into consideration. As a result, some smooth blocks in the photograph regions, which locally

resemble text blocks, can be identi�ed correctly as photograph.

VII Conclusions

We have proposed a two dimensional hidden Markov model for image classi�cation. The two dimensional

model provides a structured way to incorporate context information into classi�cation. Using the EM

algorithm, we have derived a speci�c iterative algorithm to estimate the model. As the model is two
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(a) (b)

(c) (d)

Figure 8: Test document image 1: (a) Original image, (b) Hand-labeled classi�ed image, (c) CART
classi�cation result, (d) 2-D HMM classi�cation result. White: photograph, Gray: text
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dimensional, computational complexity is an important issue. Fast algorithms are developed to e�ciently

estimate the model and to perform classi�cation based on the model. The application of the algorithm to

several problems shows better performance than that of several popular block-based statistical classi�cation

algorithms.
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