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Abstract

We propose an image classification framework by lever-

aging the non-negative sparse coding, low-rank and sparse

matrix decomposition techniques (LR-Sc+SPM). First, we

propose a new non-negative sparse coding along with max

pooling and spatial pyramid matching method (Sc+SPM) to

extract local features’ information in order to represent im-

ages, where non-negative sparse coding is used to encode

local features. Max pooling along with spatial pyramid

matching (SPM) is then utilized to get the feature vectors

to represent images. Second, motivated by the observation

that images of the same class often contain correlated (or

common) items and specific (or noisy) items, we propose to

leverage the low-rank and sparse matrix recovery technique

to decompose the feature vectors of images per class into a

low-rank matrix and a sparse error matrix. To incorporate

the common and specific attributes into the image represen-

tation, we still adopt the idea of sparse coding to recode

the Sc+SPM representation of each image. In particular,

we collect the columns of the both matrixes as the bases

and use the coding parameters as the updated image repre-

sentation by learning them through the locality-constrained

linear coding (LLC). Finally, linear SVM classifier is lever-

aged for the final classification. Experimental results show

that the proposed method achieves or outperforms the state-

of-the-art results on several benchmarks.

1. Introduction

As a fundamental problem in computer vision, image

classification has attracted a lot of attention in recent years.

Among many image representation models, the bag of vi-

sual words (BoW) model [1] has been widely used by many

researchers [2-4] and shown very good performance. The

BoW model contains mainly two modules: (i) codebook

generation and quantization of features extracted from local

image patches; (ii) histogram based image representation

and prediction. Recently, it has been shown that combining

the two modules with sparse representation is very effective

and can achieve the state-of-the-art performance.

As to the first module of the BoW model, k-means is usu-

ally used to generate codebook and quantize visual descrip-

tors extracted from local image patches by nearest-neighbor

search. A histogram is then computed to represent each im-

age by counting the occurrence number of each visual word

within this image. Recently, Yang et al. [4] developed an

extension by generalizing vector quantization to sparse cod-

ing. By using sparse coding instead of k-means, they are

able to learn the optimal codebook and coding parameters

for local features simultaneously, hence are able to reduce

the quantization loss. Multi-scale max pooling is then used

to get the feature representation of images. However, sparse

coding has no constraints on the sign of coding coefficients.

To satisfy the objective of sparse coding, negative coeffi-

cients are sometimes needed, while large numbers of zero

coefficients are inevitable. Since non-zero components typ-

ically provide useful information, the encoding process with

max pooling will bring the loss in terms of those negative

components, and further degrade the classification perfor-

mance.

Instead of learning sparse representations for local fea-

tures [4], the use of sparse representation for the final classi-

fication has also been widely applied to many visual appli-

cations and can achieve the state-of-the-art performances,

e.g., image restoration [5] and classification tasks [6-11].

These holistically sparse representations on the whole im-

age ensure robustness to occlusions and image corruptions.

Training images are often chosen as the bases for sparse rep-

resentation and test images are then classified by assigning

the class with the lowest reconstruction error. Ideally, a test

image can be reconstructed by the training samples and only

the coefficients of the samples within the same class may be

nonzero. This means a test image can be sufficiently recon-
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Figure 1. The flowchart of the proposed method.

structed by the training images of the same class. However,

since images are often contaminated with noise; besides,

there are often multiple objects in an image with different

poses and occlusions. Sometimes using the training images

as the bases is not discriminative enough to boost the final

classification performance. Moreover, images of the same

class often share a lot of similarities and correlate with each

other, hence exhibit degenerated structure [6]. This seman-

tic information of images can help make correct classifica-

tion if computed correctly.

In this paper, we propose a new image classification

framework by leveraging the non-negative sparse coding,

low-rank and sparse matrix decomposition techniques (LR-

Sc+SPM). Figure 1 shows the flowchart of the proposed

method. Our proposed framework consists of two contri-

butions. First, we extend the recent work on image classi-

fication [4] and present to use non-negative sparse coding

along with max pooling method to reduce the information

loss during the encoding process for image representation.

The second is our main contribution. We propose a new

image classification method method by using the low-rank

and sparse matrix decomposition technique. Our work is

motivated by the observation that: (i) images of the same

class often correlate with each other. Ideally, if we stack the

BoW representation of images within the same class into

a matrix, this matrix will be low-rank; (ii) one image con-

tains only a limited number of objects and a limited type

of noise. This results in the characteristics of noise spar-

sity for the stacked BoW matrix. This low-rank and noise

information can be utilized for better image representation

than directly using the BoW representation of training im-

ages. Specially, to get more discriminative sparse coding

bases with the BoW representation of images, we leverage

the low-rank and sparse matrix decomposition technique to

decompose the BoW representation of images within the

same class into a low rank matrix and a sparse error matrix.

We then use these bases to encode the BoW representation

of images with sparsity and locality constraints. These cod-

ing parameters are used to represent images and linear SVM

classifier is then utilized to predict the category labels of im-

ages. Experimental results on four public datasets demon-

strate the effectiveness of the proposed method.

The rest of the paper is organized as follows. Section 2

introduces some related work. Section 3 presents the pro-

posed non-negative sparse coding spatial pyramid match-

ing method (Sc+SPM). Section 4 shows the proposed im-

age classification method by low-rank and sparse matrix

decomposition. Experimental results are given in Section

5. Finally we conclude in Section 6.

2. Related Work

The use of the bag-of-visual words (BoW) model [1] has

been proven very useful for image classification. Over the

past few years, many works have been done to improve the

performance of the BoW model. Some tried to learn dis-

criminative visual codebooks for image classification [12,

13]. Co-occurrence information of visual words was also

modeled in a generative framework [14, 15]. Others tried

to learn discriminative classifiers by considering the spatial

information and correlations among visual words [2-4, 7,

10-11]. To overcome the loss of spatial information in the

BoW model, motivated by Grauman and Darrell’s [3] pyra-

mid matching in feature space, Lazebnik et al. [2] proposed

the spatial pyramid matching (SPM). Since its introduction,

SPM has been widely used and proven very effective.

Recently, Yang et al. [4] proposed an extension of the

SPM approach by leveraging sparse coding and achieved

the state-of-the-art performance for image classification

when only one type of local feature (SIFT) is used. This

method can automatically learn the optimal codebook and

search for the optimal coding weights for each local feature.

After this, max pooling along with SPM is used to get the

feature representation of images. Inspired by this, Wang et

al. [16] proposed to use locality to constrain the sparse cod-

ing process which can be computed faster and yields better

performance. [11, 17] also tried to jointly learn the optimal

codebooks and classifiers. However, sparse coding [18] has

no constraints on the sign of the coding parameters, nega-

tive parameters are sometimes needed to satisfy the sparse

coding constrains. For some particular applications [19],

non-negative sparse coding [20] is needed.

Not only has sparse coding been used for local features,

but also it has been widely used holistically on the entire

image. Wright et al. [6] tried to do face recognition as

finding a sparse representation of the test image by treat-

ing the training set as the bases and impressive results were

achieved. Bradley and Bagnell [9] tried to train a compact

codebook using sparse coding. Yuan and Yan [7] made vi-

sual classification with multi-task joint sparse representa-

tion by fusing different types of features. Liu et al. [19]

tried to learn sparse and nonnegative representations of im-
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ages by solving a set of regression type nonnegative matrix

factorization problems. However, because images are often

corrupted with noise and there are often multiple objects in

one image with different poses and occlusions, sparse cod-

ing by directly using the training images as the bases is not

discriminative enough to boost the final classification per-

formance.

There has been a lot of work on how to learn good bases

for visual applications, e.g., clustering and classification.

Some [6-8, 19, 21] tried to use the training samples as the

bases directly. To code a new sample, [6-8, 19] used all the

training samples while locally linear embedding (LLE) [21]

uses the k nearest neighbors. Others [18, 20, 22-25] utilized

the training data to learn the bases, e.g., k-means, Gaussian

mixture model (GMM) and sparse coding [18, 20].

Over the past few years, the low-rank matrix recovery

problem has been widely studied [22-25] and successfully

applied to many applications, such as image processing

[22], web data mining [26], and bioinformatic data analysis

[27]. It tries to recover a low-rank matrix with an unknown

fraction of its entries being arbitrarily corrupted. Under

surprisingly broad conditions, this problem can be exactly

solved via convex optimization which minimizes a combi-

nation of the nuclear norm and the ℓ1norm [22, 23].

3. Non-negative Sparse Coding Spatial Pyra-

mid Matching (Sc
+SPM)

k-means clustering has been widely used for code-

book generation in the BoW model. Let X =
[x1, x2, ..., xN ](xi ∈ R

D×1) be the set of N local image

descriptors of D dimensions. Typically the vector quantiza-

tion (VQ) by k-means clustering method solves the follow-

ing optimization problem as:

min
U,V

N∑

n=1

‖ xn − unV ‖2 (1)

s.t.Card(un) = 1, |un| = 1, un � 0, ∀n

where V = [v1, v2, ..., vK ] (vi ∈ R
D×1) are the K clus-

ter centers to be learned and U = [u1, u2, ..., uN ] (ui ∈
R

K×1) are the cluster membership indicators. Card(un) =
1 is the cardinality constraint. However, this constraint is

too strict because each local feature can be assigned to only

one visual word, especially for the local features located at

the boundary of clusters. To alleviate the quantization loss

of VQ, Yang et al. [4] relaxed the constraint by using a ℓ1-

norm regularization and turned the VQ into sparse coding

as:

min
U,V

N∑

n=1

‖ xn − unV ‖2 +λ ‖ un ‖1 (2)

s.t. ‖ vk ‖2≤ 1, ∀k

where λ is the regularization parameter. Spatial pyramid

matching with max pooling is then used to obtain nonlinear

codes to represent images, which achieved the state-of-the-

art performances on several datasets when only one type of

local feature is used.

However, there is one problem with this sparse coding

plus max pooling strategy. To satisfy the objective of sparse

coding, negative coefficients are sometimes needed. This

coding strategy is suboptimal because max pooling is then

used to extract the feature representation of images. Zero

(or small positive) coefficients of sparse coding indicate

the corresponding bases have no (or very small) influence.

However, since zero (or positive value) is always larger than

negative values, max pooling strategy will choose zero (or

positive value) instead of negative values. Because most of

the coefficients in sparse coding are zero, this phenomenon

will happen with high probability. That means some use-

ful information is lost which hinders the final classification

performance.

To alleviate the information loss of the sparse coding

plus max pooling strategy [4], we propose to use non-

negative sparse coding instead. The non-negative sparse

coding tries to solve the following optimization problem as:

min
U,V

N∑

n=1

‖ xn − unV ‖2 +λ ‖ un ‖1 (3)

s.t. ‖ vk ‖2≤ 1, un � 0, ∀k, n

We follow the same optimization procedure as did in [18]

and solve it iteratively by alternatively optimizing over U

or V while keeping the other fixed. When U is fixed, this

problem is reduced to a least square problem with quadratic

constraints as:

min
V

‖ X − UV ‖2
F s.t. ‖ vk ‖2≤ 1 (4)

Where ‖ . ‖F is the Frobenius norm. This can be effi-

ciently solved by using the Lagrange dual method. When

V is fixed, we solve the optimization problem (3) by opti-

mizing over each local feature individually as:

min
un

‖ xn − unV ‖2 +λ ‖ un ‖1 s.t.un � 0 (5)

This is a linear regression problem with ℓ1 norm regular-

ization and non-negative constraints on the coefficients. We

adopt the feature-sign search algorithm with projected gra-

dient descent to solve this problem.

Due to the large amount of local features, we only sam-

ple some features to learn the codebook. We choose around

45,000 SIFT features randomly chosen to train the code-

book by iteratively solving the optimization of problem (4)

and problem (5). The iteration number is set to 50. After the

codebook has been learned, we can code the local features

of each image. Spatial pyramid matching with max pooling

is then used to get the BoW representation of images.
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4. Image Classification by Low-rank and

Sparse Matrix decomposition

In this section, we will first introduce the low-rank and

sparse matrix decomposition and then use it for image clas-

sification.

4.1. Lowrank and sparse matrix decomposition

Not only has sparse coding been used for local features,

but also it has been widely used holistically on the entire

image. Training samples are often chosen as the bases for

sparse coding or its variants when it is applied on the en-

tire image. However, images are often corrupted with noise

and there are often multiple objects in one image with dif-

ferent poses and occlusions, even if they are of the same

class. That is, there exist the correlated (or common) items

and the specific (or noisy) items among images of the same

class. The both parts are more robust and discriminative

for image classification than directly using the feature rep-

resentation of training images because the two parts capture

the correlated and specific attributes of images in the same

class.

Motivated by these observations, we propose to use the

low-rank and sparse matrix decomposition technique to de-

compose the features of images within each class into a

low-rank matrix and a noise matrix. Because images of

the same class share a lot of similarities and often corre-

late with each other, as shown in [4, 6, 10, 16]. Besides,

images often undergo gross corruption (such as occlusion

or illumination change) which often happens in modern vi-

sual applications. This means noises in images may have

arbitrarily large magnitude. Here we consider an idealized

version and assume the noise is sparse but unknown. For-

mally, let Hi = [hi,1, hi,2, ..., hi,pi
] be the stacked column

vectors of the BoW representations of pi training images of

the i-th class, we try to decompose it as:

Hi = Li + Ni (6)

Where Li and Ni are the low-rank matrix and the noise ma-

trix of the i-th class.i ∈ {1, ..., M} where M is the number

of image classes. This problem can be solved by

min
Li,Ni

rank(Li) + γ ‖ Ni ‖0 (7)

s.t.Hi = Li + Ni

Here the ‖ . ‖0 counts the nonzero elements in the error

matrix and γ > 0 is the parameter that balances the rank

term and the sparsity error term. However, this problem is

non-convex and very hard to solve. Recently, it is shown by

[22] that under certain conditions, solving

min
Li,Ni

‖ Li ‖∗ +γ ‖ Ni ‖1 (8)

s.t.Hi = Li + Ni

exactly recovers the low-rank matrix Li and the sparse ma-

trix Ni. ‖ . ‖∗ is the nuclear norm defined as the sum of all

singular values.The augmented lagrange multiplier method

(ALM) proposed by Lin et al [24] can be adopted to solve

this problem.

4.2. Lowrank and sparse matrix decomposition for
image classification

After the low-rank matrix Li and the sparse matrix Ni

for each class have been learned, we can use them to

encode the histogram information of images. Let L =
[L1, L2, ..., LM ] and N = [N1, N2, ..., NM ], the new bases

for sparse coding the BoW representation of images are then

defined as B = [L, N ]. If one image belongs to the i-th

class, it will probably be reconstructed by vectors of the i-th

low-rank matrix Li and sparse matrix Ni instead of vectors

of other classes. We use the Locality-constrained Linear

Coding (LLC) method[16] to reconstruct the pooled feature

representation of images by leveraging the bases learned

above. As shown by Yu et al. [10], locality has been shown

to lead to good performance. LLC uses local bases instead

of all the bases for reconstruction. Formally, LLC tries to

solve:

min
cp

P∑

p=1

‖ hp − Bcp ‖2 +β ‖ dp

⊙
cp ‖2 (9)

s.t.1T cp = 1, ∀p

where
⊙

denotes the element-wise multiplication which fa-

vors near-by bases. dp is defined as:

dp = exp(
dist(hp, B)

σ
) (10)

Where dist(hp, B) = [dist(hp, b1), ..., dist(hp, bT )], T is

the number of bases and dist(hp, b) is the Euclidean dis-

tance between hp and b. σ is the weight decay speed for the

locality adaptor. We follow the same approximated method

in [16] by firstly choose the k-nearest neighbors of hp and

then use its nearest neighbors for reconstruction. This re-

duces the computation complexity and speeds up the cod-

ing phase. In our experiments, we empirically set k to 20.

Linear SVM classifier is then used to predict the category

of images due to its advantages in speed and good perfor-

mance for the sparse coding parameters [4, 11, 16, 28].

5. Experiments

In this section, we evaluate the proposed non-negative

sparse coding, low-rank and sparse matrix decomposition

method (LR-Sc+SPM) on four public datasets: The Scene-

15 dataset [2], the UIUC-Sport dataset [29], the Caltech-101
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Figure 2. Example images for the Scene-15 dataset.

dataset [30] and the Caltech-256 dataset [31]. The code-

book size for non-negative sparse coding is set to 1,024, as

in [4, 16, 28]. As to feature extraction, we use the same

setup as [4] did because this setup has been proven very

effective on these datasets and densely compute SIFT de-

scriptors on overlapping 16×16 pixels with an overlap of

6 pixels. All images are processed in gray scale. These

extracted features are then normalized with ℓ2 norm. For

SPM, we follow Lazebnik et al. [2] and use the first 3 lay-

ers (1×1, 2×2, 4×4) with the same weight for each layer.

We use the multi-class linear SVM provided by Yang et al.

[4] due to its advantages in speed and good performance

in max pooling based image classification. Following the

common benchmarking procedures, we repeat the exper-

imental process with randomly selecting the training and

testing images to obtain reliable results. We record the av-

erage per-class classification rates for each run and report

our final results by the mean and standard deviation of the

classification rates.

5.1. Scene15 dataset

The major sources of pictures in the Scene-15 dataset

include the COREL collection, personal photographs and

Google Image Search. Each category has 200 to 400 im-

ages with the average image size of 300×250 pixels. The

total image number is 4,485. Figure 2 shows some example

images of the Scene-15 dataset. We use the same number of

training images per category as [2, 4, 28] did and randomly

choose 100 image per category and test on the rest. This

process is repeated for ten times to obtain reliable results.

Table 1 gives the performance comparison of the pro-

posed method and several other methods [2, 4, 32, 33] on

the Scene-15 dataset. The proposed method outperforms

the ScSPM by about 10 percent which demonstrates the

effectiveness of our method. Since we use non-negative

sparse coding instead of sparse coding along with spatial

pyramid matching and max pooling, we are able to preserve

more information and reduce the quantization loss. Besides,

by leveraging the low-rank matrix recovery technique, we

are able to learn better bases instead of using the training

images as the bases directly. This makes the final image

Table 1. Performance comparison on the Scene-15 dataset.

(KSPM: Spatial pyramid matching and kernel SVM classifier;

ScSPM: Sparse coding along with spatial pyramid matching;

HIK+OCSVM: Histogram intersection kernel and one class SVM

for local feature quantization; KCSPM: Kernel codebook and spa-

tial pyramid matching;LScSPM: Laplacian sparse coding and spa-

tial pyramid matching)

Algorithm Performance

KSPM[2] 81.40± 0.50
ScSPM[4] 80.28± 0.93
HIK+OCSVM[32] 84.00± 0.46
KCSPM[33] 76.70± 0.40
LScSPM[28] 89.75± 0.50

LR-Sc+SPM 90.03± 0.70

Figure 3. Example images for the UIUC-Sports dataset.

Table 2. Performance comparison on the UIUC-Sport dataset.

Algorithm Performance

HIK+OCSVM[32] 83.54± 1.13
ScSPM[4] 82.74± 1.46
LScSPM[28] 85.31± 0.51

Sc+SPM 83.77± 0.97
LR-Sc+SPM 86.69± 1.66

representation more discriminative hence is able to improve

the image classification performance.

5.2. UIUCSport dataset

The UIUC-Sport dataset contains eight categories with

1792 images. The eight categories are badminton, bocce,

croquet, polo, rock climbing, rowing, sailing and snow

boarding. The number of images ranges from 137 to 250.

Figure 3 shows some example images of this dataset. We

randomly select 70 images from each class for training [28,

29] and test on the rest images. We repeat this process for

five times.

Table 2 gives the performance comparison of the pro-

posed method and several other methods [4, 28, 32] on the

UIUC-Sport dataset. We also give the performance of only

using the non-negative sparse coding(Sc+SPM) for image

classification. We can see that the proposed method can
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Table 3. Performance comparison on the Caltech-101 dataset

(NBNN: Nearest-neighbor in local image feature space; SVM-

KNN: A hybrid NN-based and SVM-based method; KMTJSRC:

Kernel multi-task joint sparse representation; LLC: Locality-

constrained linear coding).

Algorithm 15 training 30 training

KSPM[2] 56.40 64.40 ± 0.80
KCSPM[33] − 64.14 ± 1.18
NBNN[34] 65.00± 1.14 70.40
SVM-KNN[35] 59.10± 0.60 66.20 ± 0.50
KMTJSRC[7] 65.00± 0.70 −
ScSPM[4] 67.00± 0.45 73.20 ± 0.54
LLC[16] 65.43 73.44

LR-Sc+SPM 69.58± 0.97 75.68± 0.89

achieve or outperform the state-of-the-art performance on

this dataset. This demonstrates the effectiveness of our

method.

5.3. Caltech101 dataset

The Caltech-101 dataset contains 101 classes with high

intra-class appearance shape variability. The number of im-

ages per category varies from 31 to 800 images and most of

these images are medium resolution, i.e. 300×300 pixels.

We follow the common experimental setup as did in [4, 7,

17, 19], and randomly choose 15 and 30 images per cate-

gory for training and up to 30 images for test. This process

is repeated for 5 times.

Table 3 gives the performance comparison of the pro-

posed method and several other methods [2, 4, 7, 16, 33-

35] on the Caltech-101 dataset. As shown, our method

achieves the state-of-the-art performance and outperforms

ScSPM by 2.5 percent for 15 training images and 2.4 per-

cent for 30 training images. Besides, our method also out-

performs the KMTJSRC [7] which used the BoW repre-

sentation of images for sparse representation directly. One

work worth mentioning is the NBNN [34], where the au-

thors employed nearest neighbor distances in the space of

local image features and used the ’Image-to-Class’ dis-

tance instead of ’Image-to-Image’ distance. This scheme

improves the image classification performance with heavy

computational cost and some approximation algorithm has

to be used to speed up the calculation.

Figure 4 shows some example images from classes with

highest and lowest classification accuracy from the Caltech-

101 dataset with 30 training images per class. Our method

performs well on classes which are with little clutter (like

watch and motorbikes) or represent coherent natural scenes

(like sunflower) and less successful on classes with large

intra-class variation (like dolphin and lobster). Besides, im-

ages of some classes are manually rotated to face one di-

Table 4. Performance comparison on the Caltech-256 dataset with

15 training images per class.

Algorithm Performance

SPM[31] 28.30
ScSPM[4] 27.73± 0.51
LScSPM[33] 30.00± 0.14
LLC[16] 34.36

LR-Sc+SPM 35.31± 0.70

rection which also influences the classification performance

(like accordion and barrel).

5.4. Caltech256 dataset

The Caltech-256 dataset has 29,780 images of 256

classes with higher intra-class variability and object loca-

tion variability with each image compared with the Caltech-

101 dataset. Each class has at least 80 images and images

are not manually rotated to face on direction as the Caltech-

101 dataset. Figure 5 shows some example images of the

Caltech-256 dataset. We randomly choose 15 images per

class for training and 15 images per class for test. This pro-

cess is repeated for 3 times. Table 4 shows the performance

comparison of our method and several methods [4, 16, 31,

33] on the Caltech-256 dataset. Our method also achieves

the state-of-the-art performance on this dataset which shows

the effectiveness of combining non-negative sparse coding

with low-rank and sparse matrix decomposition.

5.5. Information loss

Since sparse coding has no constraints on the signs of the

coding coefficients, information loss is unavoidable when

max pooling is then used. To measure this information loss,

we firstly take the absolute value of sparse coding coeffi-

cients and then apply max pooling to get a BoW represen-

tation (denoted as p1 ∈ R
q×1) of each image and compare

with the BoW representation (denoted as p2 ∈ R
q×1) gener-

ated by sparse coding plus max pooling. We use the discrep-

ancy percentage to measure the information loss for each

image as:

discrepancy percentage =
q − sum(p1 == p2)

q
(11)

Table 5 shows the average discrepancy percentage on the

four datasets. This is achieved by taking the average dis-

crepancy percentage of about 150 randomly chosen images

per dataset. The exact image number varies depending on

the dataset. Since we use the first 3 layers of SPM with

the codebook size 1,024, q is 1024×21=21,504 in our ex-

periments. We can see from Table 5 that the sparse coding

plus max pooling strategy losses about 30 percent (except

Caltech-256 dataset) information which will hinder the final
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Figure 4. Example images from classes with highest and lowest classification accuracy from the Caltech-101 dataset.

Figure 5. Example images of the Caltech-256 dataset.

Table 5. Discrepancy percentage on the Scene-15 dataset, the

UIUC-Sports dataset, the Caltech-101 and 256 datsets.

Dataset Discrepancy percentage

Scene-15 28.43%
UIUC-Sports 31.96%
Caltech-101 29.64%
Caltech-256 19.61%

classification performance. Besides, the information loss

on the Caltech-256 is relatively less than that of the other

three datasets. We believe this is because images of the

Caltech-256 are relatively more difficult and diverse than

other datasets. Local features within each image are en-

coded more diversely which alleviates the information loss

problem.

6. Conclusion

In this paper, we introduced a novel image classification

framework by leveraging the the non-negative sparse cod-

ing, low-rank and sparse matrix decomposition techniques

(LR-Sc+SPM). Specifically, to reduce the information loss,

we propose to use non-negative sparse coding along with

max pooling and spatial pyramid matching (Sc+SPM) to

get the BoW representation of images. Besides, we use the

low-rank and sparse matrix decomposition technique to get

more discriminative bases for sparse representation than di-

rectly using the training images as the bases. Experimental

results on several public datasets achieve the state-of-the-art

performance and demonstrate the effectiveness of the pro-

posed method.
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