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As a typical deep-learning model, Convolutional Neural Networks (CNNs) can be exploited to automatically extract features from
images using the hierarchical structure inspired by mammalian visual system. For image classi�cation tasks, traditional CNN
models employ the so�max function for classi�cation. However, owing to the limited capacity of the so�max function, there
are some shortcomings of traditional CNN models in image classi�cation. To deal with this problem, a new method combining
Biomimetic Pattern Recognition (BPR) with CNNs is proposed for image classi�cation. BPR performs class recognition by a union
of geometrical cover sets in a high-dimensional feature space and therefore can overcome some disadvantages of traditional pattern
recognition.
e proposed method is evaluated on three famous image classi�cation benchmarks, that is, MNIST, AR, and CIFAR-
10. 
e classi�cation accuracies of the proposed method for the three datasets are 99.01%, 98.40%, and 87.11%, respectively, which
are much higher in comparison with the other four methods in most cases.

1. Introduction

Image classi�cation and recognition is a sophisticated task
for machine, and it has been a hot issue in the �eld of
Arti�cial Intelligence (AI) all the time. Feature extraction
from an image is a signi�cant step in automatic image classi-
�cation. To e�ectively represent the image, many approaches
have been proposed, and these approaches can be roughly
categorized as hand-cra�ed features and machine learned
features. 
e most representative hand-cra�ed features are
scale-invariant feature transform (SIFT) [1] andHistogram of
Oriented Gradient (HOG) [2]. 
ese features are especially
useful for the image classi�cation on small-scale datasets.
However, it is a too di�cult problem to �nd proper features
from images in the case of large-scale dataset. Moreover, the
hand-cra�ed features are usually low-level features without
enough mid-level and high-level information, which hinders
the performance [3].

Over the last few years, Deep Neural Networks (DNNs)
have achieved state-of-the-art performances in a wide range
of areas [4–7]. Inspired by the mammalian visual system,

DeepConvolutionalNeuralNetworks (DCNNs) have become
the most suitable architectures for many computer vision
tasks [8]. CNNs, as generic feature extractors, have been con-
tinuously improving the image classi�cation accuracy, avoid-
ing the traditional hand-cra�ed feature extraction techniques
in image classi�cation problems. 
e features learned from
CNNs are not designed by human engineers, but from data
using a general-purpose learning procedure [9]. Because
both hand-cra�ed features andmachine learned features have
their advantages, the reasonable combination of these two
methods is becoming a hotspot recently [10–12].

A typical architecture of CNNs usually contains many
layers to automatically extract useful image features and
exploit the so�max function (also known as multinomial
logistic regression) for classi�cation [13, 14]. However, the
so�max classi�er o�en shows a low prediction performance
[15]. Moreover, a higher precision gained by CNNs also
means a deeper structure, more learning parameters, and
larger amount of training data, leading to a cost of increased
training complexity. In addition, because overly increasing
depth can harm the accuracy, even if the width/�lter sizes are
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unchanged, a deeper structure does not always guarantee a
better result, which has been validated by many experiments
[16].

To tackle the problem mentioned above, some viable
research has already been proposed. If a well-performed
classi�er was added behind the CNN, the classi�cation
accuracy will be improved in some degree, and this is exactly
the starting point of CNN-SVM.CNN-SVM is a combination
of CNN and SVM [17], which take CNN as a trainable feature
extractor and SVM as a classi�er. Firstly, CNN is utilized to
learn feature vectors from the image data. 
en the learned
vector representations are fed to a SVM classi�er as features
for image classi�cation. It should be noted that, in the whole
process, CNN and SVM are trained separately to get a better
result [18]. 
e results provided by a combination of CNNs
and SVM show higher accuracy rate compared with alone
use of CNNs or SVM. 
e running time of the combination
method is signi�cantly lower than that of SVM. Inspired by
its success, this kind of combination is also adopted by other
studies [19, 20].

Biomimetic Pattern Recognition (BPR) [21] is a new
model of pattern recognition, which is based on “matter
cognition” instead of “matter classi�cation.” 
is new model
is much closer to the recognition function of human beings,
who cognize matters class by class, than traditional statistical
pattern recognition using “optimal separating” as its main
principle. IntheBPR, “cognizing” one class ofmatters is essen-
tial to analyzing and “cognizing” the shape of in�nite points
setmade up of all samples of the same class. In amathematical
work [22] written by pre-Soviet academician, Aleksandrov
pointed out “
e concept of topological space is very general,
and the science about topological space—topology—is the
most general mathematical branch about continuity.” 
e
mathematical tool of the BPR is just the method to analyze
the manifold in point set topology. 
erefore, the BPR is also
called the Topological Pattern Recognition (TPR).

In this paper, a new method that combines CNNs
with BPR is proposed to reduce the complexity of training
networks and to improve the performance of classi�cation.
Because CNNs represent an inspiration of the cognitive
neuroscience while BPR implies the cognitive psychology, it
is reasonable to combine them together in the framework
of cognitive science. In our framework, CNNs are used to
automatically learn feature vectors from raw images, and
then the learned feature vectors are projected into high-
dimensional space to be covered by BPR classi�er. Such a
combination is expected to combine the advantages of CNNs
on feature representation and BPR on classi�cation. Mean-
while, an adaptive technique is adopted to tackle the problem
of setting coverage radius in BPR classi�er. Evaluations on
MNIST, AR, and CIFAR-10 datasets show that the combined
model excels the classic CNN, CNN combined with SVM,
and Principal Component Analysis (PCA) combined with
BPR models in classi�cation accuracy.


e rest of the paper is organized as follows. In Section 2,
we give some brief introduction of CNNs and BPR. In
Section 3, the proposed CNN-BPR model is presented. In
Section 4, three di�erent benchmark datasets are used to

validate the superiority of the proposed model. Finally,
Section 5 gives the conclusion.

2. Related Works

2.1. Convolutional Neural Networks. 
e idea of CNNs was
�rstly proposed in [23] by Fukushima, developed in [24] by
LeCun et al., and improved in [25, 26] by Simard, Cireşan,
and others. GPU acceleration hardware has facilitated devel-
opment of deep CNN (DCNN), which includes a deeper
architecture with additional convolutional layers.

Typical CNNs are composed of convolutional layer, pool-
ing layer, and fully connected layer. A CNN consists of one or
more pairs of convolution and pooling layers and �nally ends
with fully connected neural networks. Convolutional layers
alternate with max-pooling layers mimicking the nature of
complex and simple cells in mammalian visual cortex [27].
A typical convolutional network architecture is shown in
Figure 1.


e 2D raw pixels of the image can be accepted as the
input of CNNs directly. 
e image is then convolved with
multiple learned kernels using shared weights. A convolu-
tional layer is parametrized by the number of maps, the size
of the maps, and kernel sizes. Each layer has M maps of
equal size (��,��). A kernel of size (��, ��) is shi�ed over
the valid region of the input image. Each map in layer l is
connected to all maps in layer � − 1. Neurons of a given map
share their weights but have di�erent input �elds.

Next, the pooling layer reduces the size of the image while
trying tomaintain the contained information.
e purpose of
the pooling layers is to achieve spatial invariance by reducing
the resolution of the feature maps. 
e output of the pooling
layer is given by themaximum,mean, or stochastic activation,
corresponding to max-pooling, mean-pooling, or stochastic-
pooling, over nonoverlapping rectangular regions of size
(��, ��). Pooling creates position invariance over larger local
regions and downsamples the input image by a factor of�� and �� along each direction. It turned out to be that
max-pooling leads to faster convergence rate by selecting
superior invariant features, which improves generalization
performance [28].

Convolutional layer and pooling layer compose the fea-
ture extraction part. A�erwards, the extracted features are
weighted and combined in one or more fully connected
layers. 
is represents the classi�cation part of the convo-
lutional network. 
ese layers are similar to the layers in a
standard Multilayer Perceptron (MLP), where the outputs of
all neurons in layer � − 1 are connected to every neuron in
layer l.

Finally, there exists one output neuron for each object
category in the output layer. 
e output layer has one neuron
per class in the classi�cation task. A so�max activation
function is used; thus each neuron’s output represents the
posterior class probability.

For a � classi�cation problem, it is standard for a CNN
to use so�max or 1-of-� encoding at the top. Let pi specify
a discrete probability distribution, where � = 1, . . . , �, and∑�� �� = 1, h is the activation of the penultimate layer nodes,
W is the weight vector between the penultimate layer and the
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Figure 1: A typical convolutional network architecture.

so�max layer, the total input into a so�max layer, given by a,
is

	� = ∑
�
ℎ����, (1)

then we have

�� = exp (	�)∑�� exp (	�) , (2)

and the predicted class �̂ would be

�̂ = arg max (��)
�

= arg max (	�)
�

. (3)

CNNs are usually trained with a variant of the gradient-
based backpropagation method [29]. All training patterns
along with the expected outputs are fed into the network.
A�erwards the network error (the di�erence between the
actual and expected output) is backpropagated through the
network and used to compute the gradient of the network
error with respect to the weights. 
is gradient is then used
to update the weight values according to a speci�c rule (e.g.,
stochastic, momentum, etc.) [30].

2.2. Biomimetic Pattern Recognition. 
e “biomimetic”
emphasizes that the viewpoint of the function and mathe-
matical model of pattern recognition is the concept of
“cognition,” which is much closer to the function of human
beings. An important and essential focus of attention in BPR
is the principle of homology-continuity (PHC) [31].

�eorem 1. In the feature space ��, suppose that set � is a
point set including all samples in class �. If �,� ∈ � is given,
there must be set �
� = {�1, �2, . . . , �� | �1 = �, �� = �, � ⊂ �, �

⊂ �, � (�	, �	+1) < �, ∀� > 0, 1 ≤ � ≤ � − 1} ,
� ⊂ �.

(4)

“All useful information is included in the training set”—
it is the basic of the traditional pattern recognition, but the

Figure 2: 
e schematic diagram of the di�erence of BP, RBF, and
BPR.

theorem of PHC is beyond this hypothesis. 
e traditional
pattern recognition is completely based on the separation of
di�erent samples in feature space because of the consider-
ation that there is no a priori knowledge among the same
sample points. However, “Universal Relation” is the objective
law in nature, and it is followed by BPR, which makes full use
of the law to improve the cognitive abilities of things. Figure 2
shows the di�erences of the BPR and the traditional pattern
recognition.

In Figure 2, the circles represent the samples to be
recognized; the squares and triangles represent samples to be
distinguished from circles.
ese small signs represent an ide-
alized distribution of the sample points in feature space, and
the polygonal line denotes the classi�cation boundaries of
traditional backpropagation (BP) networks, big circle denotes
radial-basis function (RBF) networks (which is the same as
the templatematching), and the sausage-like shape represents
“cognition” manner of BPR. 
e speci�c di�erences between
BPR and the traditional pattern recognition are described in
Table 1.

3. The Proposed Model

In this section, we present a CNN-BPR combined model
for image classi�cation. 
e system framework is shown in
Figure 3. Firstly, an automatic feature extraction is proposed
by using CNN. Secondly, BPR is adopted as the classi�er
exploiting the features extracted from the previous module,
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Table 1: Comparison of traditional pattern recognition and BPR.

Traditional pattern recognition Biomimetic pattern recognition

Starting point Optimal classi�cation of di�erent classes Recognition of samples one by one class


eoretical basis
All available information is included in
the training set

Continuity of one sample class in feature
space

Math tool Statistics Topology

Analyze methods

eoretical derivation of algebra and
equations (logical thinking)

Descriptive geometry of
high-dimensional space (imagery
thinking)

Recognition method Division
Coverage of complex geometry in
high-dimensional space

Realization approach SVM and traditional neural networks Multiweight high-order neural networks

Training 

samples

Testing 

samples

CNN feature extractor 

CNN feature extractor 

Training
stage

Recognition
stage

Feature space

Discrimination 
by smallest 

distance

construction 
Ψ3 neurons link

Figure 3: Flowchart of the proposed CNN-BPR recognition method.

CNN. To obtain the optimal coverage, an adaptive method is
used to compute an appropriate coverage threshold for each
class.

3.1. CNN-Based Feature Extraction. ACNNarchitecturewith
alternating convolutional and max-pooling layers is used
here. Each node in the output layer corresponds to one
character class. A�er CNN training, only the parameters of
the fully connected layer are le� to extract the �nal feature
vector which will be fed to the BPR classi�er. 
e CNN-
based feature extractor that is irrelevant to the number of the
character classes can be very compact. To extract the CNN-
based feature, network training is used �rst. 
e training of
CNN is composed of two main procedures, namely, forward
propagation and backpropagation [32, 33].

3.1.1. Forward Propagation of CNN. Assuming that layer � is a
convolution layer and layer � − 1 is a subsampling layer or an
input layer, the feature map j of layer l is calculated as follows:

x


� = "( ∑

�∈��
x

−1
� ∗ w



�� + %
�) , (5)

where�� represents a selection of input maps, “∗” indicates
the convolution computation; the essence of which is to
convolve the convolution kernel w on all the associated
feature maps of the layer � − 1; then sum them, together with
the bias as the input of the activation function and �nally get
the output of convolution layer �.

A pooling layer produces downsampled versions of the
input maps. If there are � input maps, then there will be
exactly � output maps, although the output maps will be
smaller. More formally,

x


� = " ('
�pool (x
−1� ) + %
�) , (6)

where x
 denotes the �-th subsampling layer, and pool(⋅) is
pooling function which can be max-pooling, mean-pooling,
or stochastic-pooling. Each output map is given its own
multiplicative bias ' and an additive bias %.


e procedure of forward propagation is composed of
convolution and pooling alternately, and for full connection
layer, all previous output maps are convoluted through each
convolution kernel in this layer.

3.1.2. Backpropagation of CNN. 
e training procedure of the
CNN is the same as BP model. In the following, we de�ne a
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squared-error function as the loss function-. For amulticlass
problem with� training examples, - can be given as

-
 = 12

∑
�=1

(/� − 3�)2 = 12 4444t� − y
�444422 , (7)

where � represents the �-th training example, /� is its label,
and 3� is the output.

However, di�erent from the single structure of BP, there
are di�erences in the training procedure for each layer of
CNN. Here, we brie�y present how to train parameters and
compute the gradients for di�erent types of layers.

(1) Convolution Layers.
e backpropagation “error” through
the network can be considered as “sensitivity.” Assuming that
each convolution layer � is followed by a subsampling layer �+1, the residuals in the BP algorithm are equal to the weighted
sums of the weights and residuals of all the nodes connected
to the � + 1 layer and then multiplied by the derivative value
of this point. 
e next layer of the convolution layer � is the
subsampling layer � + 1, using one-to-one nonoverlapping
sampling, so the residual calculation is simpler. 
e residual
of the feature map 5 of the layer � is calculated as follows:

�
� = '
+1� ("� (u
�) ∘ up (�
+1� )) , (8)

where “∘” denotes element-wise multiplication and up(⋅)
denotes an upsampling operation the purpose of which is to
extend the size of layer l + 1 to the size of layer l, and it is also
de�ned as the Kronecker product:

up (7) ≡ x ⊗ 1�×�. (9)

Now given sensitivities map, the bias gradient is com-

puted by simply summing over all the entries in �
�.

:-:%� = ∑�,V (�
�)�V , (10)

Finally, to compute the gradients of the kernel weights, we
sum the gradients for a given weight over all the connections
that mention this weight:

:-:w
�� = ∑�,V (�


�)�V (p
−1� )�V , (11)

where (p
−1� )�V is the patch in x
−1� that wasmultiplied element-

wise by w
−1�� during convolution in order to compute the

element at (u, v) in the output convolution map x
�.

(2) Subsampling Layers. For subsampling layer, the param-
eters of ' and b are needed to learn. It is also worth noting
that the proposed subsampling layer is following connected
by convolution layer. 
e sensitivity of subsampling layer l is
de�ned as

�
� = �∑
�=1
�
+1� ∗ w��, (12)

where �
+1� is the sensitivity of convolution layer � + 1. 
e

additive bias is again the sum over the elements of the
sensitivity map and can be rewritten (10) as

:-:%� = ∑�,V (�
�)�V . (13)


e multiplicative bias ' involves the original down-
sampled map computed at the current layer during the
feedforward pass. To compute the parameter ', we de�ne

d


� = down (x
−1� ) . (14)


en the gradient for ' is given by

:-:'� = ∑�,V (�
� ∘ d
�)�V . (15)

3.2. Classi�cation Based on BPR. 
e process of BPR for
classi�cation mainly consists of constructing complex geom-
etry coverage in high-dimensional space and discrimination
based on minimum distance. Some associated theories will
be introduced in the following context brie�y.

3.2.1. �eory of Complex Geometry Coverage in High-Dimen-
sional Space. 
e BPR uses topological high-dimensional
manifold theory as a mathematical tool and realizable
method, which is also the reason why it is called TPR.
High-dimensional manifold theory is used by BPR to study
the topological properties of the similar samples in feature
space. 
e method—“Complex Geometry Coverage (CGC)
in high-dimensional space”—is used to study the samples’
distribution in feature space and to give reasonable cover, so
the samples can be cognized [34].

To form the CGC in high-dimensional space, the Multi-
weightedNeuron is speci�cally used to cover the Simplex one
by one.
ede�nitions of Simplex andMultiweightedNeuron
are as follows.

De�nition 2. Suppose ;0, ;1, . . . , ;�, (? ≤ �) are some
irrelevant points in �-dimensional Euclidean space -�, which
is to say the vectors �⃗� = ;� − ;0, (� = 1, 2, . . . , ?) are
linearly independent, and then point set Ω� = {� | � =∑��=0 	�;�, ∑��=0 	� = 1, 	� ≥ 0} is a ?-dimensional Simplex
with ;0, ;1, . . . , ;� as its vertexes.

Simply, respectively, line segment, plane triangle, and
tetrahedron can be regarded as a 1-dimensional, 2-dimen-
sional, and 3-dimensional Simplex in the Euclidean space.

De�nition 3. Suppose C is a polyhedron in feature space-�, 7 ∈ -�/C and the distance between x and V meets

E (7, C) = {Emin | Emin = min (E (7, 3)) , ∀3 ∈ C} . (16)

If Fmeets

F = {7 | 7 ∈ E (7, C) < 
, 7 ∈ -�C } , 
 > 0. (17)

then F is called a coverage of polyhedron.



6 Computational Intelligence and Neuroscience

(a) HSN model (b) �3 neural model (c) 
ree DOF’ neural model

Figure 4: Some kinds of neural model of BPR.

When V is a line segment, a plane triangle, or a tetra-
hedron, the Multiweighted Neuron U is a Hyper Sausage
Neuron (HSN), a I3 neuron, or a three degrees of freedom’
(DOF) neuron, respectively. Figure 4 shows a schematic
representation of these types of neuron model.

3.2.2. Recognition Algorithm Based on a Triangle Coverage.
Suppose J = {J1, J2, . . . , J�} is a training set including N
classes, and J� = {�1, �2, . . . , �
} is the kth class which
containsN sample points; here are the steps to construct CGC
[35]:

Step 1. Calculate the distance � between any of two points inJ�, and �nd two points P11 and P12 from the training set J�,
and let �(;11, ;12) = min�� ,��∈��{�(� �, ��)}, where � � ̸= ��.

en �nd out a third point ;13 ∈ J� − {;11, ;12}, where ;13
is the nearest point away from P11 and P12 but not in line of
them. Connect these three points {;11, ;12, ;13} to constitute
the �rst plane triangle T1, which can be covered with a I3
neuron and the coverage space M1 is

M1 = {� | ���1 < Th, � ∈ ��} , (18)

where ���1 indicates the distance betweenX and T1,
 is the
threshold, and the rest set J� = J� − {;11, ;12, ;13}.
Step 2. Judge whether or not points in S are in the coverage
of M1; if it is true, then exclude these points from S and letJ� = J�−{� � | �� ∈ M1}. Find out another pointP21 from set J�
to make the minimum sum of distance from ;11, ;12, and ;13.
Rename the two points of {;11, ;12, ;13} as P22 and P23, which
are the nearest two to ;21, and then {;21, ;22, ;23} construct
the second plane triangle T2. Likewise, T2 is covered with aI3 neuron generating the coverage space M2, and the rest setJ� = J� − {;21}.
Step 3. Find out other point ;� ∈ J� as Step 2 does, marked
as Pi1, and the two nearest points are marked as Pi2 and Pi3.{;�1, ;�2, ;�3} construct the plane triangle P� and further make
the coverage Mi, and the rest set J� = J� − {;�}.
Step 4. Judge whether set J� is empty; if it is true then end the
construction; else repeat Step 3.

A�er the steps above, the eventual coverage of class k is
the union of all coverage of neurons, which is

Θ� = 	⋃
�=1

M�. (19)


e basic recognition process is to judge which coverage
the test sample would be covered with. Full coverage of
training samples in di�erent classes will inevitably result in
overlapping space. A test sample might fall into none or
overlapped coverage; then it belongs to the one closest to
it. 
erefore, the smallest distances need to be calculated
between the test sample and each coverage. Let �� be the
distance between sample � and coverage space of class �; we
have

�� = ��min
�=1

���, � = 1, 2, . . . , �, (20)

where �� is the number of I3 neurons in class �, � is the
total of classes, and ��� is the distance between a sample to
be recognized and the coverage of neuron 5 in class �. 
en
discrimination function is de�ned as

class = arg
�

min
�=1

��, � = 1, 2, . . . , �. (21)


e pseudocode of CNN-BPR is given in Pseudocode 1.

4. Experiments and Discussions

To validate the proposed algorithm, three di�erent datasets
are used, namely, MNIST, AR, and CIFAR-10. Each dataset
will be introduced brie�y in the following paragraphs. For
each group of experiments, the performance among CNN,
CNN-SVM, PCA-BPR [36], HOG-SVM [37], and the pro-
posed method is compared in the condition of di�erent
amount of training data. For CNN, we use the code down-
loaded fromhttps://github.com/rasmusbergpalm/DeepLearn-
Toolbox, and for the other three compared methods, they are
all combined algorithms; we reimplement them according to
the speci�c steps from their papers. 
e results demonstrate
the validity of the proposed method.

https://github.com/rasmusbergpalm/DeepLearnToolbox
https://github.com/rasmusbergpalm/DeepLearnToolbox
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(1) TRAINING PROCESS

INPUT: labeled training data as X̃ = {X(1),X(2), ...,X(�)}, K is the total of classes.

CNN ← X̃; % the raw training data are sent into CNN to get extracted feature vectors

F̃ = {F(1), F(2), . . . , F(�)}; % the extracted feature vectors are mapped into high-dimensional space to
be % covered by CGC class by class
for i 1 to K do

D(�) ← F(�); % Calculate the distance between any of two points in class �{P�1, P�2} ← arg min(D(�)); % �nd the closest two points fromD(i), marked as P�1 and P�2
F(�) = F(�) − {P�1, P�2}; % delete the marked pointsP�3 ← FindPtoN(F(�), {P�1, P�2}); % FindPtoN is a function used to �nd the minimum distance sum

% from F(�) to P�1 and P�2M1 ← {P�1, P�2, P�3}; % P�1, P�2 and P�3 constitute the �rst plane triangle M1;1 = {� | E��1 < Th�, � ∈ ��} % P1 is the coverage of M1 with the covering radius Th� called I3
% neuron, and E��1 indicates the distance between� and M1

F(�) = F(�) − {P�1, P�2, P�3};
F(�) ← ExcludeP(F(�), ;1); % ExcludeP is a function used to exclude points from F(i) covered by ;15 = 1;
while F(�) ̸= ⌀ % repeat the steps above until F(i) is emptyM�+1 ← FindPtoN(F(�), M�);;�+1 = {� | E���+1 < Th�, � ∈ ��};
F(�) ← ExcludeP(F(�), ;�+1);5 = 5 + 1;

endP� = ⋃	�=1 ;�; % the �nal CGC of class � is the union of each I3 neuron
end
OUTPUT: P = {P1, P2, . . . , P�}; % the set of CGC of all classes
(2) CLASSIFICATION PROCESS
INPUT: x̂ is an image to be classi�ed

f̂ ← CNN ← x̂;�� = min
��
�=1���, � = 1, 2, . . . , �; % ��� is the distance between f̂ and the coverage of neuron 5 in class �

OUTPUT: class = argmin��=1��, � = 1, 2, . . . , � % the class that x̂ belongs to

Pseudocode 1: Pseudocode of the CNN-BPR algorithm.

Figure 5: 100 randomly selected images fromMNIST.

4.1. Experiments on MNIST. 
e MNIST [38] dataset con-
tains grayscale images of handwritten digits. Some images of
the MNIST dataset are shown in Figure 5. It possesses ten
di�erent categories, namely, one for each digit from zero to
nine. Each image has a �xed size of 28×28 pixels. 
e digits
are centered inside the image and normalized in size. Totally,
MNIST contains 70,000 images, including 60,000 training
and 10,000 test images.

ForMNIST, the input layer is followed by a convolutional
layer C1 with 5 × 5 �lters and 10 maps of size 24 × 24. 
e
subsequent max-pooling layer P2 reduces the previous layer
size to 12 × 12 by 2 × 2 �lters. C3 also employs 5 × 5 �lters
but has 12 maps with dimensions of 8 × 8 pixels. P4 with 2× 2 pooling windows yields 4 × 4 feature maps that are fully
connected to 100 hidden neurons. 
ese 100 hidden neurons
are �nally connected to the 10 output units. 
e structure of
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Table 2: Classi�cation accuracy of di�erent methods on MNIST.

Training samples
Accuracy (%)

CNN [26] CNN-SVM [19] PCA-BPR [36] HOG-SVM [37] Our method

600 84.01 86.48 89.23 86.47 91.03

1000 89.31 90.41 91.04 91.24 92.93

6000 95.06 94.88 93.83 93.57 96.74

10000 98.17 97.09 96.03 95.13 98.62

60000 98.89 99.06 98.01 96.85 99.01

Table 3: Classi�cation accuracy of di�erent methods on AR.

Training samples
Accuracy (%)

CNN [26] CNN-SVM [19] PCA-BPR [36] HOG-SVM [37] Our method

500 59.6 64.4 72.2 65.0 76.8

800 66.6 75.6 76.0 76.2 84.4

1600 83.8 90.6 87.6 81.8 92.8

2100 95.0 97.0 93.8 87.4 98.4
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Figure 6: Classi�cation accuracies versus number of training samples for MNIST.

CNN can be brie�y described as 28 × 28Input-10C5-MP2-
12C5-MP2-10Output.

Because the CNN is employed as an automatic feature
extractor and BPR as a classi�er in our proposed method,
a�er training for 20 epochswith a learning rate of 0.1, the fully
connected layer with dimensions of 100 is projected into the
feature space. 
en, a series of I3 neurons are used to cover
these feature points class by class.

CNN, CNN-SVM, PCA-BPR, and the proposed method
are tested on the dataset. For CNN-SVM, we employ the 100
dimensional fully connected neurons above as the input of
SVM, which is from LIBSVM with RBF kernel function. For
PCA-BPR, same dimensional size of features are extracted
from the top-100 principal components, and thenI3 neurons
are used to cover these feature points class by class. 
e
experimental results are shown in Table 2. Moreover, in order
to facilitate comparison with other methods, we set di�erent
numbers of training samples, which are 500, 1000, 6000,
10,000, and 60,000. Figure 6 shows the comparison result.

4.2. Experiments on AR. 
e AR database consists of over
3,200 frontal images of 70 men and 56 women, and there are
26 images of each individual [39]. 
e faces in AR contain
variations such as illumination change, expressions, and facial
disguises (i.e., sunglasses or scarf). We randomly selected 100
subjects (50male and 50 female, 2,600 face images in total) in
the experiments, and the images are cropped with dimension
165 × 120. For each individual, we select �ve images, totaled
500 face images for testing, and set di�erent numbers of
training samples by the rest images, which are 500, 800, 1,600,
and 2,100. Some face images are shown in Figure 7.


e architecture of CNN is represented as 165 × 120Input-
20C5-MP4-50C5-MP2-80C3-MP2-120FC-100Output, train-
ing 50 epochs with a learning rate of 0.01. 
en the 120-
dimensional feature points are covered by I3 neurons. 
e
experimental results are shown in Table 3 and Figure 8.

4.3. Experiments on CIFAR-10. CIFAR-10 is a dataset of nat-
ural RGB images of 32 × 32 pixels [40]. It contains 10 classes
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Figure 7: Sample images in AR dataset.

50

60

70

80

90

100

A
cc

u
ra

cy
 (

%
)

800 1600 2100500

Number of training samples

CNN

CNN-SVM

PCA-BPR

HOG-SVM

Our method

Figure 8: Classi�cation accuracies versus number of training samples for AR.

with 50,000 training images and 10,000 test images. All of
these images have di�erent backgrounds with di�erent light
sources. Objects in the image are not restricted to the one
at center, and these objects have di�erent sizes that range in
orders of magnitude. Some images of CIFAR-10 are shown in
Figure 9.

Because of RGB input images, there would be three
channels in each �lter for the �rst convolutional layer, which
means the size of the �lter would be 3 × 3 × 3 and three-
dimensional convoluted with the input image, resulting in 12
maps of size 30 × 30 in layer X1. 
e following structure is
-MP2-16C3-MP2-120FC-10Output, training 40 epochs with a
learning rate of 0.1. 
en the 120-dimensional feature points
are covered by I3 neurons. 
e experimental results are
shown in Table 4 and Figure 10.

From the above experiments, it can be seen that the
CNN-BPR generally outperforms the other four methods. In
the condition of the maximum training datasets, the CNN-
SVM shows 0.17%, 2%, and 1.9% improvements compared
to CNN, respectively, and CNN-BPR shows generally higher
improvements of 0.12%, 3.4%, and 3.38% compared to CNN.

It can also be seen that HOG and BPR perform much
better than the other methods in the case of small-sized
homogeneous datasets, while with the increase of training
samples, CNN-SVM surpasses the PCA-BPR, which means
that CNN can better represent the feature than HOG and
PCA do in the case of large-scale heterogeneous datasets.

5. Conclusion

In this paper, a CNN-BPR combined model for image
classi�cation is proposed. 
e proposed model treats CNN
as a feature extractor, which can automatically learn the
feature representation. BPR is adept in providing an accurate
classi�er. 
e results in terms of accuracy on the datasets of
MNIST, AR, and CIFAR-10 show that the proposed method
generally outperforms the other methods, which verify the
e�ectiveness of the CNN-BPR combined image classi�cation
model.

Bene�ted from the uni�ed framework of cognitive sci-
ence, the combination of CNN and BPR represents a bet-
ter performance than other methods. In the future, more
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Figure 9: Sample images in CIFAR-10 dataset.

Table 4: Classi�cation accuracy of di�erent methods on CIFAR-10.

Training samples
Accuracy (%)

CNN [26] CNN-SVM [19] PCA-BPR [36] HOG-SVM [37] Our method

500 60.19 61.83 66.03 67.82 68.68

1000 64.91 66.87 69.19 70.14 71.34

5000 69.94 73.20 71.26 71.76 75.85

10000 75.82 79.07 76.48 74.05 83.92

50000 83.73 85.63 82.29 78.56 87.11
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Figure 10: Classi�cation accuracies versus number of training
samples for CIFAR-10.

choices of classi�cation methods inspired by biology will
be researched and compared in order to determine the best
CNN-based framework for the image classi�cation task.
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