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Abstract. We propose a computationally efficient graph based image
co-segmentation algorithm where we extract objects with similar fea-
tures from an image pair or a set of images. First we build a region
adjacency graph (RAG) for each image by representing image superpix-
els as nodes. Then we compute the maximum common subgraph (MCS)
between the RAGs using the minimum vertex cover of a product graph
obtained from the RAG. Next using MCS outputs as the seeds, we iter-
atively co-grow the matched regions obtained from the MCS in each
of the constituent images by using a weighted measure of inter-image
feature similarities among the already matched regions and their neigh-
bors that have not been matched yet. Upon convergence, we obtain the
co-segmented objects. The MCS based algorithm allows multiple, sim-
ilar objects to be co-segmented and the region co-growing stage helps
to extract different sized, similar objects. Superiority of the proposed
method is demonstrated by processing images containing different sized
objects and multiple objects.

Keywords: Maximum common subgraph · Region co-growing

1 Introduction

Co-segmentation is the problem of segmenting objects with similar features from
more than one image (see Fig. 1) or from multiple frames in a video. The objects
of common interest in multiple images are detected as co-segmented objects
[1], [2], [3]. Image foreground segmentation without supervision is a difficult
problem. If an additional image containing a similar foreground is provided,
both images can be segmented simultaneously with a higher accuracy using co-
segmentation. Co-segmentation can also be used to detect objects of common
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Fig. 1. Illustration of the co-segmentation problem. (a–e) Images retrieved by a child
from the internet, when asked to provide pictures of a tiger, and (f–j) common object
quite apparent from the given set of images (Color figure online)
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Fig. 2. Block diagram of the proposed co-segmentation algorithm. Input image pair
I1 and I2 is represented as region adjacency graphs (RAGs) G1 and G2 that are
used to obtain the maximum common subgraph (MCS) that gives the initial matched
regions M1 and M2 in I1 and I2. These are iteratively (index-(t)) co-grown to obtain
the final matched regions M1∗ and M2∗. In order to grow the region M1 in I1, the
region M2 is needed to find the match and similarly M2 requires M1 to grow (Color
figure online)

interest in a set of crowd sourced images. A related topic in this area is image
co-saliency. Co-saliency measures the saliency of co-occurring objects in multiple
images. Image segmentation using co-segmentation is, in principle, different from
object segmentation using co-saliency as the segmented object need not be the
salient object in both images.

The co-segmentation methods in [1], [4], [5], [6] incorporate the foreground
similarity of an image pair in their Markov Random Field model based optimiza-
tion problem. Rother et al. [1] first introduced co-segmentation of an image pair
using histogram matching through graph cuts. Mukherjee et al. [4] used a simi-
lar method by replacing l1-norm in the cost function of [1] by l2-norm. But the
optimization problem in both methods is computationally intensive. Hochbaum
and Singh [5] rewarded foreground histogram consistency, instead of minimizing
foreground histogram difference [1], [4] to simplify the optimization. They also
use prior information about foreground and background colors. The methods in
[1], [4], [5], [6] perform well only for exactly same object on different background.

There has been some work on simplifying the co-segmentation problem by
including user interaction for segmentation [7], [8]. Recent works focus on co-
segmenting more than two images as it has more applications. Joulin et al. [9]
formulated co-segmentation as a two-class clustering problem using a discrimi-
native clustering method. They extended this work for multiple classes in [10]
by incorporating spectral clustering. As their kernel matrix is defined for all
possible pixel pairs of all images, the complexity goes up rapidly with the
number of images. Mukherjee et al. [11] proposed a scale invariant co-
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segmentation method. Vicente et al. [12] used proposal object segmentations
to train a random forest regressor for co-segmentation. This method relies heav-
ily on the accuracy of individual segmentation outputs as it is assumed that
one segment contains the complete object. Kim et al. [13] used anisotropic diffu-
sion to optimize the number and location of image segments. As all the images
are segmented into an equal number of clusters, over-segmentation may become
an issue in a set of different types of images. Furthermore, this method cannot
co-segment heterogeneous objects. An improvement to this has been proposed
in [14] using supervision. The graph based method in [15] includes high-level
information like object detection, which is also a complex problem. Lee et al. [16]
proposed a multiple random walk based image co-segmentation method. Tao et
al. [17] proposed a co-segmentation method based on shape conformability. But
this method cannot handle shape variations caused by viewpoint and posture
changes. The co-segmentation methods in [3], [18], [19] use saliency to initialize
their methods.

Recently co-saliency based methods [20], [21], [22], [23], [24], [25], [26], [27]
have also been used for co-segmentation. These methods detect common, salient
objects by combining (i) individual image saliency outputs and (ii) pixel or
superpixel feature distances among the images. Liu et al. [26] used hierarchi-
cal segmentation and Tan et al. [25] used a bipartite graph to compute feature
similarity. Cao et al. [24] combined outputs of multiple saliency detection meth-
ods. Objects with high saliency value may not necessarily have common features
while considering a set of images, hence these saliency guided methods do not
always detect similar objects across images correctly. Also a good saliency detec-
tion method introduces additional complexity to the co-segmentation algorithm.
Our solution to the co-segmentation problem is independent of saliency or any
prior knowledge or pre-processing.

In this paper, we propose a novel foreground co-segmentation algorithm using
an efficient graph matching based approach. We set up the problem as a max-
imum common subgraph (MCS) computation problem. We find a solution to
MCS of two RAGs obtained from an image pair and then perform region co-
growing to obtain the complete co-segmented objects.

In a standard MCS problem, node attributes are matched exactly for a pair of
graphs. But in natural images, there can be some changes in features (e.g. color,
texture, size) of similar objects or regions. So in our approach, node attributes
do not need to match exactly. This necessitates selecting a threshold for node
matching. The MCS algorithm matching allows multiple similar objects to be co-
segmented. Region co-growing allows objects of different size to be detected. We
show that an efficient use of the MCS algorithm followed by region co-growing
can co-segment high resolution images without increasing computations.

We present the co-segmentation algorithm initially for two images in Sects. 2
and 3. We extend it for multiple images in Sect. 4. We show comparative results
in Sect. 5 and conclude in Sect. 6.
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2 Co-segmentation for Two Images

In the co-segmentation problem for two images, we are interested in finding the
objects of interest that are present in both the images and have similar features.
The flow of the proposed co-segmentation algorithm is shown in Fig. 2. First
we segment each image (Fig. 3(a),(e)) into superpixels using SLIC method [28]
and represent each image as a graph by representing the superpixels as nodes.
Superpixel segmentation allows a coarse level description of the image through a
limited number (N) of nodes of the graph. An increase in N increases the com-
putation in graph matching drastically. So, we use superpixels instead of pixels
as nodes. Moreover, each superpixel contains pixels from a single object and is
homogeneous in feature and helps in retaining the shape of an object boundary.
As an image is a group of connected components, we build a region adjacency
graph (RAG) for each image where every spatially contiguous superpixel (node)
pair is connected by an edge.

2.1 Image Representation as Attributed RAGs

We build two RAGs G1 = (V1, E1) and G2 = (V2, E2) corresponding to
images I1 and I2, respectively (see Fig. 4(a) for illustration of MCS matching
problem). Here Vi = {vi

k} and Ei = {ei
kl} for i = 1, 2 denote the set of nodes

and edges, respectively. In each graph Gi, an edge exists between a pair of
nodes (superpixels) if they are spatial neighbors of each other. One can assign
several features to each node. We use two features: (i) CIE Lab mean color
and (ii) rotation invariant histogram of oriented gradient (HoG) of the pixels
within the corresponding superpixel. The use of HoG feature is motivated by
the fact that multiple superpixels can have similar mean color in spite of being
completely different in color, and HoG features are useful to capture the image
texture. To co-segment similar objects with different orientation, we use rotation
invariant HoG of each superpixel. If an image is rotated, the gradient direction
of every pixel is also changed by the same angle. Hence, the histogram (of gra-
dients of a superpixel) will be shifted as a function of the rotation angle. In
order to achieve rotation invariance, we circularly shift the computed HoG with
respect to the location of the maximum histogram value. We compute the fea-
ture similarity (Sf (·)) between nodes v1

k in G1 and v2
l in G2 as a weighted sum of

the corresponding color and HoG feature similarities denoted as Sc(·) and Sh(·),
respectively as

Sf

(

v1
k, v2

l

)

= 0.5Sc

(

v1
k, v2

l

)

+ 0.5Sh

(

v1
k, v2

l

)

. (1)

Here a normalized Euclidean distance measure is used for computing the feature
distance. Normalization is done with respect to the maximum pairwise distance
between all nodes. The similarity measure Sf (·) is defined as the additive inverse
of the computed normalized distance. We then obtain the MCS between the two
RAGs to obtain the common objects as explained next.
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Fig. 3. Illustration of co-segmentation of an image pair. ((a),(e)) Input images and
their SLIC segmentation. ((b),(f)) The matched nodes i.e., superpixels across images
(shown in same color) obtained from the MCS computation and the corresponding
((c),(g)) object regions in the images. ((d),(h)) Co-segmented objects obtained after
performing region co-growing on the initially matched regions in ((c),(g)) (Color figure
online)

2.2 MCS Computation from RAGs

To solve the co-segmentation problem of an image pair, we need superpixel cor-
respondences from one image to the other and match the superpixels within
the objects of similar features across images. The computational complexity
is O((|G1| + |G2|)3) assuming a minimum cost many-to-many matching algo-
rithm [29]. Without any prior information about the objects, this matching
becomes exhaustive and may result in many disconnected segments as matched
regions. Each of these segments may be a group of superpixels or even a single
superpixel and such matching may not be meaningful. To obtain a meaningful
match, wherein the connectivity among the superpixels are maintained, we use
a graph based approach to jointly segment the complete objects from an image
pair. Thus our objective is to obtain the maximum common subgraph (MCS)
that represents the co-segmented objects. The MCS corresponds to the common
subgraphs M1 in G1 and M2 in G2. It may be noted that, in general, M1 �= M2

as the common object in both the images need not undergo identical superpixel
segmentation, and hence many-to-one matching must be permitted, unlike in a
standard MCS finding algorithm. The computation time depends on the number
of nodes in the graph, and this explains why we use the superpixel segmenta-
tion first as it cuts down the number of nodes drastically. Further to reduce the
complication arising from many-to-one node matching, we assume that upto a
maximum of p nodes in one image may match to a single node in the other image,
based on a similarity measure. Following the work of Madry [30], it is possible to
show that the computation complexity reduces to O((p(|G1| + |G2|))10/7) when
the matching is restricted to a maximum of p nodes only.

To find the MCS, we build two product graphs H12 and H21 (ideally known
as vertex product graph) from the RAGs G1 and G2 based on their inter-image
(superpixel) feature similarities (see Eq. (1)). A node in a product graph [31] is
denoted as a 2-tuple (v1

k, v2
l ) with v1

k ∈ G1 and v2
l ∈ G2. We call it a product node

to differentiate it from single image nodes. As motivated in Sect. 1, node features
do not need to match exactly for natural images. So, we select a threshold tG
(0 ≤ tG ≤ 1) for matching. For a fixed v1

k ∈ V1, let U2
k be the ordered list of nodes

{v2
l } in V2 such that {Sf

(

v1
k, v2

l

)

}∀l are in descending order of magnitude. We
define the set of product nodes H12 of the product graph H12 as
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H12 =
⋃

∀k

{

(

v1
k, ul ∈ U2

k

)

l=1,2,...p
|Sf

(

v1
k, ul

)

> tG

}

(2)

Similarly, we compute H21 by keeping V2 as reference. It is interesting to note
that allowing one node in one graph to match to p nodes in the other graph leads
to H12 �= H21, resulting in M1 �= M2 (i.e. not commutative) as noted earlier. A
large value of tG restricts the matching to only a few candidate superpixels, and
yet allowing certain amount of inter-image variations in the common objects.
A small value of p ensures a fast computation during subgraph matching, still
allowing the soft matches to be recovered during the region co-growing phase
in Sect. 2.3. Thus the product graph size as well as the possibility of spurious
matching reduces. For example, the size of the product graph for many-to-many
matching is O(|G1||G2|), and the choice of p in the matching process reduces the
size to O(p(|G1| + |G2|)), while the additional use of the threshold tG makes it
O(αp(|G1| + |G2|)) with 0 < α ≪ 1. This reduces the computation drastically.
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Fig. 4. Illustration of maximum common subgraph computation. (a) Two RAGs G1

and G2 are obtained from images I1 and I2, respectively. The set of nodes M1, M2 and
edges in the maximum common subgraphs M1 and M2 of G1 and G2, respectively, are
highlighted (in blue). (b) Illustration of requirement of condition C.2 of edge assign-
ment in Sect. 2.2. Let the product nodes in the product graph obtained from the RAGs
G1, G2 be

(

v1
1 , v2

1

)

and
(

v1
3 , v2

3

)

due to the constraint defined in Eq. (2). They are con-
nected by an edge according to condition C.2 although condition C.1 is not satisfied.
It is easy to derive that the nodes in the MCS are

(

v1
1 , v2

1

)

and
(

v1
3 , v2

3

)

. This shows that
multiple disconnected but similar objects can be co-segmented (Color figure online)

In H12, we add an edge between two product nodes
(

v1
k1

, v2
l1

)

and
(

v1
k2

, v2
l2

)

with k1 �= k2 ∧ l1 �= l2 if
C.1. e1

k1k2
∈ G1 ∧ e2

l1l2
∈ G2, or C.2. e1

k1k2
/∈ G1 ∧ e2

l1l2
/∈ G2,

where ∧ stands for the logical AND operation. As edges in the product graph H12

represent matching, the edges in its complement graph H12
C and the product

nodes which they are incident on represent non-matching. These product nodes
are essentially the minimum vertex cover (MVC) of H12

C . The MVC of a graph is
the smallest set of vertices required to cover all the edges in that graph [32]. So,
the set of product nodes (M12) other than this MVC represents the left matched
product nodes, known as the maximal clique of H12 in the literature [31] (i.e. the
reference graph G1 being matched to G2). Similarly, we obtain the right matched
product nodes M21 from H21 (i.e. the reference graph G2 being matched to G1).
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Let M � M12 ∪ M21, and M1 ⊆ V1 and M2 ⊆ V2 be the set of nodes (see
Fig. 3(b),(f)) in the corresponding common subgraphs M1 in G1 and M2 in G2,
respectively, with

M1 = {v1
k|(v1

k, v2
l ) ∈ M} and M2 = {v2

l |(v1
k, v2

l ) ∈ M} , (3)

and they correspond to the matched regions (nodes) in I1 and I2, respec-
tively (see Fig. 3(c),(g)). Note M1 and M2 are induced subgraphs. Here |M1|
and |M2| need not be equal due to reasons mentioned earlier. The maximum
common subgraphs for the example graphs G1 and G2, respectively, are high-
lighted in Fig. 4(a). Condition C.1 alone cannot perform co-segmentation of
multiple objects, if present, that are not connected to each other. The addition
of condition C.2 helps to achieve this. We illustrate this using an example. In
Fig. 4(b), let the disconnected nodes v1

1 and v1
3 in G1 be similar to the discon-

nected nodes v2
1 and v2

3 in G2, respectively. Here use of condition C.1 alone will
co-segment either (i) v1

1 and v2
1 or (ii) v1

3 and v2
3 , but not both. But using both

conditions, we will be able to co-segment both (i) v1
1 and v2

1 and (ii) v1
3 and v2

3

which is the correct result. In the case of product nodes
(

v1
k, v2

l1

)

and
(

v1
k, v2

l2

)

(i.e. k1 = k2), we add an edge if e2
l1l2

exists.
As we have obtained an MCS with the constraints on the choice of similarity

threshold tG and the maximal many-to-one matching parameter p, M1 and
M2 may not contain all the nodes within the co-segmented objects. So, we
iteratively grow these matched regions in both images simultaneously based on
neighborhood feature similarities across both images till convergence to obtain
the complete co-segmented objects as explained next.

2.3 Region Co-growing

In the MCS algorithm of Sect. 2.2, our goal is to keep the product graph size small
to reduce the computation even if the subgraphs obtained at the MCS output do
not cover the complete objects. We do so by using a relatively large value of tG
and a small value of p. If two superpixels do match, it is expected to find matching
of superpixels in their neighborhoods when the object is partially recovered. We
can perform region co-growing on the regions M1 and M2 obtained from the
MCS matching algorithm using them as seeds to obtain the complete objects.
So, even if an image pair contains common objects of different size (and number
of superpixels), they are completely detected after region co-growing. Moreover,
obtaining an MCS with a small number of nodes followed by region co-growing
is computationally less intensive than solving for a large product graph.

As we are interested in co-segmentation, we jointly and iteratively grow M1

and M2. Here our objective is to find nodes, in the neighborhood of already
matched regions (nodes) in one image, having high feature similarity to the
already matched regions (nodes) in the other image. We use these neighborhood
nodes for region growing. Let NMi denote the set of neighbors of Mi, with
NMi =

⋃

v∈Mi {u ∈ N(v)} for i = 1, 2, where N(·) denotes neighborhood. In every

iteration-t, we append a certain set of neighbors N
(t)
s2 ⊆ N

(t)
M2 to M2,(t) if they
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Fig. 5. Illustration of region co-growing. (a) The set of nodes M1 and M2 at the MCS
outputs of the graphs G1 and G2, with v1

1 , v1
2 , v1

3 , v1
5 match v2

1 , v2
2 , v2

3 , v2
5 , respectively.

The nodes in MCSs are M1,(t) and M2,(t) (blue) at t = 1. To grow M2,(t), we compare
feature similarities of each node, e.g. v2

4 (red), in the neighborhood of M2,(t) to all the
nodes in M1,(t). (b) M2,(t+1) (green) has been obtained by growing M2,(t) and v2

4 has
been included in the set due to high feature similarity with v1

1 . (c) To grow M1,(t), we
compare feature similarities of each node, e.g. v1

4 (red), in the neighborhood of M1,(t) to
all the nodes in M2,(t). (d) The set of matched nodes (purple) after iteration-1 of region
growing, assuming no match has been found for v1

4 . Effectiveness of region co-growing
is illustrated in (e–j). ((e),(f)) Input images. ((g),(h)) The object regions in the images
obtained from the MCS algorithm. As the two objects are of different size, the larger
object (of image (e)) is not completely detected. ((i),(j)) Co-segmented objects are
completely obtained after performing region growing on the initially matched regions
(Color figure online)

have high inter-image feature similarity to the nodes in M1,(t). Similarly, we

append a certain set of neighbors (N
(t)
s1 ⊆ N

(t)
M1) of M1,(t) to it. The matched

region sets are updated as shown in the program.
We compute the weighted feature similarity S ′

f (v1
k, v2

l ) between a node v1
k in

M1,(t) and a node v2
l in N

(t)
M2 as a function of (i) their feature similarity Sf (v1

k, v2
l )

of Eq. (1) and (ii) the average feature similarity between their neighbors (Nv1
k

and Nv2
l
) that are already in the set of matched regions i.e., in M1,(t) and M2,(t),

respectively. Thus the similarity measure for region growing has an additional
measure of neighborhood similarity compared to the measure used for graph
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matching in Sect. 2.2. We illustrate the proposed region co-growing method using
Fig. 5. In Fig. 5(a), to compute the weighted feature similarity S ′

f (v1
1 , v2

4) between

a matched node v1
1 ∈ M1 and an unmatched neighboring node v2

4 ∈ NM2 while
growing M2, we consider their feature similarity Sf (v1

1 , v2
4) and the feature simi-

larity between the respective (matched) neighboring node pairs (v1
3 ∈ M1 ∩ Nv1

1
,

v2
3 ∈ M2 ∩ Nv2

4
) and (v1

5 ∈ M1 ∩ Nv1
1
, v2

5 ∈ M2 ∩ Nv2
4
). We ignore the neighbor-

ing nodes v1
2 ∈ M1 and v2

1 ∈ M2 assuming they have not been matched to each
other. Similarly while growing M1, we compute the weighted feature similarity
between v1

4 ∈ NM1 and the nodes in M2 (see Fig. 5(c)).
If a node in Gi has less number of already matched neighbors, it is more likely

to be part of the background in Ii. So, less importance should be given to it
even if it has relatively high feature similarities with the nodes within the object
in Ij . In Fig. 5(a), the unmatched node v2

4 ∈ NM2 has three matched neighboring
nodes v2

1 , v2
3 and v2

5 , whereas in Fig. 5(c), the unmatched node v1
4 ∈ NM1 has

one matched neighboring node v1
1 . The weighted similarity measure S ′

f (v1
k, v2

l )
is computed as

S ′
f (v1

k, v2
l ) = ωN Sf

(

v1
k, v2

l

)

+ (1 − ωN )
(

1 − (Q)
|U1||U2|

)

, where (4)

Q =
1

|U1||U2|

∑

u1∈U1,u2∈U2

(1 − Sf (u1, u2))1 (u1, u2) . (5)

HereωN isanappropriatelychosenweight,U1 = Nv1
k

∩ M1,(t),U2 = Nv2
l

∩ M2,(t),

| · | indicates cardinality and the indicator function1 (u1, u2) = 1 if theMCSmatch-
ing algorithm yields a match between nodes u1 and u2 and 1 (u1, u2) = 0 other-
wise. The first term in Eq. (4) is the feature similarity, as defined earlier in Eq. (1),
between the two nodes in consideration, v1

k and v2
l . The second term is a measure of

inter-image feature similarity among neighbors of v1
k and v2

l . As desired, this value
increases as the number of neighbors that have already been matched increases.

Region co -growing program

begin

repeat until convergence

N
(t)
s1 :=

⋃

v2
l
∈M2,(t){v1

k ∈ N
(t)
M1 |Sf

′(v1
k, v2

l ) > tG};

N
(t)
s2 :=

⋃

v1
k
∈M1,(t){v2

l ∈ N
(t)
M2 |Sf

′(v1
k, v2

l ) > tG};

Region growing in G1: M1,(t+1) := M1,(t) ∪ N
(t)
s1 ;

Region growing in G2: M2,(t+1) := M2,(t) ∪ N
(t)
s2 ;

end.

The region co-growing algorithm converges when M1,(t) = M1,(t−1),
M2,(t) = M2,(t−1). We use M1∗ � M1,(t) and M2∗ � M2,(t) (see Fig. 2) to
extract common objects completely from I1 and I2, respectively (also see
Fig. 3(d),(h)). The example in Fig. 5(e–j) shows that region growing helps to
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completely detect common objects of different size. The larger object has been
partially detected from MCS (Fig. 5(g)) and is fully recovered after region co-
growing (Fig. 5(i)).

Relevance Feedback. The weight ωN in Eq. (4) is used to compute the similar-
ity S ′

f (v1, v2) between a pair of nodes from G1 and G2 during region co-growing
from two constituent similarity measures. Instead of using heuristics, we use rele-
vance feedback [33] to quantify the importance of the neighborhood information
and find ωN . It has been used by Rui et al. [34], among many others, to find
optimal weights while combining different features for various applications.

2.4 Common Background Elimination

In the co-segmentation problem, we are interested in common foreground seg-
mentation and not in common background segmentation. If an image pair con-
tains background regions with similar features such as the sky or water body, the
co-segmentation algorithm, as described so far, will also include the background
regions as part of the co-segmented objects. Moreover, inclusion of similar back-
ground nodes will unnecessarily increase the size of product graph. We use the
method of Zhu et al. [35] to obtain an estimate of the probability of a superpixel
belonging to the background to eliminate it while building the product graphs
and region co-growing. This method is briefly described next.

As we normally capture images keeping the objects of interest at the center
of the image, the superpixels at the image boundary are more likely to be part of
the background. In addition to the boundary superpixels, some superpixels not
at the image boundary will also belong to the background and they have features
similar to the boundary superpixels (B). The boundary connectivity CB (vi) of a
superpixel vi is defined as the fraction of its cumulative similarity to all superpix-
els in the image present at the image boundary. The probability of a superpixel vi

belonging to the background is given by [35] PB (vi) = 1 − exp
(

− 1
2 (CB (vi))

2
)

.

We compute this probability for all superpixels in images I1 and I2 indepen-
dently, and discard the superpixels that have PB (vi) > tB, where tB is a thresh-
old, while constructing the graphs G1 and G2.

3 Pyramidal Image Co-segmentation

With an increase in image size for a well textured scene, the number of superpix-
els increases and the graph size becomes larger. To maintain the computational
efficiency of the proposed co-segmentation algorithm for high resolution images,
we use a pyramidal representation of images. We compute the maximum com-
mon subgraph at the coarsest level as it contains the least number of superpix-
els (nodes). This reduces the computation of the MCS matching algorithm. Then
we perform region co-growing at every finer level in the pyramid. This avoids
any localization error that might have occurred if both MCS computation and
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M1
2

M1
1

M2
1

M1
1 = MCS(G1, G2);M2

1 = MCS(G3, G4)

M1
2 = MCS(M1

1 ,M2
1 )

Level 1 Level 2

Fig. 6. Illustration of image co-segmentation method for the case of four images. Input
images I1–I4 are represented as graphs G1–G4. Co-segmentation of I1 and I2 yields
MCS M1

1 . Co-segmentation of I3 and I4 yields MCS M2
1 . Co-segmentation of M1

1 and
M2

1 yields MCS M1
2 that represents the co-segmented objects in images I1–I4. Here,

M
j

l denotes the j-th subgraph at level l

region co-growing are performed at the coarsest level and that output is resized
to the input image size.

Let the input image pair I1 and I2 be successively downsampled (by 2) P
times with I1

P and I2
P being the coarsest level image pairs, and let I1

1 = I1 and
I2
1 = I2. We segment the set of downsampled images into superpixels of same

sizes. So, I1
P and I2

P contain the least number of superpixels. Let M1
P and M2

P

be the set of matched superpixels in I1
P and I2

P obtained from the MCS matching
algorithm. To find the matched superpixels in Ii

P−1, we map every superpixel
in Mi

P to certain superpixels in Ii
P−1 based on the co-ordinates of the pixels

inside the superpixels. A superpixel v ∈ Mi
P is mapped to a superpixel u ∈ Ii

P−1

if u has the highest overlap with the twice-scaled co-ordinates of pixels of v
among all superpixels in Mi

P . Then we perform region co-growing on the mapped
superpixels in I1

P−1 and I2
P−1 as discussed in Sect. 2.3 and obtain the matched

superpixel sets M1
P−1 in I1

P−1 and M2
P−1 in I2

P−1. We repeat this process for
subsequent levels and obtain the final matched superpixel sets M1

1 and M2
1 that

constitute the co-segmented objects in I1
1 and I2

1 , respectively.

4 Co-segmentation of Multiple Images

Here we extend the proposed co-segmentation method to multiple images, instead
of finding matches over just an image pair. This is more relevant in analyzing crowd
sourced images in an event or a touristic location. If we try to obtain the MCS of K
number of images simultaneously, the size of the product graph grows drastically
(O

(

pK−1|G1|K−1
)

, assuming same cardinality of every graph for simplicity) mak-
ing the proposed algorithm incomputatble. We propose a different scheme to con-
vert this into an algorithm dealing with K − 1 separate product graph pairs of size
O(αp(|G1|+|G2|)) using ahierarchical scheme involvingpair-wise co-segmentation
over a binary tree structured organization of the constituent images (see Fig. 6).

To co-segment a set of K images I1, I2, . . . , IK , we perform L = ⌈log2 K⌉
levels of co-segmentation. Let G1, G2, . . . , GK denote the graphs of the respec-
tive input images and M j

l denotes the j-th subgraph at level l. We indepen-
dently compute the co-segmentation outputs of image pairs (I1,I2), (I3,I4), . . . ,
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Fig. 7. Illustration of image co-segmentation from four images. Co-segmentation of the
image pair in ((a),(g)) yields outputs ((c),(i)), and the pair in ((b),(h)) yields outputs
((d),(j)). These outputs are co-segmented to obtain the final outputs ((e),(f),(k),(l)).
Notice how small background regions present in ((c),(i)) have been removed in ((e),(k))
after the second round of co-segmentation (Color figure online)

(IK−1,IK). Let M1
1 , M2

1 , . . . , M
K/2
1 be the resulting subgraphs for pairwise co-

segmentation at level l = 1 in Fig. 6. Then we again compute MCS of each pair

(M1
1 , M2

1 ), (M3
1 , M4

1 ), . . . , (M
K/2−1
1 , M

K/2
1 ) and then obtain the correspond-

ing co-segmentation map M1
2 , M2

2 , . . . for l = 2. We repeat this process until
we obtain the final co-segmentation map M1

L at level l = L. Figure 6 shows the
block diagram when considering co-segmentation for four images (L = 2).

The advantage with this approach is that the computational complexity
greatly reduces after the first level of operation as |M j

l | ≪ |Gi| in any level l
and the graph size reduces at every subsequent level. We need to perform
co-segmentation at most K − 1 times for K input images i.e., the complexity
increases linearly with the number of images to be co-segmented. Also if at
any level any MCS is null, we can stop the algorithm and conclude that there
is no common object over the image set. It may be noted that due to non-
commutativity, as the MCS output of two graphs at any level corresponds to
two different matched regions, we may choose any of them for the next level of
co-segmentation. Figure 7 shows an example of co-segmentation for four images.
Co-segmentation outputs M1, M2 in (c),(i) and M3, M4 in (d),(j) at level l = 1
are obtained from input image pairs I1, I2 in (a),(g) and I3, I4 in (b),(h),
respectively. Final co-segmented objects are in (e),(k),(f),(l).

5 Experimental Results

Choice of parameters: For an N1 × N2 image (in the coarsest level), we experi-
mentally choose the number of superpixels to be N = min(100, 0.004N1N2). This
limits the size of the graph to be under 100. The maximal many-to-one matching
is limited to p = 2 as a trade-off between the size of the product graph and pos-
sible reduction in seeding the co-segmentation process before region co-growing.
We have adaptively chosen the inter-image feature similarity threshold tG in
Eq. (2) to ensure that the size of the product graphs, H12 and H21, is at most
40–50 due to computational restrictions. In Sect. 2.4, we have set the threshold
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Fig. 8. Visual comparison of result of image co-segmentation. Co-segmentation outputs
obtained from the image pairs in (a,b), (c,d), (e,f), (g,h), (i,j) and (k,l) of Row A
using [22], [21], [23], [13], [3], [24], [16] and the proposed method (PR) are shown in
Rows B–H and Row I, respectively. Ground-truth data are shown in Row J (Color
figure online)

PR [16] [3] [24] [23] [21] [9] [13] [22]
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0.2

0.4

0.6

0.8

1

Methods
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Recall

Fmeasure

Fig. 9. Comparison of precision, recall and F-measure values of the proposed method
(PR) with [16], [3], [24], [23], [21], [9], [13], [22] on the image pair dataset [21] (Color
figure online)

for background probability as tB = 0.75max({PB (vi),∀vi ∈ I}) to discard the
possible background superpixels in the proposed co-segmentation algorithm.

Results: We have tested our algorithm with images selected from five datasets.
Results for MSRC dataset [3] and the image pair dataset [21] are provided here.
Results for the iCoseg dataset [7], the flower dataset [36] and the Weizmann horse
dataset [37] are in the supplementary material. We first visually analyze results
of some of the existing methods and compare with the results of the proposed
method (PR) on images containing a single object (Fig. 8(a)–(h)) as well as
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PR [16] [3] [24] [23] [21] [9] [13] [22]
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Fig. 10. Comparison of mean precision, recall and F-measure values of the proposed
method (PR) with [16], [3], [24], [23], [21], [9], [13], [22] on images selected from ‘cow’,
‘duck’, ‘dog’, ‘flower’ and ‘sheep’ classes in the MSRC dataset [3] (Color figure online)

multiple objects (Fig. 8(i)–(l)). We show visual comparison of our result with
the methods [22], [21], [23], [13], [3], [24], [16] in Fig. 8 (Rows B–H, respectively)
and results demonstrate the superior performance of PR (Row I). For the input
image pair in Fig. 8(i),(j), the methods in [22], [13], [3] detect only one of the two
common objects (shown in Rows B, E, F). Most of the outputs of [22], [21], [23],
[13] (shown in Rows B–E) contain discontiguous and spurious objects. Further,
in most cases the common objects are either under-segmented or over-segmented.
Although the method of Rubinstein et al. [3] yields contiguous objects, they very
often fail to detect any object from both images (Row F in Fig. 8(a),(c),(e),(h)).
However, the proposed method yields the entire object as a single entity with
very little over or under-segmentation.

The quality of the proposed co-segmentation output is also quantitatively
measured using precision, recall and F-measure, as used in earlier works e.g.,
[21]. These metrics are computed by comparing the segmentation output mask
with the ground-truth provided in the database. Precision is the ratio of the
number of correctly detected object pixels to the number of detected object
pixels. This penalizes for classifying background pixels as object. Recall is the
ratio of the number of correctly detected object pixels to the number of ground-
truth pixels. This penalizes for not detecting all pixels of the object. F-measure
is the weighted harmonic mean (we use weight = 0.3) of precision and recall. We
compare these measures of the proposed method with those of methods in [16],
[3], [24], [23], [21], [9], [13], [22] on the image pair dataset [21] (Fig. 9) and the
MSRC dataset [3] (Fig. 10). Results show that the proposed method outperforms
others. Moreover our precision and recall values are very close, as it should be,
and yet being very high. This indicates that the proposed method reduces both
false positives and false negatives. While the methods in [23], [24] (Fig. 9) also
have high precision values, the recall rate is significantly inferior to the proposed
method. Method [16] has a good recall measure, but the precision is quite low. In
order to compare the computation time of the proposed method, we execute the
competing methods also on the same system. Table 1 shows that the proposed
method is significantly faster than existing methods [16], [3], and the advantage
is more noticeable when the image size increases.
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Table 1. Comparison of computation time (in seconds) of the proposed method (PR)
with [16], [3], as the image pair size (86× 128 and 98× 128) increases by shown factors

Method Increase in image size

1 × 1 2 × 2 22 × 22 23 × 23 24 × 24

[16] 32.65 51.63 78.83 163.61 820.00

[3] 1.80 6.00 25.20 107.40 475.80

PR 1.54 2.08 2.94 5.69 13.90

6 Conclusions

In this paper, we have proposed a novel and computationally efficient image
co-segmentation algorithm based on the concept of maximum common sub-
graph matching. Performing region co-growing on a small number of nodes
(seeds) obtained as the MCS output and incorporating them in a pyramidal co-
segmentation makes the proposed method computationally very efficient. The
proposed method can handle variation in shape, size, orientation and texture in
the common object among constituent images. It can also deal with presence of
multiple common objects, unlike some existing methods.
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