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ABSTRACT 

The performance of an image compression scheme is affected by the presence of 

noise in an image. This work mainly investigates the effects of signal-dependent noise on 

image compression using the JPEG image compression algorithm. Simulation results 

show that the achievable compression is significantly reduced in the presence of noise. 

The types of noise considered are, signal-independent additive noise, signal-dependent 

film-grain noise and speckle noise. For improvement of compression ratios noisy images 

are pre-processed for noise suppression before applying compression. Two approaches 

are used for reduction of signal-dependent noise prior to compression. In one approach 

estimator designed specifically for a particular signal-dependent noise model is used on the 

noise degraded image for noise suppression. In the second approach the signal-dependent 

noise is transformed into signal-independent noise using a homomorphic transformation. 

An estimator designed for signal-independent noise is then used on the transformed image 

for noise suppression followed by an inverse homomorphic transformation. The 

performances of these two pre-compression noise suppression schemes are compared 

using different performance criteria. Simulation results show that pre-compression noise 

suppression significantly increases the amount of compression obtained subsequently. The 

compression results for the noiseless, noisy and restored images are compared. 
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CHAPTER 1 

INTRODUCTION 

At the present time, there is widespread use of continuous tone images in diverse 

applications. The large file sizes of images can make the storage and transmission of large 

numbers of images a serious problem [1]. The uses of images in the data processing 

environment can be difficult as handling large amounts of data requires time, is costiy and 

requires large bandwidths. These problems can be reduced by compressing the image 

files. Therefore, image compression is a topic of great interest today. 

The presence of noise in an image affects any kind of image processing scheme, as 

the noise effectively changes the image properties. An image compression technique 

would perform differentiy for a noisy image compared to the noise free case. As most of 

the noise sources are signal-dependent in nature [2, 3], image compression performance in 

the presence of signal-dependent noise is a topic worth investigating. 

1.1 Problem Statement 

The purpose of this thesis is to investigate the performance of image compression 

techniques in the presence of signal-dependent noise. Film-grain noise and speckle are 

two types of signal-dependent noise commonly encountered in real world images. Film-

grain noise is a source of degradation when images are recorded on photographic films 

and are digitized [4]. Speckle occurs in all types of coherent imagery, such as synthetic 

aperture radar (SAR) imagery, laser illuminated imagery, astronomical imagery and also in 

ultrasonic medical imagery [5, 6]. The presence of signal-dependent noise (SDN) affects 

the compression of these images for the purpose of archiving and transmission. We have 

mainly studied the effects of speckle and film-grain noise on image compression. 

We have used the JPEG (Joint Photographic Experts Group) standard for image 

compression in this work. JPEG is the current standard for image compression set under 

the auspices of the Intemational Organization for Standardization (ISO), the International 

Telegraph and Telephone Consultative Committee (CCITT) and the Intemational 



Electrotechnical Commission (lEC) [7]. We have investigated how the presence of noise 

reduces the amount of compression achievable. We have also investigated the pre­

processing of the noisy images to subsequentiy achieve higher compression ratios. 

1.2 Computer Simulation of the Images 

The images used in our work were 512x512 monochrome images having pixel 

values between 0 and 255. In the original uncompressed images, each pixel is represented 

by 8 bits. We have simulated the noisy images from the original noiseless images using 

various noise models. During simulation of the noisy images, all the pixel values 

generated above 255 were thresholded to 255 and all the pixel values below zero were 

thresholded to zero. 

1.3 Image Ouality Measures 

The performance evaluation of any image processing scheme is done based on 

some suitable criterion for image quality. We have studied two types of image processing 

schemes in our work. They are (1) image restoration or noise suppression and (2) image 

compression. The image quality measures used for those two approaches are described 

below. 

1.3.1 Performance Criteria for the Image Restoration Schemes 

The most commonly used measure of image quahty is the mean square error 

(MSE). The MSE of an NxN image is given by 

N N r « n2 

(1.1) 

where / ( / , j) and / ( / , j) are tiie original noiseless image and the restored image gray level 

values, respectively. We have also used three other image quality measures for the 

restoration schemes, those are normalized mean square error (NMSE), RMS signal-to-



noise ratio (RMSSNR) and log mean square error (LOGMSE). These are defined as 

follows: 
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where f(i,j) and f(i,j) are the noiseless and the restored image gray level values, 

respectively. The LOGMSE gives an error measurement based on the human visual 

system. The human visual system response to the input light intensity is nonlinear, which is 

modeled as a logarithmic function [8]. A mean square error can be calculated after 

passing the images through the filter with a logarithmic intensity response. Thus the 

LOGMSE is given by Equation (1.4). 

1.3.2 Performance Criteria for the Image Compression Scheme 

For the compression scheme we have again used the MSE as an image quality 

measure, where the MSE is now defined as 

MSE = ^j^f^[xii,j)-xXi,j)], 
j V :^ i , _ ] 

(1.5) 

where x(i, j) is the uncompressed input image to the compression/decompression system 

and x^ (/, j) is the image after compression and decompression. Another quality measure 



used for the image compression scheme is the peak signal-to-noise ratio (PSNR) defined 

by 

PSNR = 10 log 10 

255' 
1 N N 

i;T7SZHi'j)-^c(iJ)} 
•i> i = i j=i 

dB. (1.6) 

1.4 Thesis Outline 

Chapter II describes the image and noise models assumed in our work. Chapter III 

presents a general discussion of the effects of noise on image compression. Chapter IV 

describes the noise suppression techniques for film-grain noise and presents the restoration 

and compression results for the noisy and the restored images. Chapter V presents the 

techniques used for speckle reduction, the results of speckle reduction, the compression 

results obtained for images degraded by speckle and the restored images. Chapter VI 

summarizes the work and discusses possible future extensions. 

In this thesis, the effects of image noise, specifically signal-dependent noise, on 

image compression have been studied. We have shown that there is a significant reduction 

of achievable compression in the presence of noise, such as signal-independent Gaussian 

noise, signal-dependent film-grain noise and speckle. We have then investigated the 

effectiveness of processing the image for noise suppression prior to compression in order 

to obtain higher compression ratios. We have studied two approaches for signal-

dependent noise suppression prior to compression. In one approach, we have used local-

statistics estimators designed specifically for signal-dependent noise. In the second 

approach, estimators designed for signal-independent noise (SIN) were applied to the 

noise degraded image after first transforming the SDN into SIN. The performances of 

these two schemes for noise suppression were compared. We also studied the 

improvement in the achievable compression realizable due to pre-compression noise 

suppression. The improvement in the compression ratios for the two types of noise 

suppression schemes were also compared. 



CHAPTER n 

IMAGE AND NOISE MODELS 

In dealing with the performance of image compression techniques on noisy images, 

we need to consider both the image model and the noise model. In order to find out how 

the presence of noise affects the compression scheme, the noise statistics need to be 

defined. For example, signal-dependent noise wiU introduce effects significantiy different 

from signal-independent noise. To deal properly with the noise degradation, the noise 

model should also describe the noise process accurately. The restoration of the images 

degraded by noise also depends on the image and the noise models. The vahdity and the 

effectiveness of the restoration techniques are largely dictated by the models assumed. In 

this chapter, the image and the noise models used for our work are presented. 

2.1 Image Model 

Conventionally, an image is described by a stationary model with a constant mean 

and a stationary correlation function. Any restoration scheme based on this model is, 

however, insensitive to abrupt changes in the image. So an image model should 

technically be nonstationary. The stationary model describes an image to a be a wide-

sense stationary random field with a constant mean vector and a block Toeplitz covariance 

matrix [9]. The joint probability density is assumed to be multivariate Gaussian. For a 

real world image this is not a very accurate description. As seen from Figure 2.1, the 

histogram of the Lena image is not Gaussian in nature and has multiple peaks. Thus a 

nonstationary image model is required to describe the image. 

The restoration filters used for signal-dependent noise in Chapter IV and Chapter 

V assume a nonstationary mean and nonstationary variance model. Hunt et al. [10] 

proposed that an image / can be decomposed into a spatially nonstationary mean and a 

stationary residual component /o = / - / . The nonstationary mean / describes the gross 

structure of an image and the residual component /Q describes the detail variation of the 
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Figure 2.1 Lena image and its histogram 



image. The stationary assumption about f^ is an approximation for computational 

simplicity. Without introducing too much additional complication in computation, /Q can 

itself be taken as a nonstationary white process. This suggests that /Q is independent and 

characterized by its nonstationary variance [9]. This approach yields the nonstationary 

mean and nonstationary variance (NMNV) image model. 

2.2 Noise Models 

The effectiveness of the noise suppression and image restoration schemes depends 

on the statistical models for the noise processes. A lot of work on image restoration has 

assumed signal-independent noise. Many physical noise sources are, however, inherentiy 

signal-dependent. We used the noise models presented below to investigate the 

compression technique's performance on noisy images. The restoration filters are based 

on the same noise models. After image restoration using those filters, the compression 

technique's performance on the restored images was also studied. 

2.2.1 Signal-Independent Additive Noise Model 

This model is very common in digital image restoration and is given by 

r{k,l) = f{kj) + n(kj), (2.1) 

where r(k,l) is the degraded image, f(k,l) is the original image and n(k,l) is the signal-

independent additive Gaussian noise characterized by 

n(kJ)~N{0,cl), (2.2) 

where N(m,b) denotes a Gaussian distribution with mean m and variance b. Here no 

blurring function is assumed. 

2.2.2 Film-Grain Noise 

Film-grain noise is produced when images are recorded on photographic film and 

are digitized for processing. This type of noise is signal-dependent [3]. The film-grain 

noise model [11] is generally described as 



r(kJ) = f(kJ) + Cr{kJ)n(kJ), 

where r(k,l) is tiie noisy image, f(k,l) is the original image, n(k,l) is 

n{kJ)~N(0,l), (2.3) 

C is a scalar constant and p varies between 0.3 to 0.7. Here p=0.5 is assumed, so the 

model becomes 

r(A, /) = f(k, I) + C^f(kJ)n(k, I). (2.4) 

2.2.3 Speckle Noise 

Speckle noise occurs in all types of coherent imaging systems such as synthetic 

aperture radar (SAR) images for remote sensing, acoustic images, laser illuminated images 

and astronomical images. In coherent illumination, objects with roughness of the order of 

a wavelength cause speckle to appear in their images as formed by imaging systems which 

cannot resolve the microscale of the object roughness [12]. A general noise model for 

speckle is the multiplicative model [13] 

r(kj) = f{kj)n(kj), (2.5) 

where r(k,l) is the speckled image, f(k,l) is the original image and n(k,l) is the random 

noise, which is signal-independent with a negative exponential distribution. This 

multiplicative noise is a correlated noise. If we are only interested in signals which have 

smaller bandwidths than the noise spectrum we can undersample the speckle intensity 

image r(k,l) such that the sampling frequency is comparable to the bandwidth of f(k,l). In 

that case n(k,l) becomes uncorrelated as the correlation length of the noise is smaller than 

the sampling interval [14]. Then a single frame speckle image can be described by an 

uncorrelated multiplicative model where n(k,l) has a normalized negative exponential 

distribution, i.e., its probability distribution function (PDF) is described by 

exp(-«(A:,/)) forn(A:,/)>0 

0 otherwise 
p{n{kj)) = 

Many investigators have used the multiplicative model for speckle without any 

limitations on it. But the multiplicative model is subject to the limitations mentioned 

8 



above and is restricted to the situation where the degraded image has t)een sampled 

coarsely enough so that the degradation at any point can be assumed to be independent of 

all the other points [13]. 

In many appHcations, several independent speckle images of the same object are 

available. Frame averaging techniques can be applied to these images to increase the 

signal-to-noise ratio (SNR). The average of M independent speckled images is 

M 

',iU) = ̂ %{kJ), (2.7) 
M 1=1 

where r-{kj) is the /"" image frame. This average of M speckle frames can be shown to 

be the maximum likelihood estimate (MLE) of the undegraded image [13]. The average 

of M independent negative exponential random variables, n^ has a Gamma probability 

density function given by 

pMkJ)) = 

M^ 
n^-'(k,l)exp{-Mn^(kJ)) for n^{kj) > 0 

r ( M ) " ^ ' ^ -V av w / av w ^ ^^.8) 

0 otherwise 

where r(M) is the Gamma function of order M. The signal-to-noise ratio (SNR) 

measured pointwise in a single frame speckle image is unity. The SNR of the image after 

averaging M frames is improved by the factor vM [5]. 



CHAPTER m 

EFFECTS OF NOISE ON IMAGE COMPRESSION 

Image compression is desirable both to minimize storage in case of data archiving 

and to improve transmission speed. The aim of all compression schemes is to obtain a 

high compression ratio yet to reproduce the image with high fidelity. The compression 

ratio (CR) is given by 

CR = ̂ , (3.1) 

where n^ is the number of bits/pixel of the original image and n^ is the bits/pixel in the 

compressed image. In other words we can express the CR as the ratio of the sizes of the 

original image file and the compressed image file. The quality of the reconstructed 

(decompressed) image can be measured in terms of different error measurements, some of 

which were defined in Chapter I. The amount of achievable compression is affected by the 

presence of noise in an image [15, 16] and so is the quality of the reconstructed image. 

Before exploring how noise affects image compression, we wiU consider the image 

compression technique used in our work. 

Image compression has two major categories: lossless and lossy compression. In 

lossless compression the original data can be recovered completely. This type of 

compression can give compression ratios ranging from 1.5 to 3 [16]. Lossy compression 

allows a slight loss of accuracy in order to achieve higher compression ratios. Due to the 

loss of information, the original signal cannot be recovered completely, resulting in some 

distortion in the image. In the case of images, these distortions can be made very smaU, so 

that visually they are undetectable. Qearly, a lossless method is desired when no 

information loss is tolerable. For graphics files, lossy methods may be used [17], which 

easily yield a compression ratio of 20:1 or higher [7]. 

At present, different image compression schemes are available. Adaptive Discrete 

Cosine Transform [18], vector quantization [19], fractals [20] and subband coding [21] 

are some of the techniques used in image compression. A more recent trend is the use of 

10 



the wavelet transform [22]. Thus a significant amount of research is underway which aims 

at the improvement and optimization of image compression techniques. 

A lot of image compression is performed using special-purpose systems for 

individual requirements. With an increasing need for compressed images, users must 

archive and exchange compressed images between applications. Consequentiy a standard 

is required for the compression and the decompression of the images. A joint ISO/CCITT 

standardization group JPEG (Joint Photographic Experts Group) has developed standards 

for compressing continuous tone images. The compression technique specified by this 

group is called JPEG and this standard is widely used in different applications. JPEG 

defines both lossy and lossless processes. The lossy JPEG is based on the Discrete Cosine 

Transform (DCT) and the lossless JPEG process is based on Differential Pulse Code 

Modulation (DPCM) [7]. In our work, we have used lossy JPEG to study the effects of 

image noise on image compression. DCT-based JPEG is very effective in minimizing 

visible distortion and well suited for images. Our study used the fifth pubUc release of the 

Independent JPEG Group's (UG) software. This software implements baseline and 

extended-sequential compression processes. The "baseline" system is the minimum 

capability defined by JPEG that must be present in aU modes of JPEG using DCT. In the 

sequential process, the encoder encodes the image in a single scan or pass through the 

data and the decoder also reconstructs the image at full quality in a single scan. Sequential 

DCT-based systems that have capabilities beyond baseline requirements are called 

"extended sequential systems" [7]. 

3.1 The JPEG Algorithm 

Like aU other image compression schemes JPEG has two basic components as 

shown in Figure 3.1. The output of the encoder is the compressed image which may 

either be stored or transmitted. Later, at some point, the compressed image has to be 

reconstructed by a decoder for further use. The steps in the JPEG compression algorithm 

are as follows: 

11 



Original ^ 
Image—7 Encoder 

Compressed 

Image 
^ Decoder A Reconstructed 

Image 

Figure 3.1 Image compression/decompression system 

1. The image is subdivided into 8x8 pixel sub-blocks. If the image dimensions are 

not a multiple of 8, zero padding is used. 

2. The 8 bit image data from the range 0 to 255 is converted to the range -128 to 

127 by subtracting 128 from the image data. This reduces the precision required in DCT 

calculations [23]. 

3. Each 8x8 block is processed using the DCT and the transformed values are 

stored using 12 bits per pixel giving it a precision of 11 bits plus a sign bit. 

4. The 64 DCT coefficients obtained are quantized to a lower precision (8 bit) 

using a user defined quantization table and any value smaller than some threshold is set to 

zero. This is the lossy step in the DCT-based JPEG. 

5. The 1st of the 64 coefficients is the average or "DC" term. It is represented as a 

difference from the DC term of the previous block using a DPCM scheme. 

6. The remaining 63 coefficients are scanned in a zig-zag order that starts with the 

lowest frequency and progresses to the highest. The terms are collected together and are 

coded as the number of consecutive zero terms. 

7. The entire data is then further compressed using Huffman coding. This part of 

JPEG provides the lossless compression. 

Figures 3.2 and 3.3 show the DCT-based encoder and decoder processing steps, 

respectively. 

3.1.1 The Discrete Cosine Transform (DCT) 

The key to the compression of images by JPEG is the Discrete Cosine Transform 

[17], which decomposes the image into its underlying spatial frequencies. Most of the 

graphical images are composed of low frequency information and the DCT has the ability 

12 



to pack most of the information in the first few low frequency coefficients. When DCT is 

applied to an 8x8 sub-block of the image, we have an 8x8 matrix of DCT coefficients. 

The component in row and column zero (DC component) carries more information than 

the higher frequency components. As we move further away from the DC component, the 

coefficients are smaller, as is the information content. Thus the DCT identifies the pieces 

of information which can be discarded without seriously compromising the quality of the 

image [17]. Before applying the DCT, a level shift is performed on the 8x8 sub-blocks by 

subtracting 128 from the 8 bit data image. This reduces the internal precision required for 

the DCT calculation. 

8x8 blocks 

Source 
Image Data 

^ FDCT 7 Quantizer 

Table 
Specifications 

Entropy 
^Encoder 

Table 
Specifications 

Compressed 
Image Data 

Figure 3.2 DCT-based encoder processing steps 

Compressed 
Image Data 

^ 
Entropy 
Decoder 

Table 
Specifications 

) Dequantizer 

Table 
Specifications 

IDCT 
• ) 

Reconstructed 
Image Data 

Figure 3.3 DCT-based decoder processing steps 
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3.1.2 Quantization 

The DCT matrix takes up more space than the original pixels. Thus quantization is 

performed on the DCT matrix, which is the process of reducing the number of bits 

required to store an integer by reducing the precision of the integer. JPEG thus quantizes 

each of the 64 DCT coefficients employing a 64 element quantization matrix which is 

specified by the user. The elements in the matrix may be an integer value from 1 to 255 

which define the quantization step size for the coiresponding DCT coefficients. 

Quantization is a many-to-one mapping and is the main source of lossiness in JPEG. 

Quantization is defined by the following equation [23] 

F^{u,v) = Integer Round 
r r'f,. ..\\ F(u,v) 

V! 

(3.2) 

where F(u,v) is the forward DCT coefficient and Q(u,v) is the corresponding quantizer 

step size from a user-defined 8x8 quantization matrix. The high frequency coefficients of 

an 8x8 sub-block of the image generally have smaller amplitudes compared to the low 

frequency components. The quantizer step sizes are larger for the high frequency 

coefficients than for the low frequency coefficients. Consequentiy a large number of high 

frequency components will round off to zero. On the other hand significant DCT 

coefficients with non zero values are represented with no greater precision than necessary 

for the desired image quality. The dequantization which occurs while performing 

decompression is [23] 

F^'{u,v) = F^(u,v)Q{u,v). (3.3) 

A quantization matrix for a monochrome image, as given in JPEG specification, is 

shown in Figure 3.4. This quantization matrix is given as an example in the JPEG 

specifications and is said to give good results on 8 bits per pixel monochrome images [7]. 

The user, however, may define any quantization matrix suitable for hisAier own 

application. The aim of the compression scheme is to compress the image as much as 

possible without visible artifacts. Thus in the quantization matrix each step size should be 

chosen as the perceptual threshold for the visual contribution of its corresponding cosine 
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basis funaion. These thresholds are functions of image characteristics, viewing distance 

etc. [23]. With these parameters defined, the thresholds can be determined by 

psychovisual experiments. Based on such experiments the quantization matrix shown in 

Figure 3.4 was derived by the JPEG committee [23]. 

16 11 10 16 24 40 51 61 

12 12 14 19 26 58 60 55 

14 13 16 24 40 57 69 56 

14 17 22 29 51 87 80 62 

18 22 37 56 68 109 103 77 

24 35 55 64 81 104 113 92 

49 64 78 87 103 121 120 101 

72 92 95 98 112 100 103 99 

Figure 3.4 Quantization matrix for the 8x8 sub-blocks of a monochrome image 

3.1.3 Quality Factor 

The quantization step sizes of the quantization matrix determine how much 

compression can be achieved for a particular image. If we make the quantizer step sizes 

coarse, we would get high compression at the expense of losing some information due to 

quantization errors. Finer quantization step sizes would give less compression; however, 

reconstructed image quality would be better because of less quantization loss. We can 

trade-off the compression ratio against the quality of the reconstructed image. In general, 

the higher the compression ratio the lower wiU be the quality of the image. The UG 

software for JPEG lets the user define a quality factor for the reconstructed image on a 

scale of 1 to 100. A quality factor (Q) of 100 makes all the entries in the quantization 

matrix unity and this wiU result in no quantization loss. According to the JPEG 

specification the quantization matrix given in Figure 3.4 yields a 'good' visual quaUty of 

the reconstructed image. For a quality factor (Q) of 50 the UG JPEG software uses the 

quantization matrix of Figure 3.4 as it is. For any quality factor other than 100, each 
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element of the quantization table of Figure 3.4 is multiplied by a scaling factor SF which is 

defined by [24] 

f50 

SF = 

f o r l < e < 5 0 

(3.4) 

^ ° ° - ^ 2 for 50(0(100 
100 

For a desired quality factor of 75, SF=0.5. Thus each element of the quantization matrix 

shown in Figure 3.4 is divided by 2 and the resulting quantization matrix is used for 

compressing the images with a quality factor of 75. 

3.1.4 DC Coding and Zig-zag Sequence 

After quantization, the DC coefficient is treated differentiy than the 63 AC 

coefficients. As the adjacent blocks of an image exhibit a high degree of correlation, the 

DC coefficient is coded as a difference from the DC element of the previous block. The 

rest of the 63 AC coefficients are arranged in a zig-zag sequence as shown in Figure 3.5, 

and are then encoded. This facilitates entropy coding by placing low frequency 

components (more likely to be non-zero) before high frequency coefficients [23]. 

3.1.5 Entropy Encoding 

After zig-zag sequencing, the coefficients are coded using Run-Length-Encoding 

(RLE) [25]. It gives a count of consecutive zero values in the images. Since a lot of the 

coefficients are rounded off to zero in most of the images, RLE yields outstanding 

compression [17]. Then JPEG uses entropy coding which can be either Huffman coding 

or Arithmetic coding. In our work Huffman coding has been used, which is a variable 

length coding technique. This combination of RLE and Huffman coding yields lossless 

compression. 
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Figure 3.5 Zig-zag sequence of the quantized DCT coefficients 

3.2 Effect of Noise on Compression Using JPEG 

The compression scheme of JPEG is based on the statistical properties of the 

image and also on the frequency components present in an image. Both signal-dependent 

noise (SDl^ and signal-independent noise (SIN) affect these properties and significantiy 

change the resulting compression ratio. 

First, we wiU consider the DCT and the quantization step size of JPEG. As 

mentioned earlier, noiseless images carry most of the significant information in the low 

frequency regions. Noisy images, on the other hand, have a wide range of spatial 

frequency components. The forward DCT has been applied on the 8x8 blocks of noiseless 

and noisy images to illustrate this point. Figure 3.6(a) shows an 8x8 sub-block of the 

noiseless Lena image and Figure 3.6(b) shows the corresponding forward DCT 

coefficients. After adding signal-independent, zero mean Gaussian noise of a variance of 

1000 to the Lena image according to the model presented in section 2.2.1, the DCT is 

again applied on the same 8x8 sub-block. The DCT result for the noisy image is shown in 

Figure 3.7(b). In both of the cases, the DCT is applied directiy to the image pixels 

without performing any level shifting. 
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196 175 173 172 147 114 106 97 

189 174 172 154 141 118 107 100 

186 184 161 143 125 116 112 100 

200 172 159 138 124 122 110 1(W 

201 161 152 130 132 109 115 96 

194 153 149 136 125 118 112 106 

178 151 145 m m 116 107 106 

183 163 128 122 121 120 120 107 

3.5B4 5008 760 610 303 343 98 272 

902 553 ^187 -334 31 18 -45 -23 

49 -119 -228 -77 72 -61 -98 -«7 

98 77 -202 -17 262 l(A 114 151 

122 83 7 2 1 3 8 7 0 5 9 - 9 3 1 2 

-14 7 - 2 9 - 8 8 - 5 -18 9^ -W 

81 10 62 4 -19 49 -112 -123 

-157 37 -16 -20 -37 -35 -121 90 

(a) Image samples (b) Forward DCT coefficients 

Figure 3.6 Noiseless Lena image samples and DCT coefficients 

209 183 190 164 94 83 107 94 

159 226 208 160 129 144 107 96 

185 236 145 155 129 127 124 60 

206 166 137 108 89 141 113 145 

163 183 204 145 102 177 112 119 

187 172 157 131 114 147 124 112 

207 155 165 137 86 97 110 115 

179 106 125 135 175 99 125 121 

(a) Image samples 

3.6E4 5034 1128 -11 -806 394 454 429 

713 1105 -220 432 -807 -230 -359 477 

453 281 -357 -324 846 400 425 698 

229 268 159 -553 -368 334 628 -164 

-303 -574 241 -39 558 196 483 264 

-8(M 359 1075 61 493 501 -643 128 

-170 10 -189 567 240 63 -643 128 

146 537 -391 -222 -330 181 -200 -133 

(b) Forward DCT coefficients 

Figure 3.7 Noisy Lena image samples and DCT coefficients 

From the DCT results obtained, we see that the high frequency DCT coefficients 

of the noisy image are significantiy greater in amplitude when compared to the noiseless 

case. Thus when quantization is applied to the DCT coefficients of the noisy image, most 

of the coefficients wiU have a non-zero value, whereas in the case of the noiseless image a 

lot of the coefficients will round off to zero. Even if the noiseless image coefficients have 

a non-zero value after quantization, they are generally quantized to a very low precision, 

which is not true for the noisy case. 
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The concept of the zig-zag sequence also fails to yield compression, as the noise 

spectrum occupies almost all the frequency range from low to high values. The mn-

length-coding wiU yield less compression in the case of noisy images compared to 

noiseless images, as most of the DCT coefficients after quantization are non-zero. 

The presence of noise significantiy destroys the correlation between image pixels 

[15]. The DC coefficient encoding is based on inter-pixel correlation. With the absence of 

strong correlation between adjacent 8x8 sub-blocks of pixels, the DC coding suffers in the 

presence of noise. 

We have considered three types of noisy images, which were simulated according 

to the models presented in section 2.2. The noisy image with additive signal-independent 

noise (SIN) was simulated using Gaussian noise n(k,l) where n(k,l)~ N(0,1000). The 

image with film-grain noise (FGN) was simulated using a factor C=4 (as defined in 

equation 2.4) and the speckle image was simulated by averaging four frames of 

independent speckle images that were generated using the multiplicative model. Figure 

3.8 shows the noisy images and the corresponding histograms. 

The histogram and the entropy of an image give a fair idea of how Huffman coding 

wiU be affected by the presence of noise. Huffman coding is a variable length coding 

scheme with shorter codes for highly probable symbols and longer codes for symbols with 

low probability of occurrence. For Huffman coding to be efficient, the histogram of an 

image needs to deviate from a uniform probabOity density, which has the maximum 

entropy when compared to other density functions. Entropy is defined as 

m 

H = -^P,\og,P, bits, (3.5) 

where P^ is the probability of occurrence of the i"* gray level and m is the number of gray 

levels. Using Equation (3.5), the entropies for the noiseless image and noisy images are: 

H (noiseless)=7.4037 bits, H (witii additive SEsr)=7.7703 bits, H (witii FGN) =7.7966 bits 

and H (with speckle noise)=7.6291 bits. 
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(a) Lena image with additive SIN 

2500 

50 100 150 200 250 300 
Gray levels 

(b) Histogram of (a) 

Figure 3.8 Noisy images and the corresponding histograms 
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(c) Lena image with film-grain noise (C=4) 

9000 

50 100 150 200 250 300 
Gray levels 

(d) Histogram of (c) 

Figure 3.8 Continued 
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(e) Lena image with speckle noise (4 frames-averaged) 

2500 

50 100 150 200 250 300 
Gray levels 

(f) Histogram of (e) 

Figure 3.8 Continued 
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The noiseless Lena image has a multipeak histogram that deviates greatiy from the 

uniform distribution and as a result its entropy is low. When SIN is added to the image, 

the histogram of the noisy image looks almost Gaussian and the histogram of the speckle 

image has the shape of the Gamma distribution density. Thus these histograms are flatter 

than the noiseless image histograms. The image with film-grain noise also has a flat 

histogram. As a result the noisy images have higher entropies, so that Huffman coding 

should be more efficient for the noiseless images than for the noisy images. 

3.3 Compression Results 

JPEG compression was applied to the noiseless Lena image and the noisy Lena 

image with additive SIN having a noise variance of 1000. Results obtained with different 

quality factors are presented in Table 3.1. The results for the film-grain noise and the 

speckle noise are presented in Chapters IV and V. The errors are calculated between the 

input image X to the compression scheme and the reconstructed image X^ after 

compression, thus in the case of noisy images, X is the noisy image before any 

compression is applied and X^ is the reconstructed image after compression is applied to 

the noisy image. 

The JPEG specified quantization matrix shown in Figure 3.4 was used for a quality 

factor of 50 in our computer simulations and according to the JPEG specification it yields 

a good visual quality of the reconstruction image [7]. A peak signal-to-noise ratio 

(PS1S[R) of 35 dB and above is considered satisfactory for a compression scheme. From 

Table 3.1, we see that for the noiseless Lena image, a quality factor (Q) of 45 and above 

gives good PSISIR. Witiiin tiiis range of Q, tiie highest compression ratio obtained is 13:1. 

Considering the visual quality of the reconstructed image, a quahty factor as low as 25 

may be tolerated for some applications and it yielded a CR of approximately 19:1. Below 

that range the reconstructed image shows blocking effects and the visual quality of tiie 

reconstructed images deteriorates. Figure 3.9 shows the reconstructed Lena images for 

different quality factors. 
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Plots of bpp (bits per pixel) and MSE (log based 10 scale) and CR versus Q for the 

noiseless and the noisy case are shown in Figure 3.10. We see that as the compression 

ratios are less for the noisy images compared to the noiseless images, the bpp required are 

greater for the noisy images. For noisy images, the MSEs are greater than the noiseless 

images. From Table 3.1, it is seen that the Lena image with SIN after decompression has 

a very low PSNR even for a quaUty factor of 75 or 65. But this result can be somewhat 

misleadmg. The lossy compression part of JPEG discards the high frequency information 

and in the case of Lena with SIN, the high frequency information comes from the noise. 

So if the significant information of the original noiseless image is contained in the low 

frequency part (as is true for most real world images) then JPEG discards some of tiie high 

frequency noise component and acts Uke a low pass filter. Thus the error between the 

reconstructed noisy image and the uncompressed noisy image is larger as compared to the 

noiseless case. The information loss, however, may not be great even if the P S ] ^ is 

below 30 dB. We have investigated tiiis aspect in detail for film-grain noise in Chapter lY. 

Table 3.1 Compression results for tiie noiseless Lena image and noisy Lena image with 
SIN of variance 1000 

Quality 

factor 

95 

75 

65 

45 

35 

25 

15 

Noiseless image 

CR 

2.9157 

8.159 

10.005 

13.496 

15.7103 

19.3289 

26.033 

IVISE 

3 

10 

13 

18 

21 

27 

41 

PSNR(dB) 

43.90 

37.97 

36.99 

35.63 

34.88 

33.79 

32.02 

Noisy image 

CR 

1.3057 

2.4437 

2.8663 

3.8194 

4.65 

6.3933 

10.325 

MSE 

4 

94 

176 

366 

482 

617 

757 

PSNR(dB) 

42.32 

28.42 

25.67 

22.50 

21.30 

20.23 

19.34 
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(a) Quality factor 65 

(b) Quality factor 25 

Figure 3.9 Reconstructed Lena images after compression at different quahty factors 
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(c) Quality factor 15 

Figure 3.9 Continued 
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(a) Plots of bpp versus MSE 
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Quality factor (Q) 
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(b) Plots of compression ratio (CR) versus quality factor 

Figure 3.10 Plots of compression results for noiseless Lena and Lena+SIN 
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The main disadvantage due to the presence of noise is the reduction of the 

achievable compression. This fact is illustrated in the plots of the compression ratios 

versus the quahty factors (Figure 3.10(b)) for both the noiseless and noisy cases. For a 

quahty factor of 65, we obtained a CR of 10 for the noiseless Lena image. For the same 

quahty factor, the CR for the noisy image with SIN is reduced by a factor of 3.5. For a 

quality factor of 25, the CR is reduced by a factor of 3. So if we want the same amount of 

compression for the noisy image and the noiseless image, we need to use a lower quahty 

factor for the noisy image. A compression ratio of 10 is considered a reasonable 

compression factor in many appHcations. A quahty factor of 65 yields that for Lena 

without noise and this also provides a good picture quality. For Lena with signal-

independent additive noise of variance 1000, however, a quahty factor of 15 gives a CR of 

10. As mentioned earlier a quality factor of 15 gives a quantization too coarse for baseline 

JPEG and results in blocking effects in the reconstructed image. 
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CHAPTER IV 

NOISE SUPPRESSION AND COMPRESSION IN 

FILM-GRAIN NOISE 

The compression results from Chapter III show that there is a significant reduction 

in the compression ratio when noise is present. A noisy image requiring compression can 

either be pre-processed or post-processed for noise suppression. Any apphcation that can 

tolerate low compression ratios can use the compression technique as it is and then post-

process the image for noise suppression after compression/decompression. An altemative 

is to devise a compression algorithm that can give high compression ratios even in the 

presence of noise. A third approach, useful when high compression ratios are required, is 

to pre-process the image for noise suppression and then use compression on the restored 

image in order to obtain high compression ratios. We have mainly explored the third 

approach in our work. We have used different image restoration techniques on the noise-

degraded images and then used JPEG to compress the restored images. The block 

diagram in Figure 4.1 shows the pre-compression noise suppression scheme for the noisy 

images. 

Noiseless 

Image 

SE )N s: N 

Noisy Image 

Noise 

Suppr< jssion 

Compression Decompression ^ Output 

Image 

Figure 4.1 Pre-compression noise suppression scheme 

We can deal with tiie signal-dependent noise (SDN) in two ways. In one approach 

(scheme 1), estimators specifically designed for a particular SDN model are applied to tiie 
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image degraded by SDN for noise suppression purposes [3, 5, 9]. In the second approach 

(scheme 2) the SDN is transformed into signal-independent noise(SIN) [26, 27] and tiien 

an estimator designed for SIN is apphed to the transformed image [11]. After that an 

inverse transformation is applied to transform the image back to the original space. For 

the images degraded by SDN, we have used both the filters designed for SDN models on 

the noisy images and the filters designed for SIN on the transformed images for noise 

suppression. We have compared the performances of the two approaches. For images 

with SIN, we used the filters designed for SIN. The transformation used to convert the 

SDN into SIN is called homomorphic transformation (HT) [4, 11]. The noise suppression 

block in Figure 4.1 can be expanded in the following block diagram shown in Figure 4.2. 

After noise suppression the restored images were compressed and the results were 

compared again. 

Image 
with SDN ^ 

Estimator 
for SDN 

-^ Restored Image (scheme 1) 

^ H T ^ 
Estimator 
for SIN 

^HT ^—^ Restored Image (scheme 2) 

Figure 4.2 Two altemative noise suppression schemes for SDN 

In this chapter, we will present the general forms of the filters for SDN and SIN 

and the homomorphic transformation for SDN. Then the results of noise suppression and 

image compression are presented. Some results for additive Gaussian signal-independent 

noise are also presented. 

4.1 Estimator for Signal-Dependent Noise 

The estimator for signal-dependent noise that we have used was designed by Kuan 

et al. [9]. This estimator is an adaptive noise smootiiing filter apphcable for signal-

dependent noise. The filter was developed using tiie local hnear minimum mean square 
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error (LLMMSE) criterion and a nonstationary image model [9]. Kuan used tiiis filter for 

multipUcative noise and Poisson noise and suggested its possible use for fihn-grain noise. 

We have used the adaptive noise smoothing filter for the multiphcative noise model for 

speclde suppression in Chapter V. In tiiis chapter, the general form of the filter is 

modified for film-grain noise (FGN) and used for images degraded by FGN. 

For the derivation of the LLMMSE filter, the equation used for the degraded 

image is [9] 

r = Hl + u, (4.1) 

where r is the degraded image, / is the original image, M is a zero mean noise that can 

be either signal-dependent or signal-independent and H is the blurring matrix. When H is 

an identity matrix, i.e., there is no blurring, the LLMMSE filter is given by a set of scalar 

equations [9] 

fLu.MSE(kJ) = 7{kJ) + - r 7 ^ ^ ^ ^ ^ (4.2) 
Gf(k,l) + G^(k,l)'' 

Here f{k,l) and r(k,l) are the means of f(k,l) and r(k,l), respectively, and c ^ and a„ 

are the standard deviations of f(k,l) and u(k,l), respectively. As there is no blur, we can 

write the degraded image model shown in Equation (4.1) as 

r{kj) = f(kj) + u(kj). (4.3) 

In the above equation, u(k,l) is an uncorrelated noise. Though u(k,l) is shown as an 

additive noise, it does not have to be additive in the usual sense. Any noise degradation 

can be expressed in terms of a signal and a noise term. The models described in section 

2.2 for FGN and speckle noise can be expressed in this form [9]. 

4.2 Adaptive Noise Smoothing Filter 

The LLMMSE filter shown in Equation (4.2) uses the ensemble mean and variance 

of the original image pixel values, f(k,l). These statistics are generaUy not known a priori, 

as most of the time we only have the degraded image. Thus statistics may need to be 
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estimated from the noisy image. When local statistics are used in place of the ensemble 

statistics in Equation (4.2), it yields the adaptive noise smootiiing filter [9] 

>(M)^.,(u).^^j/^^-;^^^^^^[.(u)-..(u)]. (4.4) 

where mf{kj) and m^(kj) are the local means of f(k,l) and r{k,l), respectively, and 

Vf{kJ)andV^{kJ) are the local variances of f(k,l) and u(kj), respectively. The ratio 

of local variances introduces a nonlinearity in the filter as they are estimated by using 

nonlinear functions of the noisy observations. Thus the adaptive noise smoothing filter is a 

nonhnear filter even though the LLMMSE filter is a hnear filter. 

The local statistics are calculated over a uniform moving average window of size 

(2M-i-l)x(2N-i-l). The local mean of r(k,l) is given by 

1 k+M l+N 

(2M + l)(2N +1) i=„_M j=,-N 

and the local variance is given by 

1 k+M l+N 2 

m^{k,l) and V^(k,l) are tiie sample mean and sample variance, respectively. 

The local statistics of f{k,l) can be calculated from the local statistics of r{kj) 

with the assumption that the relationship between tiieir ensemble statistics also holds for 

local statistics [9]. These calculations depend on the particular noise structure under 

consideration. For additive signal-independent noise, we have the model 

r(kj) = f(kj) + n(kj), where n{k,l) is a zero mean noise. For tiiis type of SIN model, 

the local mean of f(kj) is given by the local mean of r{kj) and the local variance of 

f{k,l) is [9] 

V^(kJ) = V,(kJ)-(5l(kJ), (4.7) 

where a I (k, I) is tiie noise variance. Thus the filter for SIN is given by. 
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or f(kJ) =m,{k,l) + W[r(kJ)-m,(kJ)l (4-8) 

where W = Max 1 ^ ,0 (4.9) 

Equation (4.9) ensures that W will always be positive and that there will be no noise 

amplification. Equation (4.8) yields the same form as Lee's local statistics estimator [9]. 

The James-Stein estimator for additive Gaussian noise also has the same form [11, 28]. 

4.3 Noise Suppression Results for Images Degraded by SIN 

We have used the filter given by Equation (4.8), i.e., the adaptive noise smoothing 

filter for SIN, which is the same as the James-Stein estimator, on the Lena image with 

additive zero mean Gaussian noise of variance 1000. We have calculated different errors 

as a measure of performance of the noise suppression schemes. All the errors presented in 

relation to noise suppression or image restoration have been calculated w.r.t. the original 

noiseless image. 

The general window sizes used for the estimators are 3x3, 5x5 and 7x7. A smaller 

window size, such as 3x3, preserves the edge information in the image better than the 

larger window sizes, but fails to smooth the noise sufficientiy. The 5x5 and 7x7 windows 

smooth the noise better than the 3x3 window at the expense of smoothing some edge 

information in the image. We have used 3x3, 5x5 and 7x7 windows for the James-Stein 

estimator. Figure 4.3 shows the restored images with different window sizes. From the 

restored images we see that the 5x5 and 7x7 windows give more noise suppression 

compared to the 3x3 window, however edges are blurred. The blurring effect is more 

noticeable in the case of the 7x7 window. From Table 4.1, we see tiiat the MSE and the 

NMSE are smaller for the 7x7 window, as it can smooth out more noise tiian the other 

window sizes. The LOGMSE obtained, however, is shghtiy greater tiian for the 5x5 

window. This is because of the distortion introduced by the edge blurring. The LOGMSE 
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(a) Lena with SIN (variance 1000), MSE=972 

(b) Restored image with 3x3 window, MSE=203 

Figure 4.3 Noisy Lena and restored images obtained using tiie adaptive noise smootiiing 

filter for SIN 
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(c) Restored image using 5x5 filter, MSE=132 

(d) Restored image using 7x7 filter, MSE=128 

Figure 4.3 Continued 
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error measurement is based on the human visual model. Based on tiiis error criterion we 

can say that the image restored by the 5x5 window gives the best result which is a trade­

off between the noise smoothing and the preservation of edge details. 

Table 4.1 Noise suppression results for Lena image witii SIN (variance 1000) using the 
adaptive noise smoothing filter for SIN 

Image type 

Noisy image 

SIN filter (3x3) 

SIN filter (5x5) 

SIN filter (7x7) 

MSE 

972 

203 

132 

128 

NMSE 

0.053 

0.011 

0.007 

0.007 

LOGMSE 

0.0122 

9.48e-4 

6.26e-4 

6.38e-4 

RMSSNR (dB) 

12.78 

19.58 

21.46 

21.57 

4.4 Adaptive Noise Smoothing Filter for Film-Grain Noise 

The model employed for film-grain noise is 

r(kJ) = fikJ) + C^f(kJ)n{kJ), (4.10) 

where n{kJ)~N(Oy\) and C is a scalar constant. Comparing the above equation with Eq. 

(4.3) we have. 

(4.11) 

(4.12) 

u(kJ) = C^f{kJ)n(kJ). 

We can also say that E[r(kJ)] = E[f(kJ)] i.e., 

m^{kj) = mf{kj). 

From Equation (4.11) we obtain the variance of u(k,l), 

VSkJ) = ol(kJ) = C'm,{kJ)al{kJ), (4.13) 

where ol(k,l) is the variance of n{kj) and m^(kj) is the mean of f(kj). The local 

variance of f(kj) is Vf(kJ) = V^(kJ)-ol(kJ) [9]. Using Equation (4.13), the local 

variance of f(kj) is 

V,(kJ) = K{kJ)-C'mf{k,l)Gl(kJ). (4.14) 
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Usmg all these results in Equation (4.4) we obtain tiie adaptive noise smoothing filter for 

the film-grain noise 

f(k,l) = m(kj) + -^— ^—!-Jll-Ll\r(jc l)-m (k I)] 

or m /) = m, {k, I) + W, [r{k, l)-m,{kj)], (4.15) 

^̂  C'mMJ)Gl{kJ)^ 
where W^ = Max 

KiU) 
,0 (4.16) 

4.5 Noise Suppression Results for Film-Grain Noise 

Using the Adaptive Noise Smoothing Filter 

We have used C=4 and C=2 and thus generated noisy images of Lena with two 

different levels of film-grain noise. For noise suppression, the adaptive noise smoothing 

filter was used on the noisy images. We have used 3x3, 5x5 and 7x7 windows on the 

noisy Lena image generated with C=4. The MSE obtained for different window sizes are 

356, 198 and 176, respectively, whereas the MSE of the noisy image is 1869. The 7x7 

window gives the lowest error, however, from Figure 4.4, we see that there is significant 

blurring of the image. As mentioned earher, use of larger window sizes smooth out more 

noise at the expense of blurring. On the other hand, the image restored by a 5x5 window 

gave less noise suppression, but kept more edge information. The difference between the 

MSE obtained for the 5x5 and 7x7 windows is not large, thus we considered the 5x5 

window to be optimum. Later in the chapter, while using compression on the restored 

images, we have used the images restored using a 5x5 window. The different restoration 

results obtained for different noisy images are presented in Table 4.2. 

The results of restoration from the noisy Lena with FGN (C=2) are shown in 

Figure 4.5, where a 5x5 window was used. The MSEs are shown in the figure captions. 

Comparing the restored images (5x5 window) in Figures 4.4(c) and 4.5, where the noisy 

images had C=4 and C=2, respectively, it is seen tiiat the restored image is less blurred in 

tiie second case. This is because the amount of noise was less. 
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(a) Lena with FGN (C=4),MSE=1869 

(b) Restored rniage using 3x3 window, MSE=356 

Figure 4.4 Lena image with FGN (C=4) and the restored images using the adaptive 

noise smoothing filter 
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(c) Restored image using 5x5 window, MSE=198 

(d) Restored image using 7x7 window, MSE=176 

Figure 4.4 Continued 
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Besides the Lena image we also considered another image, the "Airplane" image in 

tills section. From Figure 4.6, we see that the Airplane image has a significantiy different 

histogram from the histogram of the Lena image. The adaptive noise smoothing filter 

(5x5) reduced the MSE of the noisy Airplane (C=4) from 2243 to 221, which is 

approximately a factor of 10. The MSE of the noisy (C=4) Lena image was reduced by a 

factor of 9.44 when a 5x5 window was used. The restoration results for the Airplane 

image are shown in Figure 4.7 

Table 4.2 Noise suppression results for the Lena image with film-grain noise (C=4) using 

the adaptive noise smoothing filter 

Image type 

Noisy image 

Filter (3x3) 

Filter (5x5) 

Filter (7x7) 

MSE 

1869 

356 

198 

176 

NMSE 

0.1015 

0.0193 

0.0107 

0.0096 

LOGMSE 

0.016 

0.0014 

8.168E-4 

7.7052E-4 

RMSSNR (dB) 

9.94 

17.14 

19.69 

20.19 

4.6 Combined Homomorphic and Local-Statistics Processing 

for Film-Grain Noise 

In the previous sections, we have presented and used a filter that takes into 

account the signal dependence of the noise. In this section we will present the second 

approach for deahng with the signal-dependent noise. The technique uses a 

transformation to map the degraded image into a space where the noise becomes signal-

independent, additive and Gaussian in nature [4, 26, 27]. Then the local-statistics 

algorithm for SIN is applied to the transformed image. After processing, the inverse 

transform is applied to the image to get tiie image back into tiie original space. 

The transformation we have used in tiiis section was suggested by Arsenault et al. 

[4, 11] and is called a homomorphic transformation (HT). For the film-grain noise model, 

that we have used, the transformation is given by [4, 11] 

r\kj) = aylr{kj) 
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(a) Lena with FGN (C=2), MSE=502 

(b) Restored image, MSE=86 

Figure 4.5 Noisy Lena with FGN (C=2) and the restored image using the adaptive noise 

smoothing filter (5x5) 
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(a) Airplane image 
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o- 2000 
ffl 
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Gray levels 

(b) Histogram of tiie Airplane image 

Figure 4.6 Auplane image and its histogram 
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(a) Airplane with FGN (C=4),MSE=2243 
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(b) 
Restored image, MSE-221 

Figure 4.7 Airplane image w«. r - - v 
^ noise smoothing filter (5x5) 

^ ^ PON (C=4) and the restored image using the adaptive 
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The degraded image r(k,l) has pixel values between 0 and 255. For the transformed image 

to have tiie same range, a = V255 is chosen. So the transformation 

r\kj) = ̂ 255r{kj), (4.17) 

makes the film-gram noise signal-independent, additive and approximately Gaussian. The 

inverse transformation is given by [4, 11] 

r(kj)=^ 255 ' ^ -̂̂ ^^ 

Before the homomorphic fransformation is apphed, the standard deviation of the noise 

term in the FGN model is o(kJ) = C^Jf{kJ). After the transformation the standard 

deviation of the transformed signal-independent noise is constant and is given by [11] 

a ' = ^ ^ . (4.19) 

2 

Now with the signal-dependent noise transformed into signal-independent noise, 

we can apply statistical processing designed for signal-independent noise to the 

transformed image. We have used the James-Stein estimator given by Equation (4.8) 

where the variance of the noise is calculated using Equation (4.19). 

4.7 Noise Suppression Results Using the Combined HT and 

Local-Statistics Processing 

We have used the combination of the HT and the James-Stein (J-S) estimator on 

the noisy Lena image with C=4. A window size of 5x5 was used for the James-Stein 

estimator. The restored image is shown in Figure 4.8(a). We can see that the restored 

image has small black patches or spots. This "salt and pepper" kind of noise can be 

removed using a median filter. We have used a 3x3 median filter on the estimated image 

to remove the artifacts. A median filter generally smoothes the edges, however in tiiis 

case as the size of tiie filter is 3x3, the edges are not smootiied. In the case of less amount 

of noise, tiiis problem with artifacts is not encountered. For the noisy Lena with C=2, the 

transformation and the estimation gave a restored image without any artifacts or black 
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(a) Restored image using HT and J-S estimator, MSE=328 

(b) Restored image after using median filter on the image in (a), MSE=165 

Figure 4.8 Restored images from the noisy Lena image with FGN (C=4) 
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patches, as seen from Figure 4.9. Thus a median filter was not needed. For the case of 

noisy Lena with C=2 the MSE is reduced from 503 to 92. Restored images for the noisy 

Airplane with C=4 are also shown in Figure 4.10. 

4.8 Comparison of the Two Approaches to 
Film-Grain Noise Suppression 

Tables 4.3, 4.4 and 4.5 show the restoration results for the two approaches. The 

adaptive filter and the J-S estimator results were obtained using 5x5 windows and the 

median filter was implemented using a 3x3 window. From the results we see that in the 

case of strong noise (C=4), the MSE obtained using the transformation metiiod is 

significantiy greater tiian the MSE obtained using the adaptive filter. When the 

transformation method is combined with the median filter, however, errors are reduced. 

In the lower noise case, we did not need to use the median filter, as the black spots were 

not there, and the difference of the MSEs obtained from the two schemes was not large. 

Still the adaptive filter result is shghtiy better. Thus in general, we conclude that the 

adaptive noise smoothing filter gave a better restoration for images degraded by film-grain 

noise. For the same level of FGN (C=4), the adaptive noise smoothing filter reduced the 

MSEs of the noisy Lena and Airplane images by factors of 9.4 and 10.15, respectively. 

The transformation method reduced the MSEs of the noisy Lena and Airplane images by 

factors of 5.7 and 6.5, respectively. So both metiiods gave almost the same amount of 

noise reduction for the two different images. 

Table 4.3 Noise suppression results for Lena witii film-grain noise (C=4) 

Image type 

Noisy image 

Adaptive 

HT & J-S 

HT, J-S & 

Median 

MSE 

1869 

198 

328 

165 

NMSE 

0.1015 

0.0107 

0.0178 

0.009 

LOGMSE 

0.016 

8.168E-4 

0.0025 

7.5518E-4 

RMSSNR (dB) 

9.94 

19.69 

17.50 

20.48 
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Figure 4.9 Image restored from the noisy Lena image with FGN (C=2) using HT and J-S 

estimator, MSE=92 
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(a) Restored image using HT and J-S estimator, MSE=343 

L J : . .... .:*.\i.sv..>. i..-^. '.-'sst s- -* ?<s--*^ 

(b) Restored image after using median filter on the image in (a), MSE=193 

Figure 4.10 Restored images from noisy Airplane image with FGN (C=4) 
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Table 4.4 Noise suppression results for Lena witii film-grain noise (C=2) 

Image type 

Noisy image 

Adaptive 

HT & J-S 

MSE 

503 

86 

92 

NMSE 

0.0273 

0.0047 

0.005 

LOGMSE 

0.0019 

3.65E-4 

4.23E-4 

RMSSNR (dB) 

15.64 

23.32 

23.01 

Table 4.5 Noise suppression results for Airplane with film-grain noise (C=4) 

Image type 

Noisy image 

Adaptive 

HT & J-S 

HT, J-S & 

Median 

MSE 

2243 

221 

343 

193 

NMSE 

0.0737 

0.0073 

0.0113 

0.0063 

LOGMSE 

0.007 

4.49E-4 

0.001 

3.67E-4 

RMSSNR (dB) 

11.33 

21.39 

19.48 

21.98 

4.9 Compression Results 

After noise suppression in the degraded images, we next studied the performance 

of the compression scheme on the restored images. We used JPEG on different restored 

images and compared the results with those obtained from compressing the noisy images. 

4.9.1 Compression in Signal-Independent Noise 

The Lena image with SIN noise of variance 1000 yields a compression ratio of 

2.866 at a quahty factor of 65. After noise suppression, we obtamed compression ratios 

of 5.52, 7.37 and 8.16, while using JPEG on the images restored using the J-S estimator 

with 3x3, 5x5 and 7x7 windows, respectively. Now good image quahty is also deskable 

along with high compression ratios. We need to be careful in deciding which restored 

image is best suited for tiie compression. The image restored with a 3x3 window yields 

the lowest compression ratio as it has the least amount of noise suppression. So it is not 

the best of the results. On the other hand, the restored image with a 7x7 window yields 
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the highest CR as it has the highest amount of noise suppression. Still tiiis is not the 

optimum result, because of the loss of significant edge information during restoration. 

The restored image with 5x5 window has significant noise suppression while preserving 

the edges and yields a high CR. Thus tiiis image has the optimum noise reduction for the 

purpose of increasing the compression ratio. 

4.9.2 Compression in Film-Grain Noise 

In tins section, the results obtained using JPEG compression on the images 

degraded by fikn-grain noise and the restored images are presented. Figure 4.11(a) shows 

the compression ratio (CR) versus quahty factor (Q) plot for the noiseless Lena and Lena 

with two different levels of FGN. For a quahty factor of 65, the CRs obtained for Lena 

without noise, with high noise (C=4) and low noise (C=2) are 10, 2.5 and 3.46, 

respectively. The CR is lower as the noise level is higher for the same quahty factor, 

which is expected. For the airplane image CRs obtained are 10.2 and 2.38 without and 

with FGN (C=4), respectively, for a Q=65. We see that for same level of FGN, the 

reduction in compression was by factors of 4 and 4.29 for the Lena and Airplane images, 

respectively, for Q=65. Pre-compression noise suppression in the images increases the 

achievable CR compared to the dfrect compression of the noisy images. Figure 4.11(b) 

shows the plot of the CR versus quahty factor for the noiseless, noisy and restored images. 

The noisy image used here is the noisy Lena with C=2 and the restored image is the one 

obtained using the adaptive noise smoothing filter shown in Figure 4.5. The plot shows 

that the CR is increased from 3.46 to 8 for a Q of 65. For a Q of 25, CR is increased from 

8.46 to 17.39. The Lena image restored using the transformation method yielded CRs of 

7.8 and 17.095 for Q-factors of 65 and 25, respectively. So compression ratios obtained 

from the two types of restored images are almost equal. For high level of FGN (C=4), the 

CRs obtained by compressing the Lena images restored using the adaptive filter and the 

transformation method are 6.578 and 5.077, respectively, for a Q-factor of 65. 

Compressing the restored Lena image (C=4) after HT, J-S and median filtering we 

obtained a CR of 8.45. So the images restored from the noisy images with a high level of 
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20 30 40 50 60 70 80 90 100 
Quality factor(Q) 

(a) CR versus Q for noiseless Lena and Lena with FGN 

20 30 40 50 60 70 80 90 100 
Quality tactor(Q) 

(b) CR versus Q plot for noiseless, noisy (FGN, C=2) and Restored Lena images 

Figure 4.11 CR versus Q plot for different Lena images 
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FGN usmg the combination of the transformation metiiod and median filtering yielded the 

highest compression ratios. This is due to fact that combination of the HT, J-S and 

median filtering smoothed the noise effectively. For the Airplane image, the CR increased 

to 6.54 from 2.38 after noise suppression using the adaptive filter. So the miprovement of 

CRs for the two images are almost the same. 

Figure 4.12 shows the bits per pixel (bpp) and the (log scale) MSE plot for the 

noiseless, noisy (C=2) and the restored images. Table 4.6 shows the MSE and PSNR for 

different images at different quahty factors. We see that at a quahty factor of 95 the 

PSNR and MSE are almost same for the images, because at such a high quahty factor the 

quantization effects are not prominent. At the lower quahty factors, the PSNRs for the 

noisy images are very low. At the low values of Q, the quantization of DCT coefficients is 

significant In the case of the noiseless image, the loss of high frequency information is 

not significant, as it does not contain significant high frequency information. The noisy 

image has a high frequency contributions from the noise. Then use of JPEG cuts off some 

of the high frequency noise information during compression, because the quantization 

steps for the higher frequency DCT coefficients are coarser compared to those for the 

lower frequency DCT coefficients. When the PSNR is calculated between the input and 

the output images to a compression algorithm, it gives a measure of fidehty or how close 

the output image is to the original input image. The compression algorithm is effectively 

eliminating some of the noise information that was in the input uncompressed noisy image. 

So this noise reduction is the main reason for a greater difference existing between the 

uncompressed noisy image and the compressed image compared to the noiseless case. 

This is the main cause for low PSNR in the case of noisy image compression, not the loss 

of significant information. As long as the original noiseless image information, which is 

contained mainly in the low frequency regions, is preserved, the performance of the 

compression scheme can be considered satisfactory. 
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Figure 4.12 Plot of bpp versus MSE for different Lena images 
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Table 4.6 Compression results for different quality factors for noisy (FGN, C=2) and the 

restored Lena image 

Quahty 

factor 

95 

85 

75 

65 

45 

25 

Noisy image 

CR 

1.458 

2.237 

2.856 

3.467 

4.935 

8.462 

MSE 

4 

34 

91 

156 

263 

369 

PSNR 

(dB) 

42.31 

32.86 

28.56 

26.21 

23.93 

22.46 

Restored image 

CR 

2.287 

4.335 

6.31 

8.032 

11.369 

17.394 

MSE 

3 

18 

29 

36 

45 

57 

PSNR 

(dB) 

42.82 

35.61 

33.45 

32.50 

31.59 

30.57 

It is, however, difficult to separate the error due to the loss of the original 

mformation and the loss due to the suppression of noise by the compression algoritiim by 

merely looking at the PSNR. For a clearer idea, we considered the forward DCT plots. 

We took 32x32 pixel blocks from the noiseless, uncompressed noisy and compressed 

noisy Lena images. The DCT coefficients are plotted in Figure 4.13. We see tiiat the 

noiseless image information is mainly contained in the low frequency regions while in the 

compressed image only the high frequency coefficients are attenuated. To display the 

attenuation of high frequency coefficients clearly, the DCT of tiie compressed image is 

shown for a low quahty factor (Q=25). The visual quahty of the images can also be taken 

into consideration. As mentioned earlier there were blocking effects in the noiseless Lena 

image compressed at a quahty factor 15 which yielded a PSNR of 32 dB. For the noisy 

image tiiere is no such blocking effects in the compressed image even at a PSNR of 26 dB 

obtained at a Q of 65. It may tiius be concluded that tiie low values of PSNR are mainly 

due to some of tiie noise suppression by tiie compression algoritiim itself and not due to 

the loss of significant information. Figures 4.14 and 4.15 show tiie reconstructed images 

after compressing the noisy and restored images. 
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(c) Compressed Lena with FGN 

Figure 4.13 DCT coefficients of 32x32 blocks of different Lena images 
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Figure 4.14 Lena with FGN (C=2) after compression (Q=65) 

Figure 4.15 Compressed Lena image (Q=65) after restoration from FGN (C=2) 
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For the restored images, we see that PST^s are higher, but stUl do not match the 

values of the noiseless case. This is due to the fact that the film-grain noise is not totaUy 

eliminated. So there is still some high frequency noise and the compression scheme 

reduces some of that. 

In conclusion we can say that the reduction of the compression factor is the main 

disadvantage introduced by the presence of film-grain noise in an image. The effect of 

noise in increasing the errors introduced by the compression algorithm itself is rather 

difficult to determine for the JPEG algorithm, as discussed earlier. Thus in the presence of 

film-grain noise, noise suppression before compression appears to be the preferred 

approach. 
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CHAPTER V 

NOISE SUPPRESSION AND COMPRESSION IN SPECKLE 

Speckle noise is observed in images generated with highly coherent illumination. 

The presence of speckle in an rniage reduces the resolution of the image and the 

detectability of the target. Speckle noise has been shown to be signal-dependent in nature 

[5]. The SNR measured pointwise in a single frame speckle image is unity. Speckle is the 

main source of degradation in synthetic aperture radar (SAR) imagery and in ultrasonic 

imaging for medical apphcations. Thus when compressing these images, speckle effects 

should be taken into consideration. Many remote users are provided with a large amount 

of data through SAR images. Efficient compression of SAR images would significantiy 

decrease their transmission cost In the case of medical imaging, archiving is a present day 

problem, so compressing those images is also necessary. 

A lot of research on the reduction of speckle noise in medical images is underway, 

so that the diagnosis of diseases can be facihtated. Speckle reduction is also necessary in 

SAR images, because the presence of speclde noise results in uncertainty in the 

interpretation of the image scenes. Like film-grain noise, here too, we have the choice of 

speckle reduction before or after compressing the images. In our work, we have 

investigated using noise suppression prior to compression to achieve higher compression 

ratios. 

There are various metiiods of speckle reduction by modifying the imaging system. 

For example, partially coherent illumination is used in the imaging system instead of 

coherent illumination. Another metiiod is to observe the speckle through a finite aperture 

and tiien move the aperture while observing the tune-averaged image. These metiiods do 

not consider the image statistics. For noise reduction, we have considered filters tiiat are 

based on the image statistics. Like fihn-grain noise suppression, we have used two 

approaches for speckle reduction. Ffrst, we have used an adaptive noise smoothing fUter, 

one that is designed taking the signal dependence of the speckle into account. Secondly, 

we have used a homomorphic transformation to transform the speckle noise mto signal-
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independent additive noise. Then we have used the James-Stein estimator on the 

transformed rniage, followed by the appropriate inverse transformation. We have then 

investigated the performance of the compression scheme on both the images degraded by 

speclde and on the restored images. 

5.1 Single Frame and Multiple Frames Speckle Images 

We have presented the multiphcative model of speckle noise in section 2.2.3, 

which is 

r{kj) = f(kj)n(kj), 

where f{kj) is the original noiseless image, n(k,l) is the noise term with a negative 

exponential distribution, and r(kj) is the degraded image. Using this model single frame 

speckle images were simulated. Figure 5.1 shows the simulated single frame speckle 

version of both Lena and the Airplane images. The MSEs of the noisy images w.r.t. the 

original noiseless images are shown in the figure captions. As speckle is a strong source 

of noise, the MSEs are very large. 

With the availabihty of several independent images of the same scene, a multiple 

frame image can be obtained by averaging the independent images. As mentioned in 

section 2.2.3, the speckle statistics for the multiple frame images obey a Gamma 

distribution, where the standard deviation decreases with the square root of the number of 

independent frames (looks) [14]. The SNR also increases by a factor of the square root of 

the number of the frames averaged. This multiple frames averaging reduces the speckle 

and is the most common metiiod for speckle reduction [5]. The Lena and Airplane images 

with speckle and four frames averaging are shown in Figure 5.2. Note the significant 

reduction in MSEs when compared to tiie results of Figure 5.1. 

We have used the noise suppression schemes on both the single frame and the four 

frames-averaged speckle rniages. For speckle reduction we took tiie same approach as 

with fihn-grain noise. Fkst we have used the adaptive noise smoothing filter which takes 

the signal-dependence of the speckle into account. Secondly, we used the homomorphic 
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(a) Lena rniage, MSE=7303 

(b) Airplane image, MSE=9715 

Figure 5.1 Lena and Airplane images with speckle noise (single frame) 
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(a) Lena image, MSE=2424 

(b) Airplane image, MSE=3909 

Figure 5.2 Lena and Airplane images with speckle noise (four frames-averaged) 
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transformation to make the noise signal-mdependent and additive. Finally the James-Stein 

estimator was used for noise reduction. 

5.2 Adaptive Noise Smoothing Filter for Speckle 

The general form of the adaptive noise smoothing filter can be modified for 

multiplicative noise [9]. As our speckle model is a multiphcative noise model, we used the 

adaptive noise smoothing filter for a multiphcative model for the purpose of speckle 

reduction. According to our noise model, the adaptive noise smoothing filter for 

multiphcative noise with unit mean and unit variance is the adaptive noise smoothing filter 

for the single frame speckle noise. For M frames-averaged speckle images, the adaptive 

noise smoothing filter is the adaptive filter for multiphcative noise with unit mean and a 

variance of — [14]. As the noise n{k,l) is unit mean (section 2.2.2), we can say that 
M 

E[r(k, /)] = m, {k, I) = E[f(k, /)] = m^ [k, I), 

where r{k,l) and f{k,l) are the speckled and the original images, respectively. For this 

unit mean multiplicative noise, the adaptive noise smoothing filter becomes [9, 14] 

f(kj) = m,(kj)^ 2? v f ;N^, , , , Ar(kJ)-mAU)l 

Vf(kJ) + Gl[m;(kJ)+Vf(k,l)\ 

where Vf{kJ) and m^(kj) are the local variance of f(kj) and the local mean of r(A:,/) 

calculated over all the pixels mside a (2M-i-l)x(2N+l) window, a J is tiie noise variance. 

V^ikJ) is given by [5, 9] 

v(i!\ KilcJ)-oWAkJ) 

where V^{kJ) is the local variance of r{k,l). Now the estimated value of each pixel is 

given by 

fik,l) = m,ikJ) + Ws[r(kJ)-m,(kJ)l (5.1) 
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where Ŵ  = Max 
1 + a? ' 

(5.2) 

Here m^{kj) and V,(/:,/) are given by Equations (4.5) and (4.6). For an M-frame 

speckle image the noise variance is given by 

<=^- (5.3) 
M 

5.3 Speckle Reduction Results Using the Adaptive Noise Smoothing Filter 

We have used the adaptive noise smoothing filter with a 5x5 window on both the 

single frame and the four frames-averaged speckle images. In the case of the Lena image, 

averaging four frames reduced the MSE from 7303 to 2424, that is by a factor of 3. For 

the Airplane image the MSE was reduced by a factor of 2.5. On the other hand, using the 

adaptive noise smoothing filter on the single frame images the MSE came down to 1191 

and 2440 for the Lena and Airplane images, respectively. Using the adaptive filter on the 

four frames-averaged images the MSEs obtained were 960 and 2170 for the Lena and the 

Airplane, respectively. So the combination of the frame averaging and the adaptive noise 

smoothing filter reduced the MSE by factors of 7.6 and 4.48 for the Lena and the Airplane 

images, respectively. The amount of noise suppression was thus not the same for the two 

images. 

We can see that the speckle reduction achieved by frame averaging brings out tiie 

details in the image which are not perceivable in the single frame speckle images. 

However, the apparent graininess of the image is still present. The images restored 

(Figure 5.3) using the adaptive noise smoothing filter on the single frame speckle images 

do not have same the graininess, though the edges are blurred. These restored images 

have a very poor visual quality. Compared to tiiem, tiie restored images from the four 

frames-averaged speckle images (Figure 5.4) have more visible details. 
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(a) Restored Lena image, MSE=1191 

(b) Restored Airplane image, MSE=2440 

Figure 5.3 Images restored from single frame speckle images using adaptive noise 

smoothing filter (5x5) 
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(a) Restored Lena image, MSE=960 

(b) Restored Airplane image, MSE=2170 

Figure 5.4 Images restored from four frames-averaged speckle unages using adaptive 

noise smoothing filter (5x5) 
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The restored images have a very low contrast compared to the noiseless images 

and the blurring is significantiy noticeable, hi the case of fihn-grain noise, the restored 

images had less blurring and higher contrast. This is due the fact that the speckle noise is 

a stronger source of degradation compared to the fihn-grain noise and the SNRs are lower 

in the unages degraded by speckle. Tables 5.1 and 5.2 show different restoration results 

for speckle reduction. 

Table 5.1 Noise suppression results for the Lena with single and four frames-averaged 

speckle noise usmg the (5x5) adaptive noise smoothing filter 

Image type 

Noisy, single frame 

Noisy, four frames 

Restored, single frame 

Restored, four frames 

MSE 

7303 

2424 

1191 

960 

NMSE 

0.397 

0.132 

0.065 

0.052 

LCXJMSE 

0.0705 

0.0113 

0.0033 

0.0022 

RMSSNR(dB) 

4.02 

8.81 

11.89 

12.83 

Table 5.2 Noise suppression results for the Airplane with single and four frames-averaged 

speckle noise using adaptive noise smoothing filter (5x5) 

Image type 

Noisy, single frame 

Noisy, four frames 

Restored, single frame 

Restored, four frames 

MSE 

9715 

3909 

2440 

2170 

NMSE 

0.319 

0.128 

0.08 

0.071 

LOGMSE 

0.0621 

0.0103 

0.0041 

0.0033 

RMSSNR(dB) 

4.96 

8.92 

10.96 

11.47 

5.4 Combined Homomorphic and Local-Statistics Processing for tiie Speckle 

The homomorphic transformation required to make the speckle noise signal-

mdependent, additive and Gaussian in nature is a logaritiimic transformation given by [11] 

r\kj)=f>ln[r(kj) + \l 
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where P is a scalar constant. The addition of one to r(k,l) is done to avoid taking tiie 

logaritiun of zero. As r(k,l) is between 0 and 255, P = ^^^ 
hi(256) 

ttansformed image has the same range of values. So the transformed unage is 

255 

is used so that the 

r\kj) = 

The inverse transform is then given by 

ln(256) 
]n[r(k,l) + l]. (5.4) 

r(kyl) = exp 
r^(A:,/)ln(256y 

255 
- 1 (5.5) 

After the transformation given by Equation (5.4), the noise becomes signal-

independent and additive. On the transformed image we have used the James-Stein (J-S) 

estimator, which is the adaptive noise smoothing filter for signal-independent additive 

noise. The form of the James-Stein estimator given in Equation (4.8) is for additive noise 

with zero mean. Speckle noise, after transformation, has a non zero mean. So we need to 

subtract the non-zero mean m„ from the estimated value. The modified form of the J-S 

estimator for the transformed image is thus given by 

f{kj) = [m,(kJ) - m^ ]+ W[r\kJ) - m,,(^,/)], (5.6) 

where m^,(k,l) is the local mean of r\k,l) given by Equation (4.5) and 

W = Max 
^ G' ^ 

1 _ ^P 

V 

,0 

V 

(5.7) 
VAkJ), 

where V^,{kJ) is the local variance of r'(kj) given by Equation (4.6), m^ and a^ are 

the mean and the variance of the transformed noise. 

5.5 Speckle Reduction Results Using Combined Homomorphic 

and Local-Statistics Processing 

We have used the HT and the James-Stein estmiator with a 5x5 window on the 

smgle frame and tiie four frames-averaged speckle images. For the single frame case, we 

obtamed an MSE of 1065 and 1547 for the Lena and tiie Auplane images, respectively. 
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The restored images are shown in Figure 5.5. The MSEs obtained by the SDN adaptive 

filter are 1191 and 2440 for the single frame Lena and the Airplane, respectively. The 

differences in the MSEs for the restored Lena images (single frame) is not large for the 

two schemes. For the Airplane image the MSE obtained from the transformation method 

(1547) is significantiy smaller tiian that obtained (2440) from the SDN adaptive filter. For 

Lena, we see that though the MSE is less for the transformed method compared to the 

adaptive filter method for the single frame case, the LOGMSE is greater. For the Airplane 

image both the MSE and the LOGMSE are less for the transformed method than for the 

adaptive filter method. For the four frames-averaged speckle images, the MSEs obtained 

by the transformation method with a 5x5 window J-S estimator were 682 and 1484 for the 

Lena and the Airplane images, respectively. So, w.r.t. the single frame noisy images the 

combination of frame averaging and the transformation method reduced the MSEs by 

factors of 10.7 and 6.5 for the Lena and Akplane unages, respectively. The restored 

images are shown in Figure 5.6. These images have higher contrasts compared to the 

images restored usmg the adaptive noise smoothing filter from the four frames-averaged 

speckle images. 

Another interesting result is obtamed using a 3x3 wmdow for the James-Stem 

estimator. The edges of the images are well preserved with tiie 3x3 window. The noise 

was, however, not suppressed efficientiy. To remove the noise, we did a second iteration 

of transformation and estimation on the image with a 3x3 window. From Tables 5.3 and 

5.4, we see that it yielded low MSEs of 349 and 589, respectively, for Lena and the 

Airplane. So w.r.t to the smgle frame speckled images tiie combmation of four frames-

averaged metiiod and two iterations of the ttansformation metiiod reduced the MSEs by 

factors of 20.9 and 16.49 for Lena and the airplane images, respectively. The restored 

images obtained usmg 3x3 windows are shown m Figure 5.7. 
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(a) Restored Lena image, MSE=1065 

(b) Restored Auplane image, MSE=1547 

Figiu-e 5.5 Images restored from smgle frame speckle unages using HT and J-S (5x5) 

estimator 
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(a) Restored Lena image, MSE=682 

(b) Restored Airplane image, MSE=1484 

Figure 5.6 Images restored from four frames-averaged speckle images using HT and 
J-S estimator (5x5) 
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Table 5.3 Noise suppression results for Lena with single and four frames-averaged 

speckle noise using HT and J-S estimator 

Image type 

Restored from single 

frame, 5x5 window 

Restored from four 

frame, 5x5 window 

Restored, four frame, 

(3x3 , 1st iteration) 

Restored, four frame, 

(3x3 ,2nd iteration) 

MSE 

1065 

682 

789 

349 

NMSE 

0.58 

0.037 

0.043 

0.019 

LOGMSE 

0.0036 

0.0017 

0.0023 

0.0011 

RMSSNR(dB) 

12.37 

14.31 

13.68 

17.22 

Table 5.4 Noise suppression results for Auplane witii smgle and four frames-averaged 

speckle noise using HT and J-S estimator 

Image type 

Restored from single 

frame, 5x5 window 

Restored from four 

frame, 5x5 window 

Restored, four frame , 

(3x3 ,2nd iteration) 

MSE 

1547 

1484 

589 

NMSE 

0.051 

0.049 

0.019 

LOGMSE 

0.0032 

0.0022 

9.4E-4 

RMSSNR(dB) 

12.94 

13.12 

17.14 

5.6 Compression Results in Speckle 

The SNRs of the smgle frame speckle images have been shown to be less tiian tiie 

SNRs of the multiple frames-averaged speckle images, i.e., tiie single frame speckle 

unages are noisier tiian the multiple frames-averaged images. Thus the compression ratios 

(CR) are unproved for tiie four frames-averaged speckle unages compared to tiie single 

frame ones. For a quahty factor (Q) of 65, the CR for the four frames-averaged images 
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(a) Restored Lena image, MSE=349 

(b) Restored Auplane image, MSE=589 

Figure 5.7 Images restored from four frames averaged speckle images using HT and J-

S (3x3) estimator and two iterations 
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rose to 2.487 from 1.896 and to 2.606 from 1.969 for the Auplane and Lena unages, 

respectively. Figure 5.8 shows the plots of CR versus Q for the noisy unages. The 

restored unage from the smgle frame Airplane unage yielded a CR of 6.09 for a Q of 65. 

However, the images restored from the single frame case have a very low visual quahty 

and were not good restoration results. Thus we have not considered those images to be 

suitable for the performance study of compression on tiie restored images. 

We have mainly used the images restored from four frames-averaged speckled 

images for compression. The Lena image restored using 5x5 window for the adaptive 

filter and the ttansformation metiiod yielded CRs of 8.8717 and 7.465, respectively, for a 

Q of 65. The restored Lena from the two iterations of the HT and the James-Stein 

estimator with 3x3 window size yielded a CR of 6.755 for a Q=65. For lower Q-factors 

the difference between the CRs was greater. For the adaptive filtered (5x5) Lena image 

the CR is 18.45 for a Q of 25 and the CR is 12.3 for the restored image using the 

transformation method with two iterations (3x3 window size) for the same quahty factor. 

For the Airplane images restored using the adaptive filter and the transformation method 

both with 5x5 window yielded CRs of 8.6387 and 7.241, respectively, for a Q of 65. The 

plots of CR versus Q for the restored Lena images are shown in Figure 5.9. We see that 

the CRs obtained for the restored Lena image with adaptive filter (5x5) are close to the 

ones obtained for the restored image using HT and J-S estimator (3x3, two iterations) for 

high quahty factors. For low values of Q, however, the restored images obtained from the 

adaptive filter yielded higher CRs. This is expected, as the restored images obtained using 

the adaptive filter is smoother and thus more edges are blurred. On the other hand, the 

restored images obtained from the transformation method had more edge mformation and 

the presence of some amount of unsuppressed noise made them appear grainier because of 

the smaUer window size. Thus tiiey had more high spatial frequency contents. Figure 

5.10 shows the reconstructed images after applying compression to the restored unages 

with a Q of 65. 

Figure 5.11 shows the bits per pixel (bpp) versus MSE plot for the noisy and the 

restored Lena images. Due to tiie same reasons as was discussed in Chapter IV, the 
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Figure 5.8 CR versus Q for the noisy Lena images witii speckle 

o 

20 

18 

16 

14 

12 

10 

8 

6 

Restored 

Adaptive filter 

Restored 

HT&J-S 

20 30 40 50 60 70 80 90 

Quality factors (Q) 
100 

Figure 5.9 CR versus Q for the restored Lena images with speckle noise 
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(a) Compressed Lena with speckle noise (four frames-averaged) 

(b) Compressed Lena after restoration usmg adaptive filter from four frames-averaged 

speckle image 

Figure 5.10 Compressed Lena images at quahty factor 65 
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Figure 5.11 Plot of bpp versus MSE for the speckle image and the restored image using 

adaptive noise smoothing filter (5x5) 
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MSEs were very high for the noisy images after compression. For the restored images, 

the MSEs were lower and had ahnost the same range as for the noiseless image. From 

Tables 5.5 and 5.6, we see that PSNRs were also high for tiie restored images after 

compression. For Q's above 45 we obtained PSNRs of 35 dB and higher. This result 

deserves some commem in comparison to the results obtamed in the case of fihn-grain 

noise. As we have seen in Chapter IV, the PSNRs obtamed after compressing the images 

restored from the film-gram noise were not as high as in the noiseless case and were below 

35 dB for quahty factors below 85. The reason for tins becomes clear if we look at the 

DCT plots of the restored unages. Figure 5.12 shows the DCT plots for the image 

restored from Lena degraded by FGN (C=2) and Lena restored from the four frames-

averaged speckle unage, usmg the adaptive filter. We see that for the FGN case there is a 

significant amount of high frequency content that comes from the unsuppressed noise, hi 

the case of the restored speckle image from the speckle noise the high frequency 

mformation content is reduced. Thus in the latter case the quantization of the DCT 

coefficients does not mfroduce appreciable high frequency information loss and the 

difference between tiie uncompressed restored image and the compressed unage is small. 

Table 5.5 Compression results for Lena with speckle noise 

Quahty 

factor 

95 

85 

75 

65 

45 

' ' 

Noisy (single frame) 

CR 

1.44 

1.745 

1.969 

2.373 

3.186 

MSE 

30 

84 

158 

380 

1111 

PSNR(dB) 

33.29 

28.91 

26.13 

22.33 

17.68 

Noisy (four frame averaged) 

CR 

1.219 

1.843 

2.257 

2.606 

3.353 

5.221 

MSE 

4 

34 

94 

180 

410 

841 

PSNR(dB) 

42.29 

32.84 

28.39 

25.58 

22.01 

18.88 
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Table 5.6 Compression results for Lena restored from four frames-averaged speckle 
image 

Quahty 

factor 

95 

85 

75 

65 

45 

25 

Adaptive filter (5x5 wmdow) 

CR 

2.724 

5.161 

7.210 

8.872 

12.194 

18.453 

MSE 

2 

9 

13 

16 

21 

29 

PSNR(dB) 

44.55 

38.74 

37 

36.13 

34.98 

33.5 

HT & J-S (3x3 ) two iterations 

CR 

2.527 

4.464 

5.75 

6.755 

8.688 

12.3 

MSE 

2 

6 

9 

13 

20 

34 

PSNR(dB) 

45.86 

40.44 

38.37 

37.07 

35.20 

32.77 
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XlO 

(a) DCT of the image restored from the film-grain noise 

0 0 

(b) DCT of the image restored from the speckle noise 

Figure 5.12 DCT (32x32 blocks) plots of different Lena images restored from noise 

79 



CHAPTER VI 

CONCLUSIONS AND SUGGESTIONS FOR 

FUTURE WORK 

We have smdied the effects of signal-dependent noise on image compression. The 

pre-processing of the images (i.e., noise suppression prior to compression) has also been 

investigated. We have seen that the presence of noise reduces the allowable compression 

ratios (CR) significantiy. The amount of compression reduction depends on how noisy the 

image is and the type of the noise present. Witii the JPEG compression algorithm, CRs 

obtained for the Lena image degraded by film-grain noise (FGN) were between 1.2 and 

4.8 for quahty factors between 95 and 25 when the noise level is high (C=4). For a lesser 

amount of film-grain noise (C=2) the CRs ranged from 1.5 to 8.5, whereas for the 

noiseless image the CRs were between 3 and 19 for the same quahty factors. For the 

speckled images, the range of compression ratios obtained were from 1 to 3.2 and from 

1.2 to 5.2 for the single frame and the four frames-averaged speckle images, respectively. 

Thus the reduction of the allowable compression is greater in the case of speckle than for 

film-grain noise when using the JPEG compression algorithm. 

For the improvement of the allowable compression ratios, our approach was to 

pre-process the noisy images for noise suppression. For the images degraded by FGN, the 

adaptive noise smoothing filter gave better restoration results compared to the 

transformation method, which is the combination of a homomorphic transformation (HT) 

and local-statistics processing with the James-Stem (J-S) estimator. For images with a 

low level of FGN (C=2), both metiiods worked well, with tiie adaptive noise smootiiing 

filter givmg shghtiy better results. The compression ratios obtained for both types of 

restored images were ahnost equal. Witii a higher level of fihn-gram noise (C=4), the 

transformation metiiod gave rise to artifacts or black patches, which were not present in 

the restored images obtained using the adaptive noise smoothing filter. The CRs achieved 

by applying compression to the restored images obtained usmg the u-ansformation method 

were less tiian the CRs obtained for the adaptive noise smootiiing filtered unages. The 
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artifacts in the restored unages were removed by usmg a median filter. The restored 

image and the CR obtained from it were then as good as the restored image obtained usmg 

the adaptive noise smoothing filter. The compression ratios achieved for the restored 

unages were shghtiy less tiian the compression ratios achieved usmg the noiseless images; 

however, they were significantiy higher than the compression ratios obtained from the 

noisy images. 

In the case of the speckled images, the images restored from the single frame 

speckle images were not satisfactory. The restored images from the four frames-averaged 

speckle images were "good." In this case, the combination of the HT and the J-S 

estimator gave better restorations compared to the adaptive noise smoothing filter, when a 

5x5 window was used for both schemes. The restored images obtained from the 

transformation method (HT and J-S) had more edge information and better contrast. 

Using two iterations of the HT and the J-S estimator with 3x3 window we obtained even a 

better restoration result. In the case of film-grain noise, the amount of noise reduction for 

different images was almost the same for the same level of noise for a particular noise 

suppression scheme. In the case of speckled unages, the amount of noise reduction by 

frame averaging was different for different images. 

For speckled images, the compression obtained from the restored unages was 

significantiy higher tiian that obtained by compressmg the noisy images. The compression 

ratios obtained for the restored images usmg the adaptive noise smoothing filter (5x5) 

were higher tiian those obtained for the restored unages usmg two iterations of the HT 

and the J-S estimator approach. The reason is that, the adaptive filter smoothed out the 

noise at the expense of removmg edge mformation and blurring the image. On the other 

hand, the restored unages obtamed from tiie ttansformation metiiod had more edge 

mformation and less blurring. There was, however, some unsuppressed noise present 

which led to lower values of compression ratios achieved. As a trade-off between the 

noise suppression and the preservation of origmal image information, the restored unages 

obtained from tiie ttansformation metiiod were superior. Thus we have considered it to be 

the restoration approach best suited prior to compression. 
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Hence the effects of image noise on compression depend on the type of noise 

present and the amount of noise. The effectiveness of pre-processing the unages prior to 

compression is also dependent on these two factors. As the amounts of compression 

obtained with different unages were not identical for the same quahty factors, its 

performance is also image dependent 

We have used simulated noisy images to smdy the noise effects on image 

compression. The performance of the compression schemes on actual noisy images (such 

as SAR images) remains to be studied. The performance of image compression schemes 

other than JPEG in the presence of signal-dependent noise should also be investigated 

further. Mitra et al. used morphological filters for speckle reduction prior to compression 

and used multiresolution wavelet transform for compression [29]. The performance of the 

morphological predictor and the statistical estimators may be compared. The modification 

of the compression scheme itself for noise suppression, leading to higher compression 

ratios, may also be explored further. 
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APPENDIX A 

SAMPLE PROGRAM FOR IMAGE RESTORATION 

%% This program is written in MATLAB 

%% The program below generates a noisy image with film-grain noise (FGN), uses %% 

%% James-Stein estimator for noise suppression after transforming the FGN into signal-

%% independent noise by homomorphic transformation (HT) %%% 

%% For speckle image similar program works the with appropriate changes for HT, 7c% 

%% inverse HT, transformed noise variance and mean and the noise model for noisy %% 

%% unage simulation %%%% 

%% This program supports a square image (i.e. an NxN image) %%% 

%%% Generation of Fihn-Gram Noise %%% 

%% kk is the FGN constant, wn is the image size, %% 

%% Give the value of kk and wn %%% 

wn=512; 

kk=4; 

%% Read the unage file (here it is a binary file 512x512 raw data witiiout any header, %% 

%% each pixel value with 8 bits %%% 

%% The original unage is assigned to a 512x512 matrix lena %% 

fid=fopen('lena.pic','rb') 

lena=fread(fid,[wn,wn]); 

fclose(fid); 

%% nois is the 512x512 matrix of Gaussian random numbers witii zero mean and unit 

%% variance %% 

%% flena is the image witii FGN noise %% 

%% randn is tiie random number generator %% 

nois=randn(wn); 

templ=sqrtGenap); 

flena=lenap+kk*(temp 1 .*nois); 
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%% Threshold values above 255 to 255 and values less than zero to zero %% 

fork=l:wn 

forl=l:wn 

Ifflena(k,l)>255 

flena(k,l)=255; 

elseifflena(k,l)<0 

flena(k,l)=0; 

else 

flena(k,l)=round(flena(k,l)); 

end 

end 

end 

%%% Homomorphic transformation of the FGN %% 

%% Give value of w which is the wmdow size for the estmiator %% 

%% And w=2m-hl %% 

w=5; 

m=(w-l)/2; 

trans=sqrt(255*flena); 

%% r is the transformed image with zero padding %% 

r=zeros(wn-i-2*m); 

r(m-f-1: wn+m,m-i-1: wn-i-m)=trans; 

clear trans 

%% Apply James-Stein estimator on the transformed noisy image 

%% devf is the variance of the transformed image (in case of FGN) 

%% rav is the local average and v is the local variance of the transformed image calculated 

%% over wxw size window 

devf=kk*(sqrt(255))/2; 

devf=devf*devf; 

for i=m-i-l:wn+m 
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forj=m+l:wn-»-m 

rav=sum(sum(r(i-m:i+m,j-m:j-i-m))); 

rav=rav/(w*w); 

v=r(i-m:i+m,j-m:j-i-m)-rav; 

v=v.*v; 

v=sum(sum(v)); 

denom=w*w-l; 

v=v/denom; 

%% Avoid division by zero 

%% s is the matrix of the estimated pixels 

i f v = 0 

s(i-m,j-m)=r(i,j); 

else 

temp=l-devfA'; 

if temp>0 

q=temp; 

else 

q=0; 

end 

s(i-m,j-m)=rav-i-q*(r(i,j)-rav); 

end 

end 

end 

clear r 

clear q temp rav i j v devn 

%% Perform inverse transform to get the image back into original plane 

%% recon is the restored image 

recon=(s.*s)/255; 
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%% tiireshold image pixel values between zero and 255 

fori=l:wn 

for j=l:wn 

if recon(i,j)>255 

recon=255; 

elseif recon(i,j)<0 

recon(i,j)=0; 

else 

recon(i,j)=round(recon(i,j)); 

end 

end 

end 

clears 

%% Calculating different errors between the original image and the restored image 

%% (i.e. MSE NMSE RMSSNR LOGMSE) 

eror=sum(sum((lenap-recon).'^2)); 

energy=sum(sum(lenap.^2)); 

mse=eror/(wn*wn); 

nmse=eror/energy; 

rmssnr= 10*log 10( 1/nmse); 

sq=(logl0(l-Hlenap)-logl0(l+recon)).'^2; 

totsq=sum(sum(sq)); 

logenr=(log 10( 1 -i-lenap)) M; 

totenr=sum(sumGogenr)); 

logmse=totsq/totenr; 

clear eror 

clear energy 

clear sq 

clear totsq logenr totenr 
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APPENDDC B 

SOFTWARE USED FOR COMPRESSION 

There are two free software packages available for implementation of the JPEG 

unage compression/decompression algorithm. One is the Independent JPEG Group's 

JPEG software and another one is the software written by the PVRG group at Stanford. 

As mentioned earher we have used the fifth pubhc release of the Independent JPEG 

Group's (UG) software in our work, which implements a lossy JPEG. The Stanford 

group's JPEG software also supports a lossless JPEG. The official archive site for the UG 

JPEG software is ftp.uu.net. The most recent version of the UG software is available at 

tins site in the dkectory graphics/jpeg. The JPEG software of the Stanford group is 

available from havefun.stanford.edu in the dkectory pub/jpeg. 

The fifth release of UG software, that we have used provides two programs for 

compression and decompression. The program cjpeg compresses the image file into JPEG 

format and the program djpeg decompresses a JPEG file back into a conventional image 

file format One may also use the JPEG hbrary in one's own programs. Different featiu^es 

of the UG JPEG software that we used are presented below. 

For using the cjpeg program to compress an image file the command used on 

UNIX-like systems is 

cjpeg [switches] [imagefile] >jpegfile. 

The program reads the mput image file or the standard mput if no mput unage file is 

specified. On most non-UNIX systems the command used is 

cjpeg [switches] imagefile jpegfile. 

So both the mput and the output files need to be specified on the command hue. The 

mput image file to the cjpeg program must be in a file format that is supported by the UG 

software. The fifth release of tius software supports image file formats such as, GIF 

(Graphic hiterchange Format), BMP, PPM (PBMPLUS color format), PGM (PBMPLUS 

gray-scale format), Targa and RLE(Utah Raster Toolkit format). The program cjpeg 
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recognizes the mput file format automaticaUy except some of the Targa-format file. JPEG 

files are in tiie defacto standard JFIF file format. 

Some of the basic command switches for cjpeg are given below, 

-quality N: This is used to define the quahty factor deshed for the image. It scales the 

quantization tables to adjust the unage quahty defined. C îahty is 1 (worst) to 100 (best). 

The default value is 75. 

-grayscale: creates monochrome JPEG file from color input. This switch should be used 

when a gray-scale GIF file is compressed, because cjpeg does not recognize that a GIF file 

only contains the shades of gray. 

-targa: As cjpeg does not recognize some of the Targa file format, this switch is used to 

make cjpeg treat the file as Targa input. 

-optimize: Performs optimization of entropy encoding parameters. 

-dot int: Uses integer DCT (default). 

-dct fast: Uses fast integer DCT Gess accurate). 

-dct float: Uses floating point DCT (most accurate, but slower). 

-verbose: It enables debug printouts. More v's give more printouts. 

-qtables file: Uses the quantization table given in the specified file. 

To decompress a JPEG file the command used on a UNIX like system is 

djpeg [switches] [jpegfile] > imagefile. 

It reads from the input file specified or from the standard input if no file is specified. 

On most non-UNIX systems tiie command is 

djpeg [switches] jpegfile imagefile. 

Here, both mput and output files need to be specified on tiie command hue. The user have 

to teU djpeg which file format to generate. Some basic command hue switches for djpeg 

are, 

-colors N: This reduces the number of colors in the output images to a maximum of N 

colors, so that it can tiien be displayed on a colormapped display or stored in a color 

mapped file format. As an example, for 8 bit display we need to reduce to 256 or fewer 

colors. 
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-grayscale: It forces gray-scale output even if the JPEG file is color. This is useful for 

viewing on monochrome displays. 

-bmp: It selects BMP output file format. An 8 bit colormapped format is emitted if JPEG 

file is grayscale. Otherwise 24 bit fuU-color format is emitted. 

-gif: Selects GIF format. As GIF supports no more tiian 256 colors, -colors 256 is 

assumed. 

-pnm: Selects PPM/PGM format (default format). PGM is emitted if JPEG file is 

grayscale or -grayscale is specified, otherwise PPM is emitted. 

-rle: Selects RLE output format. 

-targa: Selects Targa output format. 

-dct int: Uses integer DCT (default). 

-dct fast: Uses fast integer DCT (less accurate). 

-dct float: Uses floating point DCT (most accurate, but slower). 

-verbose: It enables debug printouts. More v's give more printouts. 
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