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Abstract: Wavelets are mathematical tools for hierarchically decomposing functions. Wavelet Transform has
been proved to be a very useful tool for image processing in recent years. It allows a function which may be
described in terms of a coarse overall shape, plus details that range from broad to narrow. The most distinctive
feature of Haar Transform lies in the fact that it lends itself easily to simple manual calculations. Modified Fast
Haar Wavelet Transform (MFHWT), is one of the algorithms which can reduce the calculation work in Haar
Transform (HT) and Fast Haar Transform (FHT). The present paper attempts to describe the algorithm for image
compression using MFHWT and shows better results than those obtained by using any other method on an
average. It includes a number of examples of different images to validate the utility and significance of
algorithm’s performance.
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INTRODUCTION representation, which has been shown to be naturally

As  computers  have  become more and more transform is often used for signal and /or image
powerful, the temptation to use digital images has become smoothing keeping in view of its “energy compaction”
irresistible.  Image compression plays a vital role in properties, i.e. large values tend to become larger and
several important and diverse applications, including small values smaller, when the wavelet transform is
televideoconferencing, remote sensing, medical imaging applied.
[1,  2] and  magnetic resonance imaging [3] and many Since the Haar Transform is memory efficient, exactly
more [4]. These requirements are not fulfilled with old reversible without the edge effects, it is fast and simple.
techniques of compression like Fourier Transform, As such the Haar Transform technique is widely used
Hadamard and Cosine Transform etc. due to large mean these days in wavelet analysis. Fast Haar Transform is
square error occuring between original and reconstructed one  of  the  algorithms  which can reduce the tedious
images. The wavelet transform approach serves the work  of  calculations.  One  of the earliest versions of
purpose very efficiently. The wavelet transform, FHT is included in HT [9]. FHT involves addition,
developed for signal and image processing, has been subtraction and division by 2. Its application in
extended for use on relational data sets [5, 6]. atmospheric turbulence analysis, image analysis, signal

The basic idea behind the image compression is that and image compression has been discussed in [10].
in most of the images we find that their neighbouring The Modified Fast Haar Wavelet Transform
pixels are highly correlated and have redundant (MFHWT) has been discussed in [11], in which the
information [7]. It is, therefore, necessary to find a less MFHWT is used for one-dimensional approach and FHT
correlated  representation  of  the image and it can be is used to find the N/2 detail coefficients at each level for
done by removing redundancy and irrelevancy. a signal of length N. In this paper the author has used the
Redundancy reduction removes duplication in image and same concept of finding averages and differences as in
irrelevancy reduction omits that part of the signal which [11] but here that approach is extended for 2D images with
is not noticed by Human Visual System (HVS)[8]. In the addition of considering the detail coefficients 0 for
context of an image, it produces a multiresolution N/2 elements at each level.

suited for progressive transmission. The wavelet
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In section 2, the Haar Transform and Fast Haar
Transform have been explained. In section 3, Modified
Fast Haar Wavelet Transform is presented with the
proposed algorithm for 2D images. Results and discussion
are given in section 4 followed by conclusion in 5.

Haar Transform and Fast Haar Transform: The Haar
Transform (HT) is one of the simplest and basic
transformations from the space domain to a local
frequency domain. A HT decomposes each signal into
two components, one is called average (approximation) or
trend and the other is known as difference (detail) or
fluctuation. A precise formula for the values of first
average subsignal,  at one level for a
signal of length N i.e.  is 

and the first detail subsignal,  at
the same level is given as

.

In order to give an idea of its implementation in image
compression, the procedure of its application may be
explained with the help of a simple example as shown
below. Apply 2D HT to the following finite 2D signal.

Example 1:

using 1D HT along first row, the approximation
coefficients are

and the detail coefficient are 

The same transform is applied to the other rows  of I.
By arranging the approximation parts of each row
transform in the first two columns and the corresponding
detail parts in the last two columns we get the following
results:

in which approximation and detail parts are separated by
dots in each row. By applying the following step of 1D HT
to the columns of the resultant matrix, we find that the
resultant matrix at first level is

Thus we have 

Each piece shown in example 1 has a dimension
(number  of  rows/2)×(numberof  colums/2) and is called
A, H, V and D respectively. A (approximation area)
includes information about the global properties of
analysed image. Removal of spectral coefficients from this
area leads to the biggest distortion in original image. H
(horizontal area) includes information about the vertical
lines hidden in image. Removal of spectral coefficients
from this area excludes horizontal details from original
image. V (vertical area) contains information about the
horizontal lines hidden in image. Removal of spectral
coefficients from this area eliminates vertical details from
original image. D (diagonal area) embraces information
about the diagonal details hidden in image. Removal of
spectral coefficients from this area leads to minimum
distortions in original image. To get the value at next level,
again HT is applied row and column wise on the piece A,
obtained earlier as in example 1. Thus the HT is suitable
for application when the image matrix has number of rows
and columns as a multiple of 2. 

Fast Haar Transform (FHT) involves addition,
subtraction and division by 2, due to which it becomes
faster and reduces the calculation work in comparison to
HT. For the decomposition of an image, we first apply 1D
FHT to each row of pixel values of an input image matrix.
These transformed rows are themselves an image and we
apply the 1D FHT to each column. The resulting values
are all detail coefficients except for a single overall
average coefficient. 
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Modified Fast Haar Wavelet Transform: In MFHWT, first From (b) we get a transformed image matrix of one
average subsignal,  at one level for a level of input image.
signal of length N i.e.  is For reconstruction process, FHT is used on the

Calculate MSE and PSNR for reconstructed image. 

and first detail subsignal,  at the same
level is given as The  MFHWT  is  faster   in   comparison   to  FHT

the values of approximation and detail coefficients one

Here four nodes are considered  at  a  time  instead of MFHWT  we  need  to  store  only  half  of the original
two nodes as in HT and FHT. The author has considered data used in FHT, due to which it becomes much more
the values of N/2 detail coefficients zero in each step than memory efficient. Table 1 shows that the MSE and PSNR
to find the N/2 detail coefficients by FHT as in [11]. values of reconstructed  images  are  as  good  as  in HT

Proposed Algorithm of MFHWT in 2D: A 2D MFHWT support of quality of reconstructed image. Table 2 shows
can be done by performing the following steps that the number of non-zero coefficients is lesser in

Read the image as a matrix. preserves the energy of the original input image as in HT
Apply MFHWT, along row and column wise on and FHT. 
entire matrix of the image.

image matrix obtained in step (b).

RESULTS AND DISCUSSION

and  reduces  the  calculation  work. In MFHWT, we get

level ahead  than  the FHT and HT, which is shown in
Figure 1.

In  this Figure  we  see  that  at  each level in

and FHT. A number of examples have been presented in

MFHWT than that in the other two transforms and it also

Fig. 1: Operations of MFHWT (right side) and FHT (left side)
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Original Image

(b) 2-level HT                            (c) Reconstructed image

(d) 2-level FHT                                              (e) Reconstructed image

                     (f) 1-level MFHWT (g) Reconstructed image

Fig. 2: aditi.jpg
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                   (a) Original Image

              (b) 2-level HT      (c) Reconstructed image

                   (d) 2-level FHT        (e) Reconstructed image

   (f) 1-level MFHWT        (g) Reconstructed image

Fig. 3: kids.jpg
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    (a) Original Image 

    (b) 2-level HT  (c) Reconstructed image

      (d) 2-level FHT    (e) Reconstructed image

     (f) 1-level MFHWT    (g) Reconstructed image

Fig. 4: lena.jpg
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Table1: Different types of error metrics for different images of size 256 × 256.

Error metrics
--------------------------------------------------------------------------------------------------------------------------------------------------------------------
HT FHT MFHWT
---------------------------------------------- ---------------------------------------------- --------------------------------------------

Name of image MSE PSNR (db) MSE PSNR (db) MSE PSNR (db)

aditi.jpg 167.469 25.8915 167.469 25.8915 167.469 25.8915
kids.jpg 125.777 27.1348 125.777 27.1348 125.777 27.1348
lena.jpg 264.772 23.9021 264.772 23.9021 264.772 23.9021
rice.jpg 285.738 23.5711 285.738 23.5711 285.738 23.5711
cameraman.jpg 437.862 21.7174 437.862 21.7174 437.862 21.7174

Table 2: Percentage of zeros and energy retained in different transforms

HT FHT MFHWT
----------------------------------------------- -------------------------------------------------- -------------------------------------------
Percentage Percentage of Percentage Percentage of Percentage Percentage of

Name of image of zeros energy retained of zeros energy retained of zeros energy retained

aditi.jpg 1.20 99.98 2.20 99.97 75.2 99.97
Kids.jpg 7.70 99.97 8.70 99.97 76.5 99.97
Lena.jpg 22.69 100.00 24.56 99.99 78.8 99.99
Rice.jpg 0.58 99.99 1.52 99.99 75.2 99.99
cameraman.jpg 9.45 99.98 11.00 99.98 76.0 99.98

CONCLUSION 5. Joe, M.J., K.Y. Whang and S.W. Kim, 2001. Wavelet

The main benefit of MFHWT is sparse representation Summary Data for Distributed Query Processing.
and fast transformation and possibility of implementation Data and Knowledge Engg., 39(3): 293-312.
of fast algorithms. From test images we find that the 6. Vitter, J.S. and M. Wang, 1999. Approximate
reconstructed images are as good as in FHT and HT. Computation of Multidimensional Aggregates of
Thus in the light of the above discussion it may be Sparse Data using Wavelets. In proceedings of the
concluded that reasonably accurate numerical results can ACM SIGMOD International Conference on
be obtained by using the MFHWT. This approach has the Management of Data, pp: 193-204.
potentiality of application in colour images. 7. Saha S., 2000. Image Compression-from DCT to
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