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Abstract

We develop a statistical characterization of natural images in the wavelet transform domain.

This characterization describes the joint statistics between pairs of subband coefficients at adja-

cent spatial locations, orientations, and scales. We observe that the raw coefficients are nearly

decorrelated, but their magnitudes are highly correlated. A linear magnitude predictor coupled

with both multiplicative and additive uncertainties accounts for the joint coefficient statistics of

a wide variety of images including photographic images, graphical images, and medical images.

In order to directly demonstrate the power of this model, we construct an image coder called

EPWIC (Embedded Predictive Wavelet Image Coder), in which subband coefficients are encoded

one bitplane at a time using a non-adaptive arithmetic encoder that utilizes probabilities calculated

from the model. Bitplanes are ordered using a greedy algorithm that considers the MSE reduction

per encoded bit. The decoder uses the statistical model to predict coefficient values based on the

bits it has received. The rate-distortion performance of the coder compares favorably with the

current best image coders in the literature.

1 Introduction

Many applications in image processing require a statistical prior model. In image compression, the

theoretical limits of an algorithm are defined by the prior model used, though this model is often

implicitly defined. In this paper, we describe an explicit prior probability model for images in the

wavelet transform domain, and test this model by using it in an image compression algorithm. The

resulting algorithm is quite flexible, and well-suited for encoding of images that must be retrieved

over a variety of communication links.

Orthonormal wavelet pyramids, in which images are decomposed using basis functions localized in

spatial position, orientation, and spatial frequency (scale), have proven to be extremely effective for
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image compression [e.g., 26, 27, 7, 1, 20, 18]. We believe there are several statistical reasons for this

success. The most widely known of these is that wavelet transforms are reasonable approximations

to the Karhunen-Loève expansion for fractal signals [28], such as natural images [17]. The subbands

of an orthonormal wavelet decomposition have a wide range of variances whose sum is equal to that

of the original image. If the subbands are encoded with a simple first-order entropy encoder, the

minimum coding size of the image representation is sum of the entropies of the subbands. Since

entropy is a concave function, the differing variances result in a coding cost significantly less than the

first-order entropy of the raw image.

In addition to this redistribution of variance, wavelet transforms produce coefficients with signifi-

cantly non-Gaussian statistics, and thus have lower entropy than a Gaussian-distributed signal of the

same variance. This property has been exploited in compression, noise removal and texture synthe-

sis [e.g., 11, 5, 8, 30, 23]. We discuss it in greater detail in section 2, and provide an explicit model

for these statistics.

Finally, wavelet decompositions exhibit joint statistical regularities that have been implicitly utilized

in a number of recent image coding algorithms [13, 20, 16, 19, 9, 3, 29]. These regularities are the

primary topic of this paper. We discuss them in greater detail in section 3, and provide an explicit

statistical model describing the relationships between coefficients of different subbands.

In order to demonstrate the quality of our statistical model, the latter half of the paper describes an

embedded predictive wavelet image coder that directly utilizes the model. Section 4 describes the

compression algorithm, and the details concerning the implementation of the coder. Finally, section 5

analyzes the performance of the coder, and compares it to several standard coders.

2 First-order Subband Statistics

A number of authors have observed that wavelet subband coefficients have highly non-Gaussian

statistics [e.g., 11, 6, 12, 23]. The intuitive explanation for this is that images typically have spatial

structure consisting of smooth areas interspersed with occasional edges or other abrupt transitions.

The smooth regions lead to near-zero coefficients, and the structures give occasional large-amplitude

coefficients.

Histograms1 for wavelet subbands of several images are plotted in figure 1. Compared to a Gaussian,

these densities are more sharply peaked at zero, with more extensive tails. To quantify this, we give

the sample kurtosis (fourth moment divided by squared second moment) below each histogram. The

estimated kurtoses of all of the subbands are significantly larger than the value of three expected for

a Gaussian distribution. These examples were computed for subbands of an orthonormal separable

wavelet decomposition (see section 4 for details), but they would be similar for any octave-bandwidth

subbands.

These non-Gaussian densities should be contrasted with statistics of frequency-based decompositions

which are approximately Gaussian. Since the Gaussian is the maximal-entropy distribution for a given

variance, wavelet-based coders are able to achieve higher degrees of compression than frequency-

1By considering these as representative of the underlying coefficient densities, we are making an implicit assumption of

spatial stationarity.
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Figure 1: Example wavelet subband coefficient histograms. Subbands correspond to four different

images (a landscape, a texture, a medical image, and a synthetic graphics image) and two different

orientations (top: vertical, bottom: diagonal), at an intermediate scale. Original images are shown in

figure 11. Below each histogram is the sample kurtosis (fourth moment divided by squared variance).

A Gaussian density has a kurtosis of 3.

based coders such as JPEG. The non-Gaussianity of wavelet marginals may be taken as an indication

that the Wavelet basis is more appropriate for image representation than either pixel or Fourier

representations.

These coefficient statistics have been previously modeled [11, 23] using a two-parameter “generalized

Laplacian” density function of the form:

1

where 2 ! 1 , and ! 0
1 , the Gamma function. The parameters

are directly related to the second and fourth moments. Specifically:

2
2! 3

! 1

! 1 ! 5

!2 3
2

where 2 is the distribution variance, is the kurtosis.

We solve for the parameters by minimizing the relative entropy (also known as the “Kullback-

Leibler distance”) between a discretized model distribution and the 256-bin coefficient histogram:

256

1

log2

¯
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Figure 2: Examples of 256-bin coefficient histograms (solid lines) fitted with the density of equation (1)

(dotted lines), plotted in the log domain. Subbands are the same as those in figure 1. Below each graph

is the relative entropy (Kullback-Liebler distance) between the histogram and the model of equation (1).

The CTscan image was the worst (in terms of relative entropy) in our image set.

where ¯ is the integral of the density given in equation (1) over the th histogram bin (centered

at value ), and is the normalized histogram count (frequency) for histogram bin . The measure

corresponds to the cost (in bits) of encoding the data with an entropy coder that assumes the

distribution . For the images in our sample set, 2 is roughly proportional to 2///// (where corrected: 4

indicates the pyramid level), and the parameter is typically in the range 0 5 1 0 , corresponding to

kurtosis values in the range 6 25 2 .

We make no claim of optimality for this model: Other authors [e.g., 30] have used alternative density

functions to describe these distributions. Nevertheless, the fits are quite good. Figure 2 shows

log-domain plots of the histograms of figure 1, together with plots of the fitted density function of

equation (1). We have included both the best and worst cases from the set of images in our test set

(figure 11). Below each figure is the relative entropy between the histograms and fitted densities.

Figure 3 shows a scatterplot comparing the encoding cost using the model of equation (1), and the

encoding cost assuming a Gaussian density vs. the encoding cost assuming accurate knowledge of a

256-bin histogram. The Gaussian examples were computed with the distribution variance matched

to the sample variance. Note that the relative entropy of the Laplacian model is less than 0 25

bits/coefficient for our sample images, as compared with the Gaussian density model which often has

a relative entropy greater than 1 0 bit/coefficient.
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Figure 3: Comparison of encoding costs. Plotted are encoding cost assuming the generalized Laplacian

density of equation (1) (O’s), and the encoding cost assuming a Gaussian density (X’s), versus the

encoding cost using a 256-bin histogram. Points are plotted for 9 bands (3 scales, 3 orientations) of the

13 images in the sample set of figure 11.

3 Joint Subband Statistics

As mentioned in the introduction, the coefficients of wavelet subbands are nearly decorrelated. Nev-

ertheless, it is clear from casual inspection that wavelet coefficients are not statistically independent.

Figure 4 shows the magnitudes of wavelet coefficients in a four-level pyramid decomposition. The

large-magnitude coefficients tend to occur at the same relative spatial locations in subbands at adjacent

scales [2].

Such dependencies are utilized implicitly in a number of recent image compression schemes. Shapiro [20]

constructed the Embedded Zerotree Wavelet (EZW) coder to exploit the fact that a coefficient is likely

to have small magnitude if the coefficients at coarser scales have small magnitudes. The Zerotree

technique encodes entire trees of zeros with a single symbol, thus capturing a portion of the conditional

distribution of a coefficient given its parent, grandparent, etc.

Several authors [14, 13, 16] have used vectorized lookup tables to predict blocks of fine coefficients

from blocks of coarse coefficients. Schwartz et. al. [19] used adaptive entropy coding to capture

conditional statistics of coefficients based on the most significant bits of each of the eight spatial

neighbors and the coefficient at a coarser scale. Chrysafis and Ortega [3] switch between multiple

probability models depending on values of neighboring coefficients. Said and Pearlman [18] use a

predictive scheme to give high-quality zerotree coding results, and Wu and Chen [29] have extended

the EZW coder to use local coefficient “contexts”.
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Figure 4: Coefficient magnitudes of a wavelet decomposition. Shown are absolute values of subband

coefficients at three scales, and three orientations of a separable wavelet decomposition of the Einstein

image. Also shown is the lowpass residual subband (upper left). Note that high-magnitude coefficients

of the subbands tend to be located in the same (relative) spatial positions.

3.1 Joint Magnitude Statistics

We wish to explicitly examine and utilize the statistical relationship between wavelet coefficient mag-

nitudes. Consider two coefficients representing information at adjacent scales, but the same orientation

(e.g, horizontal) and spatial location. As in the previous section, we will assume spatial stationarity,

which allows us to consider the joint histogram of this pair of coefficients as representative of the

underlying statistics. Figure 5A shows the log-domain conditional histogram log2 log2 ,

where is the magnitude of the coarse-scale (“parent”) coefficient and is the magnitude of the

finer-scale (“child”) coefficient.

Observe that the right side of the distribution is unimodal and concentrated along a unit-slope line.

This suggests that in this region, the conditional expectation, , is approximately proportional

to . Furthermore, vertical cross sections (i.e., conditional histogram for a fixed value of ) have

approximately the same shape for different values of . Finally, the left side of the distribution is

concentrated about a horizontal line, suggesting that is independent of in this region. We suspect

these low-amplitude coefficients are dominated by quantization and other noise sources.

The intuition behind this joint probability relationship is that typical localized image structures such

as edges tend to have substantial power at a range of scales and orientations. Thus, near such an

image feature, the coefficients at neighboring scales will tend to have large magnitudes. A simple

simulation confirms this intuition. We computed the joint density of horizontal wavelet coefficient

magnitudes at two adjacent scales for a 64 64 pixel image of a disk. The disk radius was drawn

uniformly from the interval 8 24 pixels, and its position was randomized within 8 pixels of the

image center. The disk amplitude was drawn from a generalized Laplacian density, with parameters

1 0 5. We also added a small amount (SNR = 30 dB) of uniformly distributed white noise

to the image. We collected statistics over 400 such images. The resulting distribution, plotted in

figure 5B, is qualitatively similar to that of figure 5A.

The form of the histogram shown in figure 5A is surprisingly robust across a wide range of images.
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Figure 5: Conditional histograms for a fine scale horizontal coefficient. Brightness corresponds to

probability, except that each column has been independently rescaled to fill the full range of display

intensities. A:Conditionedon the Parent (same location and orientation, coarser scale) coefficient. Data

are for the Boats image. B: Same as A, but data are for a synthetic image containing non-overlapping

disks of randomized spatial position and size and additive noise (see text). C Conditioned on a linear

combination of neighboring coefficient magnitudes. Data are for the same subband of the Boats image.

Furthermore, the qualitative form of these statistical relationships also holds for pairs of coefficients at

adjacent spatial locations (which we call “siblings”), adjacent orientations (“cousins”), and adjacent

orientations at a coarser scale (“aunts”). This set of potential conditioning coefficients (we refer to

these as “neighbors”) is illustrated in figure 6.

3.2 Linear Magnitude Predictor

Given the linear relationship between the magnitudes of large-amplitude coefficients, and the difficulty

of characterizing the full multi-dimensional density, we chose to examine a linear predictor for

coefficient magnitude:

3

where the coefficient magnitude set corresponds to a subset of the potential conditioning

neighbors, as depicted in figure 6. The weights of the coefficients in the linear estimator are

chosen to minimize the expected squared error of the estimator. That is:

1 4

where indicates the expected value of a random variable, corresponds to the coefficient

magnitude being estimated, and is a random vector containing the magnitudes of the conditioning

neighbors of .

Figure 5C shows a conditional histogram, log2 log2 based on magnitudes of eight

adjacent coefficients in the same subband, two cousin coefficients, and one parent coefficient (inter-

polated to the correct position using bilinear interpolation). Note that the distribution has a similar

appearance to the single-parent distribution of figure 5A. But the linear region is extended, and the

conditional variance is greatly reduced.
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Figure 6: Subset of wavelet coefficients surroundinga given coefficient ( ), that are potentially suitable

for conditioning.

Child subband Last neighbor included in predictor

Horizontal Left Up Parent DiagCousin LeftLeft DiagAunt

0.3322 0.4308 0.4635 0.4804 0.4903 0.4939

Vertical Up Left Parent DiagCousin UpUp DiagAunt

0.3513 0.4356 0.4675 0.4865 0.4929 0.4987

Diagonal Up Left Parent Horiz Cousin Vert Cousin Left Left

0.2175 0.2792 0.3134 0.3235 0.3294 0.3356

Table 1: Cumulative mutual information between coefficient magnitude and a linear estimator

composed of a subset of neighbors. Each entry gives the mutual information for a subset containing

the neighbors indicated at the top of that column and all columns to the left. Notice that the local

neighbors within the subband (Left and Up), the Parent, and the Cousins contribute most to the mutual

information. Values are averaged over two scales (levels 1 and 2) of three training images (Lena, Boats,

Baboon).

In order to determine which coefficients to include in the conditioning set , we calculated the

mutual information between and for a variety of choices of interband and intraband coefficients

in . The mutual information gives the theoretical coding gain (in bits per coefficient) obtained

when encoding using the conditional histogram (i.e., assuming is known to

the receiver) compared with encoding using only the marginal histogram ( ). Rather than

exhaustively explore all possible neighbor subsets, we used a greedy algorithm to choose conditioning

neighbors. Table 1 shows the greedy optimal neighbor subset for the three oriented subbands. Using

this analysis, and imposing causality (assuming a standard scanline ordering of the bits), we decided

to include neighbors corresponding to the first four table columns when coding the horizontal and

vertical bands, and the first five columns for the diagonal bands.
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Figure 7: Comparison of conditional distributions in the log domain of different subbands and images.

Distributions were normalized (in the log domain) to have mean 0 and variance 1. Left: Comparison

of distributions for different subbands of the image ’boats’. Right: Comparison of distributions for

different images (Lena, Goldhill, CTscan, Christmas).

3.3 Conditional Probability Model

Based on the linear magnitude predictor described in the previous section, we wish to characterize

the joint densities of the coefficients. We were surprised to observe that the conditional distribution

in the log domain, when normalized for mean and variance, is highly consistent across subbands of

an image, and even across a wide range of images. Figure 7 shows a comparison of these conditional

distributions for four subbands from the “Boats” image, and also a comparison of a single band across

four different images. We included only the right portion of each conditional histogram (i.e., the

region in which is proportional to ).

The fact that the conditional histograms seem to have a constant shape that shifts linearly with the

predictor in the log domain suggests a model of multiplicative uncertainty. In particular, we use the

following generative model for the conditional density:

5

where is the signed coefficient (i.e., ), is the linear magnitude predictor described

previously, and and are two mutually independent zero-mean random variables. Note that

will be uncorrelated with each of the conditioning coefficients, .

To model the distribution of , we constructed a function to represent the cumulative of the

conditional density in the log domain, by averaging the mean- and variance-normalized conditional

histograms of three training images (Lena, Boats, Baboon), at two scales (levels 2 and 3) and all three

orientations. We use this is as a parameterized model for the conditional cumulative:

log2 log2 6

where parameterizes the width for for each subband. We assume is independent of , and

Gaussian-distributed.
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Given these distributional assumptions, the model described by equation (5) is characterized by the

linear weights , the variance 2 of (in the log domain), and the variance 2 of . The

linear weights are chosen via equation (4) to be least-squares optimal. The variance parameters are

then computed by minimizing the relative entropy between the joint model density and the joint

histogram. Figure 8 shows comparisons of joint histograms of the second-level horizontal subband

of four different images, with plots of the fitted density function generated by equation (5).

An entropy calculation shows the value and quality of the model. Figure 9 shows a scatterplot

comparing encoding cost based on the joint probability model of equation (5) vs. the encoding cost

assuming accurate knowledge of a 256 256-bin histogram. Also included is a comparison to the

first-order histogram entropies. The conditional model falls short of the ideal by less than 0.7 bit. In

these situations, the conditional histogram (from which the ideal values in the table are computed)

for large-magnitude predictors is sparse and has high variance. The predictive models, however, are

based on smooth high-variance densities. Thus, the ideal values are deceptively low due to detailed

knowledge of the coefficient values for this specific subband. Nevertheless, the linear-predictive

model is substantially better than the first-order model, consistent with the mutual entropy estimates

of table 1.

Finally, we should consider the signs of the coefficients. The lowpass bands contain almost entirely

positive coefficients: over our sample set of 13 images, the percentage of negative coefficients is

2.4%. In addition, we model the lowpass coefficient distribution as a uniform density. For the

bandpass subbands, the probability of positive and negative coefficients is equal. They are, however,

not spatially independent. In the horizontal bands, for example, the probability of the “Up” neighbor

having the same sign is 36%. There are also more complex relationships between sign bits in

neighboring subbands, but we will not attempt to characterize those in this paper.

4 Implementation of a Progressive Image Coder

In this section we describe the implementation of our Embedded Predictive Wavelet Image Coder

(EPWIC), based on the conditional probability model developed in Section 3.3. Our implementation

is simple and reasonably efficient, but comes quite close to the theoretical entropy associated with

the probability model. In addition, it compares favorably with the current best coders in the image

processing literature.

4.1 Separable Wavelet Decomposition

For our coder, we utilize a recursive pyramid decomposition based on separable Quadrature Mirror

Filters (QMFs). The one-dimensional lowpass and highpass kernels are linear-phase (i.e., symmetric)

9-tap filters, and are optimized to nearly satisfy the one-dimensional orthonormal system diagram

shown in figure 10, as described in [22].

The two one-dimensional kernels, and , are applied separably along the axes of the image

sampling lattice in order to generate a single level of a wavelet pyramid. This consists of vertical,

horizontal and diagonal subbands, and a lowpass subband. Subsequent pyramid levels (i.e., subbands

at different scales) are created by applying this 4-band splitting procedure recursively to the lowpass
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Figure 8: Left: Examples of log-domain conditional histograms for the second-level horizontal

subband of different images, conditioned on an optimal linear combination of coefficient magnitudes

from adjacent spatial positions, orientations, and scales. Right: Model of equation (5) fitted to the

conditionalhistograms in the left column. Intensity corresponds to probability, except that each column

has been independently rescaled to fill the full range of intensities.
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Figure 9: Comparison of encoding cost using the conditional probability model of equation (5), and the

encoding cost using the first-order model (i.e., equation (1)) as a function of the encoding cost using a

256 256-bin joint histogram. Points are plotted for 6 bands (2 scales, 3 orientations) of the 13 images

in our sample set.

subband. Convolution boundaries are handled by symmetric reflection of the image about the edge

pixels, as described in [21]. Reconstruction PSNR from 5-level pyramids on the images in our sample

set is typically over 63 dB.

We denote the basis functions in the separable wavelet transform as , where

1 2 3 indicates the orientation (vertical, horizontal, diagonal, respectively), indicates the pyramid

level (scale), and indicates the spatial location of the basis function. These basis functions

are normalized to have unity 2-norm. The wavelet representation consists of the set of coefficients

corresponding to each of the basis functions.

L( )2L(- )

W( )2W(- )

S( ) S( )
^

Figure 10: One-dimensional system diagram for discrete dyadic wavelet decomposition. The two

filters are related via modulation, time-reversal, and a one-sample shift: . The

system response is 2 2.
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4.2 Coefficient Bitplane Encoding

In order to have maximal control over the ordering of image information, we consider each subband

coefficient to be quantized to a 16-bit binary integer (including sign bit). That is:

2

where is a scalar multiplier for each subband, is the sign ( 1), and

corresponds to the th bit of the coefficient .

The wavelet decomposition describes the image as a linear combination of the basis functions:

2

2

The second line suggests that we may view this as a type of representation in which the coefficients

are restricted to the set 0 1 (i.e., they are single-bit quantities). The basis functions of this

representation are 2 , which are related to

each other by translation, dilation, Fourier modulation, negation, and scalar multiplication by powers

of two.

Progressive transmission of an image requires us to choose an ordering of the coefficient bits. In order

to keep the complexity of the coder down, we assume that all bits at a given significance level of a

subband will be sent consecutively, in raster order. We refer to this collection of bits as a bitplane. We

also assume that the bitplanes of a given subband will be sent in order from most to least significant.

Since most of the coefficient values are close to zero, the sign bit of each coefficient is sent only when

needed, immediately after the first non-zero magnitude bit, as in [19].

In general, the ordering of bitplanes across subbands should take into account both the encoded size

of the bitplane and the improvement in decoded image quality resulting from the incorporation of

that bitplane. We use a greedy algorithm (which we refer to as a “bang-for-the-buck” algorithm), in

which we select the bitplane with the maximum ratio of MSE reduction per encoded bit. That is, at

each point we choose the bitplane which produces the most steeply descending rate-distortion curve.

The MSE reduction is simple to calculate. Since the wavelet basis is orthonormal, the squared error

of an image is the sum of the squared errors of each of the coefficients in the pyramid. Therefore the

improvement in MSE for a bitplane is simply the number of nonzero bits in the bitplane multiplied

by the squared magnitude represented by the bits in that bitplane.

The encoded size of a bitplane is measured as the smallest of three possible representations: raw

encoding, run-length encoding using block sizes, , of either 8 or 16 bits, and non-adaptive arithmetic

encoding based on our probability model (described in the next section).

Our run-length encoding algorithm encodes the length of strings of consecutive blocks of zeros in the

data stream. If a string of zero blocks is encountered in the input stream, the first bit of the output

block is set to 0 and the rest of the block contains the (binary-encoded) number of zero blocks (up to

2 1 ). Otherwise the first bit of the output block is set to 1, and the remainder of the block contains

1 raw bits from the input stream.
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The arithmetic encoder is similar to the algorithm found in [pp. 910-915, 15], which encodes a data

stream using a probability distribution that is adaptively computed and stored in a histogram. Instead

of computing such a histogram, our encoder uses the distribution specified by our statistical model.

Since the “symbols” of our input stream are single bits, the probability that a bit is non-zero is all that

is needed to construct the arithmetic code.

4.3 Calculation of Bit Probabilities

Our encoding technique makes direct use of the model joint probability density described earlier.

In particular, both encoder and receiver must use this distribution to compute the conditional mean

estimate for each coefficient, given the bits that have been sent/received thus far. In addition, as

described above, the arithmetic coder and decoder must know the probability that a given bit will be

non-zero.

Consider the arithmetic encoding of the th bit of a particular subband coefficient, . The encoder

must calculate the probability that the bit is nonzero, given the set of all coefficient bits that have

already been received. The set of bits received constrain the magnitude of the coefficient of interest

( ), and the magnitudes of each of the conditioning coefficients to lie in particular ranges:

0 0

1 2 (7)

The probability that we wish to calculate is:

1 bits received thus far

0 0

0 0

0 0

0 0

(8)

where 0 0 0 2. The last expression uses the assumption of our joint probability model:

given , the values of do not provide any more information about , and therefore:

0 0 0 0

In order to avoid the computationally expensive integration over , we use two approximations in the

conditional probability of that allow us to perform a simple one-dimensional calculation. First,

we assume that the noise plays a small role in this function. In this case, we may normalize

by its standard deviation, 2 2, to get a random variable that is characterized by the model

cumulative distribution of equation (6). Specifically, we use the approximation:

0 0

log2 0 log2
2 2 log2 0 log2

2 2
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where is the standard deviation of .

Second, we eliminate the dependence on by replacing it with its conditional mean, and correct for

this by broadening the conditional distribution. That is:

0 0

log2 0 log2 ˆ2 2 log2 0 log2 ˆ2 2

where

ˆ is the conditional mean of the predictor:

ˆ

and the scalar depends on both the width of the log-domain conditional density (as before) and

on , and serves to broaden the approximated density. The value of can be determined for

each bitplane of a subband through gradient descent to minimize the arithmetic encoded size of the

bitplane.

Finally, substituting this approximation into the original expression, and eliminating common factors,

gives:

1 bits received thus far

log2 0 log2 ˆ2 2 log2 0 log2 ˆ2 2

log2 0 log2 ˆ2 2 log2 0 log2 ˆ2 2
(9)

This is the expression used for the calculation of bit probabilities in the coder.

4.4 Summary of EPWIC Compression Algorithm

To encode an image :

1. Choose a goal MSE (we typically use the variance associated with the quantization of the

original image).

2. Calculate the coefficients of the wavelet decomposition.

3. For each subband in the decomposition, quantize coefficients (to 16 bits) and retain the quanti-

zation binsize, .

4. Characterize the statistics of the subband at each orientation and scale :

(a) Calculate the parameters and that minimize the relative entropy between the histogram

of the coefficients and the density of equation (1).
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(b) Calculate least-squares optimal weights of the linear predictor (equation (4)).

(c) Calculate 2 (the variance of ) that minimize the relative entropy between the joint

coefficient histogram and the probability density described by equation (5).

5. Transmit an EPWIC identification tag (16 bits), the width and height of the image (16 bits each),

and the number of levels in the pyramid (8 bits).

6. While the decoded MSE is greater than the goal MSE:

(a) Determine which of the set of candidate bitplanes (i.e., the most significant remaining

bitplanes of each subband) should be encoded next, by comparing the “bang-for-the-

buck” for each candidate bitplane:

Calculate the MSE reduction associated with the content of the bitplane.

Arithmetic encode the bitplane. Update the conditional mean estimates of any neigh-

bors, ˆ , that have changed , and update the linear predictor ˆ. Calculate , to

minimize the relative entropy of the model density compared with the coefficient

histogram. For each bit in the bitplane, calculate the probability of the bit being

nonzero (equation (9)), and construct a code stream using the arithmetic coder.

Run-length encode the bitplane, using both the 8-bit and 16-bit run-length encoding

methods.

Choose the minimum of the ratio of MSE reduction to coding size for the three coding

methods.

(b) Transmit a tag identifying the subband to which the bitplane belongs, and indicating the

encoding method (8 bits: 2 bits indicate the method, and 6 indicate the subband).

(c) If this is the first encoded bitplane of this subband, transmit the quantization binsize

(16 bits, representing the interval 0 29 ), the value (8 bits, representing 0 5 128 5 ),

the value (8 bits, representing 0 2 2 ), and the value of (8 bits, representing 2 5 25 ).

(d) If arithmetic-encoding the bitplane:

If this is the first arithmetic-encoded bitplane of this subband, transmit (8 bits

each, representing 0 1 ).

Transmit (8 bits, representing 0 02 5 15 ).

(e) Transmit the encoded data.

5 Results

In order to demonstrate the performance of EPWIC, we encoded the set of 13 images shown in

figure 11. Each image was decomposed into a discrete wavelet pyramid containing 5 levels. For

comparison purposes, we considered three other image coders:

1. EPWIC-1: we implemented a progressive encoder utilizing the marginal (generalized Lapla-

cian) density of equation (1) as a model of the first order distribution. The coder is otherwise

similar to EPWIC-2, in that it uses the same greedy algorithm for ordering of bitplanes, and

uses the same arithmetic coding scheme to encode bitplanes.
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Figure 11: Full set of images used in our experiments. Left to right, top to bottom: Abdomen,

Baboon, Bark, Boats, Christmas, CTscan Flowers, Frog, Goldhill, Lena, Mountain, Paolina, and Toys.

Note that Abdomen and CTscan are medical images, and Christmas is a synthetic (computer graphics)

image. Images are 8-bit/pixel, and of size 512 512, or 480 480 (except for the Abdomen, which is

352 352).

2. JPEG: we used version 5b of CJPEG, a standard JPEG image coder from the Independent JPEG

Group.

3. EZW2: as described in [20].

Table 2 lists the PSNR values for EPWIC-2, EPWIC-1, and EZW for six of the images. Note

that EPWIC-1 surpasses EZW for many images at intermediate compression levels, and EPWIC-2

surpasses EZW at nearly all compression levels. Figure 12 summarizes these results, by showing

the PSNR of each coder (relative to EPWIC-1), averaged over the 13 images in our set. EPWIC-1

outperforms EZW for most compression ratios by about 0.3dB, and EPWIC-2 outperforms EZW by

0.5dB at 1Kbyte, and nearly 1.5dB at 16Kbytes and above.

Also shown in figure 12 is the encoding size (relative to that of EPWIC-1) as a function of target

SNR. This gives a sense of how long one would wait during a progressive transmission for a result of

a given quality. For example, EZW has a transmission time roughly 30% higher than EPWIC-2 for

an image quality of 25dB.

In figure 13, an EPWIC-2 progressive transmission series is given for the Boats image. Wavelet

aliasing artifacts are quite noticeable in the early stages of the transmission: these are a consequence

of using a critically sampled subband representation. Notice that at 16Kbytes (compared with an

original image size of 256Kbytes), the reconstructed image is remarkably close to the original.

2We thank the David Sarnoff Research Center for their assistance in the EZW comparisons.
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Image Coder Bits/Pixel

0.008 0.0016 0.031 0.063 0.125 0.25 0.5 1.0 2.0

Abdomen EPWIC-2 28.46 30.73 33.81 37.14 40.87 44.28 47.86 52.50 59.62

EPWIC-1 28.17 30.96 33.82 36.75 40.05 43.34 46.95 51.59 58.16

EZW 25.95 28.02 30.62 33.69 37.12 40.30 43.74 48.10 55.52

JPEG NA NA 17.87 29.01 35.77 40.08 43.47 47.38 51.94

Boats EPWIC-2 21.25 23.07 24.99 27.09 29.55 32.60 36.65 41.17 46.63

EPWIC-1 21.06 22.88 24.66 26.74 28.90 31.57 35.35 39.70 44.68

EZW 21.34 22.83 24.81 26.86 28.87 31.69 35.58 40.00 45.82

JPEG NA NA 18.29 21.83 27.76 30.88 34.63 39.10 43.54

Christmas EPWIC-2 18.67 20.00 21.20 22.51 24.10 26.86 31.17 37.16 46.48

EPWIC-1 18.41 19.87 20.99 22.25 23.65 25.97 29.36 34.71 42.30

EZW 18.45 19.83 21.11 22.16 23.80 26.53 30.18 36.61 43.88

JPEG NA NA 17.26 19.92 23.17 25.09 27.84 32.78 40.83

Lena EPWIC-2 21.12 23.16 25.49 27.77 30.67 33.48 36.79 40.10 44.98

EPWIC-1 20.72 23.01 25.21 27.49 30.03 32.72 35.77 39.09 44.03

EZW 21.03 22.99 25.01 27.46 30.26 33.32 36.46 39.79 44.64

JPEG NA NA 17.95 21.92 28.24 31.42 34.84 37.95 41.62

Mountain EPWIC-2 15.22 16.16 17.06 17.91 18.81 20.09 22.14 25.52 32.24

EPWIC-1 15.17 16.16 17.03 17.83 18.71 19.90 21.90 25.15 31.30

EZW 14.74 15.59 16.49 17.11 18.15 19.12 21.33 24.14 30.97

JPEG NA NA NA 14.72 17.74 18.82 20.32 22.52 27.27

Toys EPWIC-2 21.32 22.81 24.74 27.22 30.20 33.94 38.05 42.23 47.08

EPWIC-1 20.96 22.68 24.28 26.63 29.35 32.64 36.79 40.75 45.48

EZW 21.30 22.84 24.47 26.44 29.27 32.79 36.97 41.00 45.85

JPEG NA NA 19.34 23.07 27.72 32.28 36.71 40.85 44.04

WorstCase EPWIC-2 25.93 26.17 26.73 27.27 28.16 29.24 31.50 34.39 40.20

(figure 14) EPWIC-1 26.58 29.22 31.13 33.17 35.51 38.28 41.55 45.56 51.58

EZW 26.99 28.93 30.86 32.57 34.58 37.29 40.50 44.28 49.68

JPEG NA NA 18.33 25.22 29.65 32.71 35.97 39.02 42.84

Table 2: PSNR values 10 log10 2552 MSE at different compression ratios for EPWIC-2, EPWIC-1,

EZW, and JPEG. Images are shown in figure 11.
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Figure 12: Relative rate-distortion tradeoff for four image coders (JPEG, EZW, EPWIC-1, and EPWIC-

2). Left: PSNR values (in dB), relative to EPWIC-1 (dotted horizontal line), as a function of the number

of encoded bytes. Right: Number of bytes necessary to achieve a given PSNR, relative to EPWIC-1

(dotted horizontal line). All curves are averages over the set of 13 images in our collection (shown in

figure 11).

Finally, we note that improved compression that EPWIC-2 shows on the images of our test set

necessarily means that there must be some image for which EPWIC-2 compression will be worse. We

synthesized such an image, that is “unlikely” according to the conditional model, but fits the marginal

model of EPWIC-1. We began with a set of marginal probability model parameters from the

Lena image. We then filled the subbands of a 4-level pyramid with coefficients drawn independently

from the density of equation (1). The resulting image is shown in figure 14, and is qualitatively similar

to images that have been generated in [6]. The encoding results for this image are included in table 2.

The performance of the coders is quite different than on the sample images: EPWIC-1 encodes this

image best, followed by EZW, and EPWIC-2 is worst.

6 Conclusion

We have presented a conditional statistical model for images based on a linear combination of the

magnitudes of neighboring coefficients in a wavelet decomposition. The model characterizes the

magnitude statistics of a wide variety of images, and provides a useful framework for understanding

the compression capabilities of other coders. We have demonstrated the power of the model by using

it explicitly in an image coder implementation. The compression results are quite good, especially

given the simplicity of the encoding scheme and the fact that we did not utilize the statistical properties

of the signs of the coefficients.

Exploitation of sign statistics could yield significant improvements in compression. In particular,

the current coder does not make predictions of coefficients before receiving the sign bits. A model

that allowed prediction of sign bits from causal neighbors (including those at coarser scales), would

allow the coder to fabricate image detail early in a progressive transmission sequence. This type of

prediction would also allow the creation of synthetic images with statistics matched to a given sample
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Figure 13: A progressive series of the Boats image, encoded using EPWIC-2. Data transmission

amounts are given above each image.

image.

There are a number of small improvements that could be made in the implementation of EPWIC.

The 1-norm combination of neighboring magnitudes (described in equation (3)) could be replaced

with an -norm predictor, with chosen to optimize the coding gain. Our preliminary examination

of this possibility suggests that our current choice of 1 is nearly optimal. In addition, the

choice of wavelet decomposition in EPWIC is somewhat arbitrary and could be altered. We have not

systematically studied this issue, but we expect the coding improvements to be small. Finally, the

overhead associated with the model parameters could be reduced. The parameter is nearly constant

over the subbands of each of our images, and thus need not be sent for each subband (although an

advantage of the current implementation is that it can handle contamination by additive noise that is

not spectrally white). Similarly, the parameter could probably be estimated rather than sent for each

subband.

We are working to incorporate the probability model into other wavelet-based applications, such as

image enhancement and texture synthesis. Given the role of noise in the conditional distribution

(see figure 5), the model should prove useful in blind noise removal. This type of application,

however, is likely to require an aliasing-free representation, such as an overcomplete [e.g., 25] or
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Figure 14: A hard-to-code image for EPWIC-2, synthesized by drawing coefficients from the marginal

densities of each subband. The density parameters are those that best fit the subbands of the Lena

image.

adaptive [e.g., 10, 4] basis.
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