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Abstract—In this paper, image compression utilizing visual
redundancy is investigated. Inspired by recent advancements in
image inpainting techniques, we propose an image compression
framework towards visual quality rather than pixel-wise fidelity.
In this framework, an original image is analyzed at the encoder
side so that portions of the image are intentionally and auto-
matically skipped. Instead, some information is extracted from
these skipped regions and delivered to the decoder as assistant
information in the compressed fashion. The delivered assistant
information plays a key role in the proposed framework because it
guides image inpainting to accurately restore these regions at the
decoder side. Moreover, to fully take advantage of the assistant
information, a compression-oriented edge-based inpainting algo-
rithm is proposed for image restoration, integrating pixel-wise
structure propagation and patch-wise texture synthesis. We also
construct a practical system to verify the effectiveness of the
compression approach in which edge map serves as assistant in-
formation and the edge extraction and region removal approaches
are developed accordingly. Evaluations have been made in com-
parison with baseline JPEG and standard MPEG-4 AVC/H.264
intra-picture coding. Experimental results show that our system
achieves up to 44% and 33% bits-savings, respectively, at similar
visual quality levels. Our proposed framework is a promising
exploration towards future image and video compression.

Index Terms—Edge extraction, image compression, image
inpainting, structure propagation, texture synthesis, visual
redundancy.

I. INTRODUCTION

O
VER THE LAST two decades, great improvements have

been made in image and video compression techniques

driven by a growing demand for storage and transmission of

visual information. State-of-the-art JPEG2000 and MPEG-4

AVC/H.264 are two examples that significantly outperform their

previous rivals in terms of coding efficiency. However, these

mainstream signal-processing-based compression schemes

share a common architecture, namely transform followed by

entropy coding, where only the statistical redundancy among

pixels is considered as the adversary of coding. Through two

decades of development, it has been becoming difficult to con-

tinuously improve coding performance under such architecture.

Specifically, to achieve high compression performance, more

and more modes are introduced to deal with regions of different
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properties in image and video coding. Consequently, intensive

computational efforts are required to perform mode selection

subject to the principle of rate-distortion optimization. At the

same time, more and more memory-cost context models are

utilized in entropy coding to adapt to different kinds of correla-

tions. As a result, small improvements in coding efficiency are

accomplished with great pain of increased complexity in both

encoder and decoder.

Besides statistical redundancy, visual redundancy in videos

and images has also been considered in several works. They

are motivated by the generally accepted fact that minimizing

overall pixel-wise distortion, such as mean square error (MSE),

is not able to guarantee good perceptual quality of reconstructed

visual objects, especially in low bit-rate scenarios. Thus, the

human vision system (HVS) has been incorporated into com-

pression schemes in [1] and [2], trying to remove some visual

redundancy and to improve coding efficiency as well as visual

quality. Moreover, attempts have been made to develop com-

pression techniques by identifying and utilizing features within

images to achieve high coding efficiency. These kinds of coding

approaches are categorized as “second-generation” techniques

in [3], and have raised a lot of interest due to the potential of

high compression performance. Nevertheless, taking the seg-

mentation-based coding method as an example, the develop-

ment of these coding schemes is greatly influenced by the avail-

ability as well as effectiveness of appropriate image analysis

algorithms, such as edge detection, segmentation, and texture

modeling tools.

Recently, technologies in computer vision as well as com-

puter graphics have shown remarkable progress in hallucinating

pictures of good perceptual quality. Indeed, advancements in

structure/texture analysis [4], [5] and synthesis are leading to

promising efforts to exploit visual redundancy. So far, attractive

results have been achieved by newly presented texture synthesis

techniques to generate regions of homogeneous textures from

their surroundings [6]–[14]. Furthermore, various image in-

painting methods have been presented, aiming to fill-in missing

data in more general regions of an image in a visually plausible

way. In fact, the word inpainting was initially invented by mu-

seum or art restoration workers. It is first introduced into digital

image processing by Bertalmio et al. [15], where a third order

partial differential equation (PDE) model is used to recover

missing regions by smoothly propagating information from the

surrounding areas in isophote directions. Subsequently, more

models are introduced and investigated in image inpainting,

e.g., total variation (TV) model [16], coupled second order

PDE model taking into account the gradient orientations [17],

curvature-driven diffusion (CDD) model [18], and so on. All

these approaches work at pixel level and are good at recovering

small flaws and thin structures. Additionally, exemplar-based

1051-8215/$25.00 © 2007 IEEE
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approaches have been proposed to generate textural coarse-

ness; by augmenting texture synthesis with certain automatic

guidance, edge sharpness and structure continuity can also

be preserved [19]–[21]. Combining PDE diffusion and ex-

emplar-based synthesis presents more encouraging inpainting

results in [24]–[26]. Moreover, inpainting capability is further

improved by simple human interactions when human knowl-

edge is borrowed to imagine what unknown regions should be,

so that the restoration results look natural to viewers [22], [23].

Due to its potential in image recovery, image inpainting

likewise provides current transform-based coding schemes

another way to utilize visual redundancy in addition to those

that have been done in [1]–[3]. This inference has been suc-

cessfully exemplified in error concealment when compressed

visual data is transmitted over error-prone channels [26], [27].

Moreover, it has been reported that improvement is achieved by

employing image inpainting techniques in image compression

even though in a straightforward fashion [26]. Besides, image

compression also brings new opportunities to image inpainting,

as we have pointed out in [32]. Since the complete source

images are available, many kinds of assistant information can

be extracted to help inpainting deal with complex regions that

contain structures or other features and which are unable to be

properly inferred from the surroundings. Thus, inpainting here

becomes a guided optimization for visual quality instead of

a blind optimization for image restoration. Accordingly, new

inpainting techniques may be developed to better serve image

compression.

When image inpainting and image compression are jointly

considered in an integrated coding system, two main problems

need to be addressed. The first: What should be extracted from a

source image as assistant information to represent important vi-

sual information? The second: How to reconstruct an image with

this assistant information? On the one hand, it has been reported

that using different image analyzers, various kinds of assistant

information can be extracted, including edge, object, sketch [5],

epitome [29], [30], and so on, to represent an image or portion

of an image. Then, given a specific kind of assistant informa-

tion, the corresponding restoration method should be developed

to complete a desired reconstruction by making full use of it. On

the other, from the compression point of view, the effectiveness

of restoration methods as well as the efficiency of the compres-

sion of assistant information would also influence the choice

of assistant information. Such dependency makes the problems

more complicated.

In this paper, we propose an image coding framework in

which currently developed vision techniques are incorporated

with traditional transform-based coding methods to exploit

visual redundancy in images. In this scheme, some regions are

intentionally and automatically removed at the encoder and are

restored naturally by image inpainting at the decoder. In addi-

tion, binary edge information consisting of lines of one-pixel

width is extracted at the encoder and delivered to the decoder

to help restoration. Techniques, including edge thinning and

exemplar selection are proposed, and an edge-based inpainting

method is presented in which distance-related structure prop-

agation is proposed to recover salient structures, followed

by texture synthesis. The basic idea of this paper has been

discussed in our conference papers [31] and [32]. However,

some problems have not been investigated carefully in those

papers, including questions such as why the edges of image are

selected as assistant information, or how to select the exemplar

blocks automatically, and so on.

The remainder of this paper is organized as follows. In

Section II, we introduce the framework of our proposed coding

scheme. We also discuss on the necessity and importance of the

assistant edge information via image inpainting models. The

key techniques proposed for our coding approach are described

in Sections III and IV. Specifically, Section III shows the edge

extraction and exemplar selection methods, and the edge-based

image inpainting is proposed in Section IV. Section V presents

experimental results in terms of bit-rate and visual quality. In

Section VI, we conclude this paper and discuss future work.

II. FRAMEWORK OF OUR PROPOSED IMAGE

COMPRESSION SCHEME

As the basic idea of “encoder removes whereas decoder re-

stores” has been mentioned in literature for image compression

[26], [28], we would like to point out the novelties of our pro-

posed method here. First, in our approach, the original image

is not simply partitioned into two parts: one is coded by con-

ventional transform-based approach, and the other is skipped

during encoding and restored during decoding. Instead, tech-

niques for image partition, block removal, and restoration in our

proposed scheme are carefully designed towards compression

rather than straightforward adoption. Furthermore, skipped re-

gions will not be completely dropped at the encoder side if they

contain portion of information that is difficult to be properly

recovered by conventional image inpainting methods. In fact,

assistant information is extracted from the skipped regions to

guide the restoration process and further induce new inpainting

techniques.

The framework of our proposed compression scheme is de-

picted in Fig. 1. In this scheme, an original image is first an-

alyzed at the encoder side. The “image analysis” module au-

tomatically preserves partial image regions as exemplars and

sends them to the “exemplar encoder” module for compression

using conventional approaches. Meanwhile, it extracts desig-

nated information from skipped regions as assistant information

and sends it to the “assistant info encoder” module. Then, the

coded exemplars and coded assistant information are banded to-

gether to form final compressed data of this image. Correspond-

ingly, at the decoder side, exemplars and assistant information

are first decoded and reconstructed. Then, the regions skipped

at the encoder are restored by image inpainting based on the

twofold information. At the end, the restored regions are com-

bined with the decoded exemplar regions to present the entire

reconstructed image.

Fig. 1 shows a general framework of the proposed compres-

sion scheme that does not constrain which kind of assistant in-

formation should be used there. Since source image is always

available at the encoder side, there are many choices of assis-

tant information extracted from the skipped regions, e.g., se-

mantic object, visual pattern, complete structure, simple edges,

and so on. Here we start from the mathematical models in image
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Fig. 1. The framework of our proposed image compression scheme.

Fig. 2. Illustration of image inpainting, where the gray region is to be restored.

inpainting to discuss what on earth the assistant information

should be.

As shown in Fig. 2, suppose that we are given an image func-

tion , , where is a square region in . , depicted

as the gray region in Fig. 2, is an open bounded subset of

with Lipschitz continuous boundary. It is just the region to be

restored by image compression, image inpainting, or a combi-

nation of them. This restoration problem can be generalized as

(1)

Here, is the original image function in , where it should

satisfy for any . is a reconstruction

of at decoder. is a Lagrange factor. Clearly, (1) is to find

the optimal function by minimizing the joint cost con-

sisting of reconstructed distortion and coding bits for .

Thus, image compression and image inpainting can be viewed

as two extreme cases of (1). Specifically, in traditional image

compression, is directly coded and sent to the decoder,

where many bits may be needed to represent ; whereas in

image inpainting, there is no bit to represent since

is inferred from . However, our proposed method, which

is quite different from compression or inpainting, can be granted

as a combination of them.

In typical inpainting scenarios, the restoration of is

usually an ill-posed problem because information in is totally

unknown. Fortunately, an image is a 2-D projection of the 3-D

real world. The lost region often has similar statistic, geometric

and surface reflectivity regularities as those in the surround-

ings. It makes the above ill-posed problem possible to be solved.

Therefore, some models are introduced in image inpainting to

characterize statistic, geometric and surface regularities. These

models should employ generic regularities, rather than rely on

a specific class of images so that model-based inpainting can be

applied in generic images.

One such model, TV model, is presented in [16] for image

inpainting, in which the variation regularity is first introduced.

Since local statistical correlation usually plays an more impor-

tant role than the global one, as shown in Fig. 2, instead of

is used to infer the regularities in , where is a band

around . Then, the TV model is to find a function on

the extended inpainting region such that it minimizes the

following energy function:

(2)

The first term in (2) is to measure local homogeneity of image

function in the region , and the second term, called as fi-

delity term, is the sum of squared difference (SSD) between the

reconstructed in and the original in . Equation

(2) can be solved by the Euler–Lagrange method described in

[16]. Accordingly, TV inpainting is good at restoring homoge-

nous regions. But, if the lost region contains rich structures, it

does not work well, especially when structures are separated far

apart by the lost region.

To solve it, another parameter is introduced in the inpainting

model [17]. Let be the vector field of normalized gradient of

. is the corresponding parameter to be restored on .

With the new parameter of gradient directions, the inpainting

problem is posed as extending the pair of functions on

to a pair of functions on . It is completed by mini-

mizing the following function:

(3)

The first term presents smooth continuation demand on ,

where and are positive constants, and is a smoothing

kernel. It is the integral of the divergence (in function space)

of the vector field , with respect to the gradients of the

smoothed . The second term is an constraint between

and , where is a positive weighing factor. should be

related to by trying to impose . The

use of the vector field is the main point of the model given in

(3). Thus, it enables image inpainting to restore missing regions
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Fig. 3. Comparison with baseline JPEG on test image Lena. (a) Original image. (b) Edge map (blue curves). (c) Removed blocks (black blocks) and assistant
edge information (blue curves), note that the assistant edge information is a subset of the entire edge map. (d) Reconstructed image after structure propagation.
(e) Reconstructed image after texture synthesis. (f) Reconstructed image by baseline JPEG.

by continuing both the geometric and photometric regularities

of images.

However, the model in (3) assumes that the parameter can

be inferred from under a certain smooth constraint. But this

assumption is not always true for nature images. Taking Fig. 2

as an example, the area to be restored consists of two homoge-

nous regions divided by an edge denoted by the solid curve. The

dashed curve is the inferred edge in according to (3), which

is quite different from the actual one. This problem is hard to be

solved in conventional inpainting scenarios even using human

intelligence as proposed in [23]. Therefore, in our proposed

coding framework, assistant information should be used to cor-

rectly infer on . As we have discussed, is the vector

field of normalized gradient and is independent from the abso-

lute magnitudes of gradients. It contains two parts of informa-

tion: where exists and what its direction is. Commonly, it

can be simply represented by binary edges of one-pixel width

for the purpose of efficient compression.

Consequently, edge information is selected as assistant infor-

mation for image inpainting in this paper. With assistant infor-

mation, we could remove more regions in an image. Thus, it

greatly enhances the compression power of our method. Since

edges are low-level features in image, there are some mature

tools available to automatically track them in an image. More-

over, edge information is concise and easy to describe in com-

pressed fashion. Therefore, the employment of edge informa-

tion can, on the one hand, help preserving good visual quality

of the reconstructed image. On the other, it enables high com-

pression performance by removing some structural regions and

efficiently coding edge information.

Accordingly, an overview of our approach is exemplified in

Fig. 3. In this figure, (a) is the input original image Lena. After

image analysis, an edge map [denoted by blue curves in (b)] is

generated, based on which the exemplars [denoted by the non-

black blocks in (c)] are selected. Consequently, the exemplars

and the needed edge information [shown as blue curves in (c)]

will be coded into bit-stream. Then, at the decoder side, the edge

information is utilized to guide the structure propagation for the

recovery of edge-related regions. The corresponding result is

given in (d). The remainder unknown regions will be restored

by texture synthesis. The final reconstructed image after region

combination is given in (e).

In the following two sections, we will explain the modules in

our framework in detail, especially on the two most important

modules, namely image analysis and assisted image inpainting.

Here, we would like to emphasize that the introduction of as-

sistant edge information raises different demands on both the

encoder and decoder. We deal with them comprehensively in

this paper.

III. EDGE EXTRACTION AND EXEMPLAR SELECTION

The image analysis module at the encoder side consists of

two sub-modules: The first is to extract edge information from

image and the second is to select exemplar and skipped regions

at block level according to available edge information. They are

discussed in the following two subsections.

A. Edge Extraction

As discussed in Section II, edge information plays an impor-

tant role in the proposed coding scheme. It assists the encoder to

select exemplar and skipped regions and the decoder to restore

skipped regions with our proposed edge-based inpainting. Ex-

tracted edges do not need to represent complete and continuous

topological properties of an image because our purpose is not to

segment or restore an object. Discontinuous edges can likewise

play the role of assistant information in the proposed scheme.

But taking the topological properties into account in edge ex-

traction will make edges more meaningful in terms of low-level

vision.

Therefore, though there are many mature tools available

to extract edges from images, the topology-based algorithm

presented in [33] is adopted in our system to extract assistant
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Fig. 4. Step-wise results of our scheme on test image Lena, zoomed-in parti-
tion. (a) Original image with detected edge pixels (blue curves). (b) Thinned
edges (blue curves). (c) Chosen necessary structural blocks. (d) Chosen addi-
tional structural blocks. (e) Chosen necessary textural blocks. (f) Chosen ad-
ditional textural blocks. (g) Structure propagation result. (h) Texture synthesis
result.

information. The algorithm presents good results especially

on extracting intersection edges. According to this method, an

input image is first smoothed by a two-dimensional isotropic

Gaussian filter so as to avoid noise. Second, and are

calculated on the filtered image for each pixel . If is

the local maximum gradient along the direction and larger

than a threshold, then pixel belongs to an edge. At last,

the pixels with non-maximum gradients are checked by spa-

tially-adapted thresholds to prevent missing edges caused by

the unreliable estimation of .

As shown in Fig. 4(a) by blue curves, edges extracted with

the above algorithm (or most of the existing methods as well)

are often of more than one-pixel width. This causes ambiguous

directions in guiding the restoration at the decoder side and

also increases the number of bits to code the edge informa-

tion. Although [33] also proposes a thinning method, it does not

satisfy the special requirement in our proposed edge-based in-

painting. It is because that pixel values on edges are not coded

but rather inferred from connected surrounding edges in our pro-

posed scheme. Thus, a new thinning method is proposed here by

taking into account the consistence of pixel values on edges as

well as the smoothness of edges.

Here, we present the details of our proposed thinning method.

Given the detected edge pixels, we first group them into eight

connective links and each edge-link (also known as a connected

component in the graph that is made up by edge pixels) is

thinned independently. Complying with the terminologies

defined in Section II, our goal is to find a one-pixel-width line

which contains pixels, i.e., for ,

yielding the minimal energy

(4)

where , and are positive weighting factors. The energy

function (4) consists of three terms. The first term is the

Laplacian of each edge pixel. The second term is the constraint

on pixel values of all edge pixels. After thinning, remaining

edge pixels should have similar values. To make this constraint

as simple as possible, only the difference among eight neigh-

boring pixels are considered, and the function is defined as

if

otherwise
(5)

denotes the 8-neighbor of . The last term of (4) evalu-

ates the curvature of the edge at each pixel. Similar to [17], [18],

is defined as

(6)

In addition, we want to emphasize that the thinning process

should not shorten the edge, thus only redundant pixels on the

edge can be removed.

The optimal thinning solution for each edge-link is obtained

through dynamic programming algorithm. Given a start point of

each edge-link, the energies of all possible paths, linked in eight

connective manner, are calculated according to (4). Referring

to the width of the initial edge-link, several paths with smaller

energies are recorded in the dynamic programming. Then, each

recorded path is extended consequently by adding one neighbor

pixel which results in the minimal energy. Note that the thinning

algorithm can be performed in parallel manner for all edge-links

in an image, because they are independent in terms of thinning

process. Fig. 4(b) presents the corresponding thinning results

using our proposed method.

B. Exemplar Selection

After edges are extracted, exemplar selection is performed

based on these available edges. Here, for simplicity, the ex-

emplar selection process is performed at block level. Specif-

ically, an input image is first partitioned into non-overlapped

8 8 blocks, and each block is classified as structural or tex-

tural according to its distance from edges. In detail, if more than

one-fourth of pixels in a block are within a short distance (e.g.,

five-pixel) from edges, it is regarded as a structural block, oth-

erwise a textural one. Then, different mechanisms are used to

select the exemplars for textural blocks and structural blocks.

Blocks that are not selected as exemplars will be skipped during

encoding. Moreover, exemplar blocks are further classified into

two types, the necessary ones and the additional ones, based on

their impacts on inpainting as well as on visual fidelity. Gener-

ally, one image can not be properly restored without necessary

exemplar blocks, whereas additional blocks help to further im-

prove visual quality.

1) Textural Exemplar Selection: Fig. 5(a) illustrates the

process of exemplar selection for textural blocks. In this figure,

edge information is denoted by thickened lines, based on which

the image is separated into structural regions (indicated by

gray blocks) and textural regions (indicated by white and black

blocks).

It is generally accepted that pure textures can be satisfactorily

generated even given a small sample. However, in practice,
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Fig. 5. An example of necessary exemplar selection in which curves denote edges and black blocks denote skipped regions. (a) Textural exemplar selection in
which white blocks are necessary textural exemplars; (b) structural exemplar selection in which white blocks are necessary structural exemplars, four types of
edges are also distinguished in (b). Also see Fig. 4 for a practical example.

image regions are often not pure textures, but rather contain

kinds of local variations, such as lighting, shading, and gradual

changing. Furthermore, exemplar-based texture synthesis is

sensitive to the chosen samples. In image inpainting, a common

solution to unknown textural regions is to synthesize them from

samples in their neighborhood.

In our scheme, the necessary textural exemplars are selected

in the border of textural regions. That is, as shown in Fig. 5(a),

denoted by white blocks, if a textural block is next to a structural

one, along either horizontal or vertical direction, it is consid-

ered as necessary. Such blocks are selected because they contain

the information of transitions between different textural regions,

which are hard to be restored by inner samples. Besides, prop-

agation of these blocks, from outer to inner, can reconstruct the

related textural regions.

To further improve visual quality of reconstructed images,

additional blocks can be progressively selected to enrich ex-

emplars. In this process, we consider additional blocks as rep-

resentatives of local variations. On the one hand, if a block

contains obvious variation, it should be preserved in advance.

On the other, because the variation is a local feature, removing

large-scale regions should be avoided in exemplar selection.

Thus, each non-necessary textural block is related to a vari-

ation parameter defined as

(7)

Here and are positive weighting factors. indicates

4-neighbor of a certain block. The functions and are

the variance and mean value of the pixel values in a block, re-

spectively. In our system, according to an input ratio, the blocks

with higher variation parameters will be selected, during which

we also check the connective degree of each block so that the

removed blocks do not constitute a large region.

2) Structural Exemplar Selection: Fig. 5(b) shows the exem-

plar selection method for structural blocks. In this figure, edges

are represented by lines with indicated different types, and struc-

tural regions are indicated in white and black blocks, whereas

all textural regions in gray.

As we have discussed, besides many textural blocks, some

structural blocks are also skipped at the encoder side and re-

stored at the decoder side by the guidance of edge informa-

tion. Therefore, necessary and additional structural exemplars

are also selected based on available edges. To better introduce

the method, edges are categorized into four types according to

their topological properties, as indicated in Fig. 5(b): “isolated”

edge traces from a free end (i.e., an edge pixel connected with

only one other edge pixel) to another free end; “branch” edge

traces from a free end to a conjunction (i.e., an edge pixel con-

nected with more than three other edge pixels); “bridge” edge

connects two conjunctions; and, “circle” edge gives a loop trace.

Commonly, edge acts as the boundary of different region par-

titions. For the sake of visual quality, in image inpainting, two

textural partitions along both sides of an edge should be re-

stored independently. The tough problem here is how to restore

the transition between two partitions. We may use a model to

interpolate the transition from textures of two partitions, but

usually the results look very artificial and unnatural. Therefore,

the blocks containing the neighborhood of free ends should be

selected as exemplar so that the transitions of textural parti-

tions can be restored by propagating information in these blocks

along the edges. Conjunction blocks of edges are also selected as

exemplar for similar reason because there are transitions among

more than three textural regions. For circle edges, a circle com-

pletely divides the image into two partitions—inner part and

outer part—so we choose two blocks as necessary exemplars,

which contain the most pixels belonging to inner region and

outer region of a circle edge, respectively. In a few words, by

necessary exemplars, we provide not only samples for different

textures separated by an edge, but also the information of the

transitions between these textures, and thus the decoder is able

to restore the structural regions.

Additional structural blocks can also be selected as exem-

plars to further improve visual quality. Given an input ratio, the

process is quite similar to that for textural blocks. Each non-nec-

essary structural block is also related to a variation parameter,

which can be calculated by (7). Here, the different partitions sep-

arated by the edges are independently considered in calculating

the mean value as well as the variance, and resulting parameters

of different partitions are summed up to get the total variation

parameter of a block.
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Fig. 6. Pixel-wise structure propagation. (a) A piece of edge and its influencing region, with arrowed dash-dot lines and dash lines showing the propagation
directions. (b) Restoration of influencing region in which each generated pixel is copied from one of two candidate pixels.

In Fig. 4, we present the step-wise results of the exemplar

selection method. Based on the edge information shown in (b),

the selected necessary and additional structural exemplars are

shown in (c) and (d) gradually. Similarly, in (e) and (f) we add

the necessary and additional textural exemplars, as well.

IV. EDGE-BASED IMAGE INPAINTING

Based on the received edges and exemplars, we propose an

edge-based image inpainting method to recover the non-exem-

plar regions at the decoder side. Different from the encoder,

the inpainting algorithm is not block-wise but rather designed

to deal with arbitrary-shaped regions. Still, the non-exemplar

regions are classified into structures and textures according to

their distances to the edge as the encoder. Generally, structures

are propagated first, followed by texture synthesis [as shown in

Fig. 3(d) and (e)]. A confidence map, similar to that in [20],

[21], is constructed to guide the order of structure propagation

as well as texture synthesis. Specifically, at the very beginning,

known pixels (pixels in decoded exemplars) are marked with

confidence 1 and unknown pixels (pixels in removed blocks)

are marked with confidence 0. Afterwards, each generated pixel

is related with a confidence value between 0 and 1 during the

inpainting process. Besides, known pixels as well as generated

pixels are all called “available” ones in this section.

In the literature, exemplar-based inpainting methods can

be roughly classified into two types, i.e., pixel-wise schemes

and patch-wise schemes. Pixel-wise methods are suitable for

restoration of small gaps, but may introduce blurring effects or

ruin texture pattern while dealing with large areas. Patch-wise

methods, on the contrary, are good at keeping texture pattern,

but may introduce seams between different patches, which are

quite annoying. In our scheme, these two strategies are adapted

for different circumstances.

A. Structure Propagation

A sketch map of structure propagation is shown in Fig. 6.

The gray block in Fig. 6 indicates an unknown structural block;

the black curve with circle points represents an edge piece and

related pixels; and four dash-dot lines restrict a region, namely

influencing region, including unknown pixels within a short dis-

tance (e.g., ten-pixel) from the edge. Notice that it is the edge

piece together with the influencing region, rather than a struc-

tural block, is treated as a basic unit in the structure propagation.

Since the free ends and conjunctions of edges are all selected as

exemplars, the textural regions along an edge can be readily di-

vided and independently generated in inpainting process.

To recover a basic unit, the unknown pixels belonging to the

edge piece are firstly generated. As shown in Fig. 6(a), the un-

known pixels (denoted by black points) are generated from the

known pixels (indicated by white points) using linear interpola-

tion, i.e.,

(8a)

where
if is known

otherwise
(8b)

where, similar to (4), gives the number of pixels in this edge

piece and and index different pixels.

After the edge restoration, neighboring structure as well as

texture within the influencing region will be filled-in with re-

gard to the recovered edge. The inpainting method for comple-

tion of influencing region is designed concerning the following

facts. First, pixel-wise approach is preferred since narrow re-

gions along edge pieces are to be handled. Second, edges are ex-

pressed by one-pixel-width curves, which can be quite different

in geometric shapes among exemplar and non-exemplar regions,

so we have to wrap the edges to reconstruct the unknown struc-

ture. Finally, the widths of structures are local variant, which

means that it is hard to tell the exact boundary between structure

and texture in an influencing region. Therefore, in our scheme,

each pixel in the influencing region will have two candidates:

one is treated as a structural pixel to be propagated parallel along

the edge; the other is regarded as a textural pixel to be gener-

ated from the neighboring available pixels. Then, the one that

makes a smooth transition from structure to texture will be se-

lected to fill-in the unknown pixel. Moreover, as the decision

making on candidate pixels is highly relevant to its available
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Fig. 7. Pair matching in our structure propagation algorithm.

neighbors, the order for pixel completion is another important

issue that should be considered. Thus, we also construct a con-

fidence map, as mentioned at the beginning of this section, to

control the generation order. For the unknown pixel, the higher

the neighboring confidence is, the earlier it will be generated.

Accordingly, the recovery of influencing region is performed

as follows. Here, unknown pixels to be recovered in the in-

fluencing region are called target pixels. They are denoted by

black points in Fig. 6(b). For each target pixel, two candidate

pixels are searched out from the surrounding available pixels.

The structural candidate (S-candidate) of the target pixel, which

lies within the influencing region, is indicated by horizontal

striped point in Fig. 6(b); whereas the textural candidate (T-can-

didate) of the target pixel is denoted by vertical striped point,

which locates within a short distance from the target pixel de-

spite whether it is within the influencing region or not.

A pair matching method, similar to that in [8], is utilized

to generate both the S-candidate and the T-candidate. As illus-

trated in Fig. 7, for each assistant pixel, also known as any avail-

able pixel belonging to the 8-adjacent neighborhood of the target

pixel, we will search for its match pixel(s) with the most similar

value to it. Then, complying with the spatial relation between

the assistant pixel and the target one, a pixel adjacent to a match

pixel in the same relative spatial position is selected as a source

pixel. As indicated in Fig. 7, an assistant pixel may correspond

to several match pixels and gives several source pixels; mean-

while, several assistant pixels in 8-adjacent neighborhood may

generate the same source pixel, as well.

After obtaining several source pixels, we propose to use a

weighted-SSD (sum of squared difference) criterion to choose

the S-candidate, as given in

(9)

where and are corresponding, the th pixel in the neigh-

borhood of the S-candidate and the target pixel, respectively, and

indicates the distance from each pixel to the edge, , as

used before, is the reconstructed image. By minimizing (9), we

can find the S-candidate from the obtained source pixels, which

is situated in a similar relative position to that of the target pixel

with respect to the edge, thus ensure the parallel diffusion of

structural information.

Differently, since no direction information involved in tex-

tural region, only the ordinary SSD between the neighborhood

of source pixels and target pixel is considered as the criterion to

choose the T-candidate,

(10)

Similar to that in (9), here represents the th pixel in the

neighborhood of the T-candidate. Thus, the source pixel that

has the most similar neighboring values to the target one will be

selected as the T-candidate.

In fact, the two diffusions, or S-candidate selection and

T-candidate selection, are simultaneous and competitive. These

two candidates have to compete with each other and only one of

them will be chosen to fill-in the target pixel. Normally, if target

pixel nears edge, the choice will bias to the S-candidate. In

addition, it can be observed that long-distant parallel diffusion

of structural information often leads to blurring artifacts. Thus,

the determination is made by comparing and which are

defined in (10) and (11), respectively

(11)

Here and are constants and stands for the

distance from the target pixel to the edge and indicates the

distance from the target pixel to the S-candidate, as shown in

Fig. 6(b). If is less than , then the T-candidate is chosen

to fill-in the target pixel, otherwise the S-candidate is selected.

In this way, all unknown pixels within the influencing region of

an edge are generated.

B. Texture Synthesis

The edges as well as their influencing regions are readily re-

stored by structure propagation. Then, in this subsection, the

remainder unknown regions are treated as textural regions, so

texture synthesis is employed to fill-in these holes.

For textural regions, we prefer patch-wise algorithms be-

cause they are good at preserving large-scale texture pattern.

We choose square patches as the fundamental elements while a

confidence map is introduced to guide the order of synthesis.

Unknown textural regions are progressively restored during

texture synthesis by first reconstructing the prior patches and

then the others that remain. The priority of a patch is determined

by calculation of confidence and the distance from the edge.

As shown in Fig. 8, for each patch centered at a marginal pixel

of unknown regions (denoted by target patch), we calculate the

average confidence value of all pixels in this patch, as well as

the average distance of all pixels from the edge. Then the patch

with the highest confidence rating and the greatest distance

from the edge will be synthesized first.

Afterwards, a source patch, which is most similar to the target

patch, will be searched out from the neighborhood of the target

patch. Here, the similarity of two patches is measured by the

SSD of pixel values between overlapped available pixels of two

patches. A patch that results in the least SSD will be chosen

as the source patch. Notice that the filling-in process is not as
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Fig. 8. Patch-wise texture synthesis in our scheme.

simple as copy-paste work, we have to deal with overlapped re-

gions as well as seams. In our algorithm, the graph-cut method

proposed in [12] is used to merge the source patch into the ex-

isting image, and the Poisson editing [34] is utilized to erase the

seams. After one patch is restored, the confidence map is up-

dated. All newly recovered pixels are treated as available pixels

in the following synthesis steps. Then, the next target patch is

searched and processed until no unknown pixel exists.

V. EXPERIMENTAL RESULTS

A. Implementation

Our presented approach can be integrated with the state-of-

the-art coding schemes to enhance compression performance.

In our experiments, two compression standards, JPEG and

MPEG-4 AVC/H.264 (referred to simply as H.264 hereafter),

are adopted. Thus, two fully automatic image coding systems,

based on JPEG and H.264 respectively, have been constructed

to evaluate the effectiveness of our proposed compression

approach. In this subsection, we would like to clarify several

implementation details of the systems.

First, in both systems, the one-pixel-width edge information

is coded using JBIG method. Note that the edge information

coded into final bit-stream is only a subset of the entire edge

map. In other words, the edges that are fully covered by ex-

emplar regions will not be coded [it can be observed by com-

paring the edges in Fig. 4(b) and (f)]. Second, in the JPEG-based

system, the exemplar locations are denoted at block level by a bi-

nary map, in which 1 stands for a removed block and 0 for an ex-

emplar block, and the map is coded by an arithmetic coder. The

original image is then coded by JPEG coding method, during

which the removed blocks will be skipped in encoding but to be

filled with the DC values copied from previous blocks, so that

the DC prediction in JPEG can still be performed in exemplar

block compression. Third, in the H.264-based system, since the

basic coding unit is macro-block 16 16, we consider two in-

stances: if a macro-block is totally removed, then a new macro-

block type I_SKIP is coded; otherwise, the macro-block has a

new element called block removal pattern (BRP) for indicating

which of the four 8 8 blocks is removed, and the BRP is later

coded by the arithmetic coder, too. Similar to the JPEG-based

method, the exemplar blocks are coded using H.264 scheme and

DC values from previous blocks are filled to the removed blocks

to enable the intra prediction of H.264 scheme.

In addition, there are some predefined parameters in both en-

coder and decoder. To test the robustness of our system, we fix

these parameters as follows for all test images. At the encoder

side, the weighting factors are defined as , ,

and (suggested by [17]) for (4) in edge thinning, while

for (7) in exemplar selection. At the decoder

side, structure propagation works on pixels that have less than

ten-pixel distances from edges. The search range for T-candi-

date is 9 9, and the S-candidate is found in the entire influ-

encing region. The search range and patch size for texture syn-

thesis are 11 11 and 7 7, respectively. The parameters

and in (11) are set to 5. We would like to remark that the

weighting factors for edge thinning have been carefully tuned

using our test images, while the other parameters are just empir-

ically selected with consulting the existing systems (e.g., [23]).

However, it should be noticed that the parameters can greatly

influence the computational complexity of both encoder and de-

coder, which will be further analyzed in the following. At last,

the only two flexible parameters in our experiments are the addi-

tional block ratios for structural exemplar and textural exemplar;

actually, they act as quality control parameters in our system.

B. Test Results

We test our compression systems on a number of standard

color images from the USC-SIPI image database1 and the

Kodak image library.2 Some results are presented here to

evaluate the compression ratio as well as reconstructed quality

of our scheme. In all tests, the quality parameter (QP) of JPEG

coding method is set to 75, while the QP of H.264 intra coding

is set to 24. Bit-rate savings are listed in Table I.

Fig. 3 shows test image Lena and corresponding results of

our JPEG-based system. As mentioned before, the coded exem-

plars and the edge information are denoted in (c). In this test,

10% additional structural blocks as well as 50% additional tex-

tural blocks are preserved. Based on the preserved blocks and

assistant edge information, our presented structure propagation

gives inpainting results in (d), and the final reconstructed image

after texture synthesis is shown in (e). Compared with the re-

constructed image shown in (f) by baseline JPEG, our scheme

saves 20% bits (as given in Table I) but presents similar visual

quality. More comparison results in visual quality concerning

standard images can be found in Fig. 9. It shows that up to 44%

bits-saving (shown in Table I) is achieved by our scheme at the

similar visual quality levels, compared to baseline JPEG.

In Fig. 10, our proposed structure propagation method is eval-

uated. In this test, we remove only structural blocks and use dif-

ferent approaches to recover them. The details of partial images

together with the assistant edge information are given in the

first column. Then, results generated by the PDE-based diffu-

sion [35], which is the traditional solution to structural regions,

are shown in the second column. This method works well only

1http://sipi.usc.edu/services/database/

2http://r0k.us/graphics/kodak/
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TABLE I
BIT-RATE SAVINGS OF OUR SCHEME COMPARED TO JPEG (QP IS SET TO 75) AND H.264 (QP IS SET TO 24)

Fig. 9. Comparisons with baseline JPEG on test images Jet, Milk, and Peppers. From left to right: removed blocks (black blocks) and assistant edge information
(blue curves); reconstructed image by our scheme; reconstructed image by baseline JPEG.
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Fig. 10. Comparisons of different structure propagation approaches, zoomed-in partitions. From left to right: removed blocks (black blocks) with assistant edge
information (blue curves); inpainting result by PDE-diffusion [35]; inpainting result by patch-wise synthesis [23]; inpainting result by our scheme. Note that only
our scheme takes advantage of the edges.

for smooth regions and certain simple structures. In addition,

image completion method presented in [23] is also tested in the

third column, only the user interaction is omitted. Since no edge

information is utilized, these two methods result in annoying

distortion in most of the structural regions. In the last column,

we give our results that are accomplished by the help of edge

information. It is clearly demonstrated that the assistant edges

help greatly in structure restoration, and thus empower the en-

coder to remove more blocks.

Furthermore, our JPEG-based system is also tested using the

images in the Kodak image library, which contains photographs

of natural scenes at high resolution. The comparison results on

visual quality are shown in Fig. 11 in which the top row shows

our results whereas the bottom row presents baseline JPEG re-

sults. It can be observed that the visual quality of our resulting

image is very similar to that of JPEG. The bits-saving of our

JPEG-based system is indicated in Table I. Our method aver-

agely saves 27% bits for the five images shown in Fig. 11 at the

similar visual quality levels.

To investigate the detailed bit-rate cost in our scheme, we

list the percentage of different coded elements in Table II, from

which we notice that even different images will lead to different

allocations of coded elements, the exemplar location informa-

tion as well as the edge information still costs only a little over-

head. Commonly, the bits used to code the exemplar blocks oc-

cupy more than 90% of total bits cost. However, it is still pos-

sible to further reduce the bits cost on edge information, taking

into account the exemplar locations, or skipping those edges that

can be inferred from the exemplar blocks.

In Fig. 12 we show the reconstructed images by our H.264-

based system in comparison with standard H.264 intra coding.

Both results show similar visual quality to each other, as in the

JPEG comparisons. The bit-rate saving is also noticeable, shown

in Table I, but not as much as the comparison with JPEG. This is

caused by two reasons. On the one hand, the H.264 intra coding

is more efficient than JPEG in coding performance, so the non-

exemplar blocks, especially the textural ones, will cost fewer

bits in standard H.264 than in baseline JPEG, but in our scheme

the edge information still cost the same bits in either realiza-

tion. On the other, due to the complicated spatial predictions per-

formed in the H.264 intra coding, the filling of only DC values

for removed blocks is proved not good enough, since it breaks

the original spatial relations between neighboring blocks, but for

JPEG this filling of DC values seems enough since JPEG only

conduct DC prediction. Nevertheless, our scheme can still ac-

quire up to 33% bit-rate saving compared to the state-of-the-art

H.264 intra coding.

C. Discussion

It can be observed that the ratio of additional textural exem-

plar has a big effect on visual quality of the reconstructed im-

ages. As given in Table I, for homogeneous textural regions,

such as the red wooden door in kodim02 [Fig. 11(a)], low exem-

plar ratio is used to pursue high compression ratio; whereas for

complex and irregular textural regions, e.g., flowers and leaves

in kodim07 [Fig. 11(d)], high ratio is preferred to ensure good

visual quality. However, thanks to the given edge information,
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Fig. 11. Comparisons with baseline JPEG on the Kodak Image Library. (a) kodim02; (b) kodim03; (c) kodim05; (d) kodim07; (e) kodim19. The top row shows
the reconstructed images by our scheme and the bottom row shows the reconstructed images by baseline JPEG.

TABLE II
PERCENTAGE OF DIFFERENT CODED ELEMENTS IN OUR JPEG-BASED SYSTEM (QP IS SET TO 75)

the reconstructed quality of structural regions is less sensitive to

the additional structural exemplar ratio.

In addition, the improvement of our scheme in terms of com-

pression ratio is various for different images. Commonly, the

more complicated the image is, the less gain we can provide. It

is because that when coding images with lots of details [such as

kodim05, Fig. 11(c)], the extracted edge map usually contains

miscellaneous edges which makes many blocks as necessary ex-

emplars. Thus, only a limited number of regions can be removed

at encoder. However, in this case, 15% bits-saving is still pro-

vided by our JPEG-based system without noticeable visual loss,

as shown in Table I.

The computational complexity of our scheme is relatively

higher than that of the traditional coding schemes, since at the

encoder side we perform extra edge extraction and exemplar se-

lection, and at the decoder side we add the inpainting process. In

particular, the computation of the decoder is greatly related with

the parameters used in the inpainting, such as search range and

patch size, which determine the necessary number of SSD cal-

culations. There are several previous work proposed to reduce

the computations of SSD, so as to accelerate the image synthesis

[7], [11], [20], and those methods can be adopted in our system

as well.

The visual quality assessment is highly related to our work,

that is, if we have a good metric used to measure visual quality,

we are able to not only better evaluate our scheme, but also fur-

ther improve the performance by rate-“distortion” optimization,

where “distortion” measures the perceptual quality in addition

to the statistical fidelity. Unfortunately, we have not yet found

such a good metric for our purposes. Thus, for visual quality

comparisons in our experiments, we always set the same quality

parameters for both the standard compression scheme and our
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Fig. 12. Comparisons with standard H.264 intra picture coding. (a) Jet. (b) Lena. (c) Milk. (d) Peppers. (e) kodim11. (f) kodim20. (g) kodim23. The top row shows
the reconstructed images by our scheme and the bottom row shows the reconstructed images by standard H.264 intra coding.

inpainting-based scheme. Thus, the exemplar regions will have

the same quality (both subjectively and objectively). Addition-

ally, the restored regions still have acceptable visual quality. Ac-

cordingly, in this paper, the “comparable quality” or “similar

visual quality levels” indicates visually similar qualities, which

are examined by human observations.

VI. CONCLUSION AND FUTURE WORK

In this paper, we present an image compression framework

that adopts inpainting techniques to remove visual redundancy

inherent in natural images. In this framework, some kinds of dis-

tinctive features are extracted from images at the encoder side.

Based on the obtained features, some regions of an image are

skipped during encoding, only to be recovered by the assisted

inpainting method at the decoder side. Due to the delivered as-

sistant information, our presented framework is able to remove

enough regions so that the compression ratio can be greatly in-

creased. Our presented inpainting method is capable in effec-

tively restoring the removed regions for good visual quality, as

well.

Moreover, we present an automatic image compression

system, in which edge information is selected as the assistant

information because of its importance in preserving good visual

quality. The main techniques we proposed for this compression

system, i.e., edge thinning, exemplar selection and edge-based

inpainting, are also addressed in this paper. Experimental

results using many standard color images validate the ability

of our proposed scheme in achieving higher compression ratio

while preserving good visual quality. Compared to JPEG and

H.264, at the similar visual quality levels, up to 44% and 33%

bits-saving can be acquired by our approach, respectively.

Further improvements of current scheme are still promising.

First, the assistant information as well as the selected exem-

plars can be described and compressed into bit-stream in more

compact fashion. Second, extraction of the distinctive features

can be more flexible and adaptable. Besides edge information,

there are other candidates, such as sketch [5] and epitome [29],

[30], which could be derived from source images to assist the

vision technologies and the compression methods as well. Fur-

thermore, image inpainting is still a challenging problem when

some kinds of assistant information are provided, into which we

need to put more effort in the future.
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