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Abstract

Apart from the existing technology on image compression represented by series of JPEG, MPEG and H.26x standards,
new technology such as neural networks and genetic algorithms are being developed to explore the future of
image coding. Successful applications of neural networks to vector quantization have now become well established, and
other aspects of neural network involvement in this area are stepping up to play signi"cant roles in assisting with those
traditional technologies. This paper presents an extensive survey on the development of neural networks for image
compression which covers three categories: direct image compression by neural networks; neural network implementa-
tion of existing techniques, and neural network based technology which provide improvement over traditional algo-
rithms. ( 1999 Elsevier Science B.V. All rights reserved.
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1. Introduction

Image compression is a key technology in the
development of various multimedia computer ser-
vices and telecommunication applications such as
teleconferencing, digital broadcast codec and video
technology, etc. At present, the main core of image
compression technology consists of three impor-
tant processing stages: pixel transforms, quanti-
zation and entropy coding. In addition to these key
techniques, new ideas are constantly appearing
across di!erent disciplines and new research fronts.
As a model to simulate the learning function of

human brains, neural networks have enjoyed wide-
spread applications in telecommunication and
computer science. Recent publications show a sub-
stantial increase in neural networks for image com-
pression and coding. Together with the popular
multimedia applications and related products,
what role are the well-developed neural networks
going to play in this special era where information
processing and communication is in great demand?
Although there is no sign of signi"cant work on
neural networks that can take over the existing
technology, research on neural networks of image
compression are still making steady advances. This
could have a tremendous impact upon the develop-
ment of new technologies and algorithms in this
subject area.
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Fig. 1. Back propagation neural network.

This paper comprises "ve sections. Section 2 dis-
cusses those neural networks which are directly
developed for image compression. Section 3 con-
tributes to neural network implementation of those
conventional image compression algorithms. In
Section 4, indirect neural network developments
which are mainly designed to assist with those
conventional algorithms and provide further im-
provement are discussed. Finally, Section 5 gives
conclusions and summary for present research
work and other possibilities of future research di-
rections.

2. Direct neural network development for
image compression

2.1. Back-propagation image compression

2.1.1. Basic back-propagation neural network
Back-propagation is one of the neural networks

which are directly applied to image compression
coding [9,17,47,48,57]. The neural network struc-
ture can be illustrated as in Fig. 1. Three layers, one
input layer, one output layer and one hidden layer,
are designed. The input layer and output layer are
fully connected to the hidden layer. Compression is
achieved by designing the value of K, the number of
neurones at the hidden layer, less than that of
neurones at both input and the output layers. The
input image is split up into blocks or vectors of

8]8, 4]4 or 16]16 pixels. When the input vector
is referred to as N-dimensional which is equal to
the number of pixels included in each block, all the
coupling weights connected to each neurone at the
hidden layer can be represented by Mw

ji
, j"1, 2,2,

K and i"1, 2,2, NN, which can also be described
by a matrix of order K]N. From the hidden layer
to the output layer, the connections can be repre-
sented by Mw@

ij
: 1)i)N, 1)j)KN which is an-

other weight matrix of order N]K. Image com-
pression is achieved by training the network in such
a way that the coupling weights, Mw

ji
N, scale the

input vector of N-dimension into a narrow channel
of K-dimension (K(N) at the hidden layer and
produce the optimum output value which makes
the quadratic error between input and output min-
imum. In accordance with the neural network
structure shown in Fig. 1, the operation of a linear
network can be described as follows:

h
j
"

N
+
i/1

w
ji
x
i
, 1)j)K, (2.1)

for encoding and

xN
i
"

K
+
j/1

w@
ij
h
j
, 1)i)N, (2.2)

for decoding where x
i
3[0, 1] denotes the nor-

malized pixel values for grey scale images with grey
levels [0, 255] [5,9,14,34,35,47]. The reason for us-
ing normalized pixel values is due to the fact that
neural networks can operate more e$ciently when
both their inputs and outputs are limited to a range
of [0, 1] [5]. Good discussions on a number of
normalization functions and their e!ect on neural
network performances can be found in [5,34,35].

The above linear networks can also be trans-
formed into non-linear ones if a transfer function
such as sigmoid is added to the hidden layer and
the output layer as shown in Fig. 1 to scale the
summation down in the above equations. There is
no proof, however, that the non-linear network can
provide a better solution than its linear counterpart
[14]. Experiments carried out on a number of im-
age samples in [9] report that linear networks
actually outperform the non-linear one in terms of
both training speed and compression performance.
Most of the back-propagation neural networks
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developed for image compression are, in fact,
designed as linear [9,14,47]. Theoretical discussion
on the roles of the sigmoid transfer function can be
found in [5,6].

With this basic back-propagation neural net-
work, compression is conducted in two phases:
training and encoding. In the "rst phase, a set of
image samples is designed to train the network via
the back-propagation learning rule which uses each
input vector as the desired output. This is equiva-
lent to compressing the input into the narrow
channel represented by the hidden layer and then
reconstructing the input from the hidden to the
output layer.

The second phase simply involves the entropy
coding of the state vector h

j
at the hidden layer. In

cases where adaptive training is conducted, the
entropy coding of those coupling weights may also
be required in order to catch up with some input
characteristics that are not encountered at the
training stage. The entropy coding is normally de-
signed as the simple "xed length binary coding
although many advanced variable length entropy
coding algorithms are available [22,23,26,60]. One
of the obvious reasons for this is perhaps that the
research community is only concerned with the
part played by neural networks rather than any-
thing else. It is a straightforward thing to introduce
better entropy coding methods after all. Therefore,
the compression performance can be assessed
either in terms of the compression ratio adopted by
the computer science community or bit rate ad-
opted by the telecommunication community. We
use the bit rate throughout the paper to discuss all
the neural network algorithms. For the back
propagation narrow channel compression neural
network, the bit rate can be de"ned as follows:

bit rate"
nK¹#NKt

nN
bits/pixel, (2.3)

where input images are divided into n blocks
of N pixels or n N-dimensional vectors; ¹ and t
stand for the number of bits used to encode each
hidden neurone output and each coupling weight
from the hidden layer to the output layer. When
the coupling weights are maintained the same
throughout the compression process after training

is completed, the term NKt can be ignored and the
bit rate becomes K¹/N bits/pixel. Since the hidden
neurone output is real valued, quantization is re-
quired for "xed length entropy coding which is
normally designed as 32 level uniform quantization
corresponding to 5 bit entropy coding [9,14].

This neural network development, in fact, is in
the direction of K}L transform technology
[17,21,50] which actually provides the optimum
solution for all linear narrow channel type of image
compression neural networks [17]. When Eqs. (2.1)
and (2.2) are represented in matrix form, we have

[h]"[=]T[x], (2.4)

[xN ]"[=@][h]"[=@][=]T[x] (2.5)

for encoding and decoding.
The K}L transform maps input images into

a new vector space where all the coe$cients in the
new space is de-correlated. This means that the
covariance matrix of the new vectors is a diagonal
matrix whose elements along the diagonal are eig-
envalues of the covariance matrix of the original
input vectors. Let e

i
and j

i
, i"1, 2,2, n, be eigen-

vectors and eigenvalues of c
x
, the covariance matrix

for input vector x, and those corresponding eigen-
values are arranged in a descending order so that
j
i
*j

i`1
, for i"1, 2,2, n!1. To extract the prin-

cipal components, K eigenvectors corresponding to
the K largest eigenvalues in c

x
are normally used to

construct the K}L transform matrix, [A
K
], in

which all rows are formed by the eigenvectors of c
x
.

In addition, all eigenvectors in [A
K
] are ordered in

such a way that the "rst row of [A
K
] is the eigenvec-

tor corresponding to the largest eigenvalue, and the
last row is the eigenvector corresponding to the
smallest eigenvalue. Hence, the forward K}L trans-
form or encoding can be de"ned as

[y]"[A
K
]([x]![m

x
]), (2.6)

and the inverse K}L transform or decoding can be
de"ned as:

[xN ]"[A
K
]T[y]#[m

x
], (2.7)

where [m
x
] is the mean value of [x] and [xN ] repres-

ents the reconstructed vectors or image blocks.
Thus the mean square error between x and xN is
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Fig. 2. Hierarchical neural network structure.

given by the following equation:
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where the statistical mean value EM ) N is approxi-
mated by the average value over all the input vector
samples which, in image coding, are all the non-
overlapping blocks of 4]4 or 8]8 pixels.

Therefore, by selecting the K eigenvectors asso-
ciated with the largest eigenvalues to run the K}L
transform over input image pixels, the resulting
errors between the reconstructed image and the
original one can be minimized due to the fact that
the values of j's decrease monotonically.

From the comparison between the equation pair
(2.4) and (2.5) and the equation pair (2.6) and (2.7), it
can be concluded that the linear neural network
reaches the optimum solution whenever the follow-
ing condition is satis"ed:

[=@][=]T"[A
K
]T[A

K
]. (2.9)

Under this circumstance, the neurone weights from
input to hidden and from hidden to output can be
described respectively as follows:

[=@]"[A
K
][;]~1, [=]T"[;][A

K
]T, (2.10)

where [;] is an arbitrary K]K matrix and
[;][;]~1 gives an identity matrix of K]K.
Hence, it can be seen that the linear neural network
can achieve the same compression performance as
that of K}L transform without necessarily obtain-
ing its weight matrices being equal to [A

K
]T and

[A
K
].

Variations of the image compression scheme im-
plemented on the basic network can be designed by
using overlapped blocks and di!erent error func-
tions [47]. The use of overlapped blocks is justi"ed
in the sense that some extent of correlation always
exists between the coe$cients among the neigh-
bouring blocks. The use of other error functions, in
addition, may provide better interpretation of
human visual perception for the quality of those
reconstructed images.

2.1.2. Hierarchical back-propagation neural
network

The basic back-propagation network is further
extended to construct a hierarchical neural net-
work by adding two more hidden layers into the
existing network as proposed in [48]. The hier-
archical neural network structure can be illustrated
in Fig. 2 in which the three hidden layers are
termed as the combiner layer, the compressor layer
and the decombiner layer. The idea is to exploit
correlation between pixels by inner hidden layer
and to exploit correlation between blocks of pixels
by outer hidden layers. From the input layer to the
combiner layer and from the decombiner layer to
the output layer, local connections are designed
which have the same e!ect as M fully connected
neural sub-networks. As seen in Fig. 2, all three
hidden layers are fully connected. The basic idea is
to divide an input image into M disjoint sub-scenes
and each sub-scene is further partitioned into
¹ pixel blocks of size p]p.

For a standard image of 512]512, as proposed
[48], it can be divided into 8 sub-scenes and each
sub-scene has 512 pixel blocks of size 8]8. Accord-
ingly, the proposed neural network structure is
designed to have the following parameters:

Total number of neurones at the input
layer"Mp2"8]64"512.
Total number of neurones at the combiner
layer"MN

h
"8]8"64.

Total number of neurones at the compressor
layer"Q"8.
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Fig. 3. Inner loop neural network.

The total number of neurones for the decombiner
layer and the output layer is the same as that of the
combiner layer and the input layer, respectively.

A so called nested training algorithm (NTA) is
proposed to reduce the overall neural network
training time which can be explained in the follow-
ing three steps.

Step 1. Outer loop neural network (O¸NN) train-
ing. By taking the input layer, the combiner layer
and the output layer out of the network shown in
Fig. 2, we can obtain M 64}8}64 outer loop neural
networks where 64}8}64 represents the number of
neurones for its input layer, hidden layer and out-
put layer, respectively. As the image is divided into
8 sub-scenes and each sub-scene has 512 pixel
blocks each of which has the same size as that of the
input layer, we have 8 training sets to train the
8 outer-loop neural networks independently. Each
training set contains 512 training patterns (or pixel
blocks). In this training process, the standard
back-propagation learning rule is directly applied
in which the desired output is equal to the input.

Step 2. Inner loop neural network (I¸NN) train-
ing. By taking the three hidden layers in Fig. 2 into
consideration, an inner loop neural network can be
derived as shown in Fig. 3. As the related para-
meters are designed in such a way that N

h
"8;

Q"8; M"8, the inner loop neural network is also
a 64}8}64 network. Corresponding to the 8 sub-
scenes each of which has 512 training patterns (or
pixel blocks), we also have 8 groups of hidden layer
outputs from the operations of step 1, in which each
hidden layer output is an 8-dimensional vector and
each group contains 512 such vectors. Therefore,
for the inner loop network, the training set contains
512 training patterns each of them is a 64-dimen-

sional vector when the outputs of all the 8 hidden
layers inside the OLNN are directly used to train
the ILNN. Again, the standard back-propagation
learning rule is used in the training process.
Throughout the two steps of training for both
ILNN and OLNN, the linear transfer function
(or activating function) is used.

Step 3. Reconstruction of the overall neural net-
works. From the previous two steps of training, we
have four sets of coupling weights, two out of step
1 and two out of step 2. Hence, the overall neural
network coupling weights can be assigned in such
a way that the two sets of weights from step 1 are
given to the outer layers in Fig. 2 involving the
input layer connected to the combiner layer, and
the decombiner layer connected to the output layer.
Similarly, the two sets of coupling weights obtained
from step 2 can be given to the inner layers in Fig. 2
involving the combiner layer connected to the com-
pressor layer and the compressor layer connected
to the decombiner layer.

After training is completed, the neural network is
ready for image compression in which half of the
network acts as an encoder and the other half as
a decoder. The neurone weights are maintained the
same throughout the image compression process.

2.1.3. Adaptive back-propagation neural network
Further to the basic narrow channel back-propa-

gation image compression neural network, a num-
ber of adaptive schemes are proposed by Carrato
[8,9] based on the principle that di!erent neural
networks are used to compress image blocks with
di!erent extent of complexity. The general struc-
ture for the adaptive schemes can be illustrated in
Fig. 4 in which a group of neural networks with
increasing number of hidden neurones, (h

.*/
, h

.!9
),

is designed. The basic idea is to classify the input
image blocks into a few sub-sets with di!erent
features according to their complexity measure-
ment. A "ne tuned neural network then compresses
each sub-set.

Four schemes are proposed in [9] to train the
neural networks which can be roughly classi"ed as
parallel training, serial training, activity-based
training and activity and direction based training
schemes.
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Fig. 4. Adaptive neural network structure.

The parallel training scheme applies the com-
plete training set simultaneously to all neural
networks and uses the S/N (signal-to-noise) ratio
to roughly classify the image blocks into the
same number of sub-sets as that of neural net-
works. After this initial coarse classi"cation is com-
pleted, each neural network is then further trained
by its corresponding re"ned sub-set of training
blocks.

Serial training involves an adaptive searching
process to build up the necessary number of neural
networks to accommodate the di!erent patterns
embedded inside the training images. Starting with
a neural network with pre-de"ned minimum num-
ber of hidden neurones, h

.*/
, the neural network is

roughly trained by all the image blocks. The S/N
ratio is used again to classify all the blocks into two
classes depending on whether their S/N is greater
than a pre-set threshold or not. For those blocks
with higher S/N ratios, further training is started
to the next neural network with the number of
hidden neurones increased and the corresponding
threshold readjusted for further classi"cation. This
process is repeated until the whole training set is
classi"ed into a maximum number of sub-sets
corresponding to the same number of neural net-
works established.

In the next two training schemes, extra two para-
meters, activity A(P

l
) and four directions, are de-

"ned to classify the training set rather than using
the neural networks. Hence the back propagation
training of each neural network can be completed
in one phase by its appropriate sub-set.

The so called activity of the lth block is de"ned as

A(P
l
)" +

%7%/ i,j

A
p
(P

l
(i, j)), (2.11)

A
p
(P

l
(i, j))"

1
+

r/~1

1
+

s/~1

(P
l
(i, j)!P

l
(i#r, j#s))2,

(2.12)

where A
p
(P

l
(i, j)) is the activity of each pixel which

concerns its neighbouring 8 pixels as r and s vary
from !1 to #1 in Eq. (2.12).

Prior to training, all image blocks are classi"ed
into four classes according to their activity values
which are identi"ed as very low, low, high and very
high activities. Hence four neural networks are de-
signed with increasing number of hidden neurones
to compress the four di!erent sub-sets of input
images after the training phase is completed.

On top of the high activity parameter, a further
feature extraction technique is applied by consider-
ing four main directions presented in the image
details, i.e., horizontal, vertical and the two diag-
onal directions. These preferential direction fea-
tures can be evaluated by calculating the values of
mean squared di!erences among neighbouring
pixels along the four directions [9].

For those image patterns classi"ed as high activ-
ity, further four neural networks corresponding to
the above directions are added to re"ne their struc-
tures and tune their learning processes to the pref-
erential orientations of the input. Hence, the overall
neural network system is designed to have six neu-
ral networks among which two correspond to low
activity and medium activity sub-sets and other
four networks correspond to the high activity and
four direction classi"cations [9]. Among all the
adaptive schemes, linear back-propagation neural
network is mainly used as the core of all the di!er-
ent variations.

2.1.4. Performance assessments
Around the back-propagation neural network,

we have described three representative schemes to
achieve image data compression towards the direc-
tion of K}L transform. Their performances can
normally be assessed by considering two measure-
ments. One is the compression ratio or bit rate
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Table 1
Basic back propagation on ¸ena (256]256)

Dimension
N

Training schemes PSNR
(dB)

Bit rate
(bits/pixel)

64 Non-linear 25.06 0.75
64 Linear 26.17 0.75

Table 2
Hierarchical back propagation on ¸ena (512]512)

Dimension
N

Training
schemes

SNR (dB) Bit rate
(bits/pixel)

4 Linear 14.395 1
64 Linear 19.755 1

144 Linear 25.67 1

Table 3
Adaptive back propagation on ¸ena (256]256)

Dimension
N

Training schemes PSNR
(dB)

Bit rate
(bits/pixel)

64 Activity based linear 27.73 0.68
64 Activity and direction

based linear
27.93 0.66

which is used to measure the compression perfor-
mance, and the other is mainly used to measure the
quality of reconstructed images with regards to
a speci"c compression ratio or bit rate. The de"ni-
tion of this measurement, however, is a little am-
biguous at present. In practice, there exists two
acceptable measurements for the quality of recon-
structed images which are PSNR (peak-signal-to-
noise ratio) and NMSE (normalised mean-square
error). For a grey level image with n blocks of size
N, or n vectors with dimension N, their de"nitions
can be given, respectively, as follows:

PSNR"10 log
2552

1

nN
+n

i/1
+N

j/1
(P

ij
!P

ij
)2

(dB),

(2.13)

NMSE"

+n
i/1

+N
j/1

(P
ij
!P

ij
)2

+n
i/1

+N
j/1

P2
ij

, (2.14)

where P
ij

is the intensity value of pixels in the
reconstructed images; and P

ij
the intensity value of

pixels in the original images which are split up into
n input vectors: x

i
"MP

i1
, P

i2
,2, P

iN
N.

In order to bridge the di!erences between the
two measurements, let us introduce an SNR
(signal-to-noise ratio) measurement to interpret the
NMSE values as an alternative indication of the
quality of those reconstructed images in compari-
son with the PSNR "gures. The SNR is de"ned
below:

SNR"!10 log NMSE (dB). (2.15)

Considering the di!erent settings for the experi-
ments reported in various sources [9,14,47,48], it is
di$cult to make a comparison among all the algo-
rithms presented in this section. To make the best
use of all the experimental results available, we take
¸ena as the standard image sample and summarise
the related experiments for all the algorithms as
illustrated in Tables 1}3 which are grouped into
basic back propagation, hierarchical back propa-
gation and adaptive back propagation.

Experiments were also carried out to test the
neural network schemes against the conventional
image compression techniques such as DCT with
SQ (scale quantization) and VQ (vector quantiz-

ation), sub-band coding with VQ schemes [9]. The
results reported reveal that the neural networks
provide very competitive compression performance
and even outperform the conventional techniques
in some occasions [9].

Back propagation based neural networks have
provided good alternatives for image compression
in the framework of the K}L transform. Although
most of the networks developed so far use linear
training schemes and experiments support this op-
tion, it is not clear why non-linear training leads to
inferior performance and how non-linear transfer
function can be further exploited to achieve further
improvement. Theoretical research is required in
this area to provide in-depth information and to
prepare for further exploration in line with non-
linear signal processing using neural networks
[12,19,53,61,63,74].

Generally speaking, the coding scheme used
by neural networks tends to maintain the same
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neurone weights, once being trained, throughout
the whole process of image compression. This is
because the bit rate will become K¹/N instead of
that given by Eq. (2.3) in which maximisation of
their compression performance can be imple-
mented. From experiments [4,9], in addition, re-
constructed image quality does not show any
signi"cant di!erence for those images outside the
training set due to the so-called generalization
property [9] in neural networks. Circumstances
where a drastic change of the input image statistics
occurs might not be well covered by the training
stage, however, adaptive training might prove
worthwhile. Therefore, how to use the minimum
number of bits to represent the adaptive training
remains an interesting area to be further explored.

2.2. Hebbian learning-based image compression

While the back-propagation-based narrow-
channel neural network aims at achieving a com-
pression upper bounded by the K}L transform,
a number of Hebbian learning rules have been
developed to address the issue of how the principal
components can be directly extracted from input
image blocks to achieve image data compression
[17,36,58,71]. The general neural network structure
consists of one input layer and one output layer
which is actually a half of the network shown in
Fig. 1. Hebbian learning rule comes from Hebb's
postulation that if two neurones were very active at
the same time which is illustrated by the high values
of both its output and one of its inputs, the strength
of the connection between the two neurones will
grow or increase. Hence, for the output values
expressed as [h]"[w]T[x], the learning rule can
be described as

=
i
(t#1)"

=(t)#ah
i
(t)X(t)

E=
i
(t)#ah

i
(t)X(t)E

, (2.16)

where=
i
(t#1)"Mw

i1
, w

i2
,2, w

iN
N is the ith new

coupling weight vector in the next cycle (t#1);
1)i)M and M is the number of output neur-
ones. a the learning rate; h

i
(t) the ith output value;

X(t) the input vector, corresponding to each indi-
vidual image block and E ) E the Euclidean norm

used to normalize the updated weights and make
the learning stable.

From the above basic Hebbian learning, a so-
called linearized Hebbian learning rule is developed
by Oja [50,51] by expanding Eq. (2.16) into a series
from which the updating of all coupling weights is
constructed from below:

=
i
(t#1)"=

i
(t)#a[h

i
(t)X(t)!h2

i
(t)=

i
(t)]. (2.17)

To obtain the leading M principal components,
Sanger [58] extends the above model to a learning
rule which removes the previous principal compo-
nents through Gram}Schmidt orthogonalization
and made the coupling weights converge to the
desired principal components. As each neurone at
the output layer functions as a simple summation
of all its inputs, the neural network is linear and
forward connected. Experiments are reported [58]
that at a bit rate of 0.36 bits/pixel, an SNR of
16.4 dB is achieved when the network is trained by
images of 512]512 and the image compressed was
outside the training set.

Other learning rules developed include the adap-
tive principal component extraction (APEX) [36]
and robust algorithms for the extraction estimation
of the principal components [62,72]. All the vari-
ations are designed to improve the neural network
performance in converging to the principal compo-
nents and in tracking down the high order statistics
from the input data stream.

Similar to those back-propagation trained
narrow channel neural networks, the compression
performance of such neural networks are also
dependent on the number of output neurones, i.e.
the value of M. As explained in the above, the
quality of the reconstructed images are determined
by e

.4
"EM(x!xN )2N"+N

j/M`1
j
j

for neural net-
works with N-dimensional input vectors and
M output neurones. With the same characteristics
as that of conventional image compression algo-
rithms, high compression performance is always
balanced by the quality of reconstructed images.
Since conventional algorithms in computing the
K}L transform involves lengthy operations in
angle tuned trial and veri"cation iterations for each
vector and there is no fast algorithm in existence so
far, neural network development provides advant-
ages in terms of computing e$ciency and speed in
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Fig. 5. Vector quantization neural network.

dealing with these matters. In addition, the iterative
nature of these learning processes is also helpful in
capturing those slowly varying statistics embedded
inside the input stream. Hence the whole system
can be made adaptive in compressing various im-
age contents such as those described in the last
section.

2.3. Vector quantization neural networks

Since neural networks are capable of learning
from input information and optimizing itself to
obtain the appropriate environment for a wide
range of tasks [38], a family of learning algorithms
has been developed for vector quantization. For all
the learning algorithms, the basic structure is sim-
ilar which can be illustrated in Fig. 5. The input
vector is constructed from a K-dimensional space.
M neurones are designed in Fig. 5 to compute the
vector quantization code-book in which each neur-
one relates to one code-word via its coupling
weights. The coupling weight, Mw

ij
N, associated with

the ith neurone is eventually trained to represent
the code-word c

i
in the code-book. As the neural

network is being trained, all the coupling weights
will be optimized to represent the best possible
partition of all the input vectors. To train the net-
work, a group of image samples known to both
encoder and decoder is often designated as the
training set, and the "rst M input vectors of the

training data set are normally used to initialize all
the neurones. With this general structure, various
learning algorithms have been designed and de-
veloped such as Kohonen's self-organizing feature
mapping [10,13,18,33,52,70], competitive learning
[1,54,55,65], frequency sensitive competitive learn-
ing [1,10], fuzzy competitive learning [11,31,32],
general learning [25,49], and distortion equalized
fuzzy competitive learning [7] and PVQ (predictive
VQ) neural networks [46].

Let W
i
(t) be the weight vector of the ith neurone

at the tth iteration, the basic competitive learning
algorithm can be summarized as follows:

z
i
"G

1 d(x,=
i
(t))" min

1xjxM

d(x,=
j
(t)),

0 otherwise,
(2.18)

=
i
(t#1)"=

i
(t)#a(x!=

i
(t))z

i
, (2.19)

where d(x,=
i
(t)) is the distance in the ¸

2
metric

between the input vector x and the coupling weight
vector=

i
(t)"Mw

i1
, w

i2
,2, w

iK
N; K"p]p; a is the

learning rate, and z
i
is its output.

A so-called under-utilization problem [1,11] oc-
curs in competitive learning which means some of
the neurones are left out of the learning process
and never win the competition. Various schemes
are developed to tackle this problem. Kohonen self-
organizing neural network [10,13,18] overcomes
the problem by updating the winning neurone as
well as those neurones in its neighbourhood.

Frequency sensitive competitive learning algo-
rithm addresses the problem by keeping a record of
how frequent each neurone is the winner to main-
tain that all neurones in the network are updated
an approximately equal number of times. To imple-
ment this scheme, the distance is modi"ed to in-
clude the total number of times that the neurone i is
the winner. The modi"ed distance measurement is
de"ned as

d(x,=(t)
i
)"d(x,=

i
(t))u

i
(t), (2.20)

where u
i
(t) is the total number of winning times for

neurone i up to the tth training cycle. Hence, the
more the ith neurone wins the competition, the
greater its distance from the next input vector.
Thus, the chance of winning the competition dimin-
ishes. This way of tackling the under-utilization
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problem does not provide interactive solutions in
optimizing the code-book.

For all competitive learning based VQ (vector
quantization) neural networks, fast algorithms can
be developed to speed up the training process by
optimizing the search for the winner and reducing
the relevant computing costs [29].

By considering general optimizing methods [19],
numerous variations of learning algorithms can be
designed for the same neural network structure
shown in Fig. 5. The general learning VQ [25,49] is
one typical example. To model the optimization of
centroids w3RM for a "xed set of training vectors
x"Mx

1
,2, x

K
N, a total average mismatch between

x, the input vector, and W, the code-book repre-
sented by neurone weights, is de"ned as

C(=)"
K
+
i/1

M
+
j/1

g
ir
Ex

i
!=

r
E2

K
"

K
+
i/1

M
+
j/1

¸
x
, (2.21)

where g
ir

is given by

g
ir
"G

1 if r"i,
1

+M
j/1

Ex!=
j
E2

otherwise,

and =
i
is assumed to be the weight vector of the

winning neurone.
To derive the optimum partition of x, the

problem is reduced down to minimizing the
total average mismatch C(=), where ="

M=
1
,=

2
,2,=

M
N is the code-book which varies

with respect to the partition of x. From the basic
learning algorithm theory, the gradient of C(=) can
be obtained in an iterative, stepwise fashion by
moving the learning algorithm in the direction of
the gradient of ¸

x
in Eq. (2.21). Since ¸

x
can be

rearranged as

¸
x
"

M
+
r/1

g
ir
Ex!=

r
E2

"Ex!=
i
E2#

+M
r/1, rEi

Ex!=
r
E2

+M
j/1

Ex!=
j
E2

"Ex!=
i
E2#1!

Ex!=
i
E2

+M
j/1

Ex!=
j
E2

, (2.22)

¸
x

is di!erentiated with respect to =
i
and =

j
as

follows:

R¸
x

R=
i

"!2(x!=
i
)
D2!D#Ex!=

i
E2

D2
, (2.23)

R¸
x

R=
j

"2(x!=
j
)
Ex!=

i
E2

D2
, (2.24)

where D"+M
r/1

Ex!=
r
E2.

Hence, the learning rule can be designed as fol-
lows:

=
i
(t#1)"=

i
(t)#a(t)(x!=

i
(t))

]
D2!D#Ex!=

i
(t)E2

D2
(2.25)

for the winning neurone i, and

=
j
(t#1)"=

j
(t)#a(t)(x!=

j
(t))

Ex!=
i
(t)E2

D2

(2.26)

for the other (M!1) neurones. This algorithm can
also be classi"ed as a variation of Kohonen's self-
organizing neural network [33].

Around the competitive learning scheme, fuzzy
membership functions are introduced to control
the transition from soft to crisp decisions during the
code-book design process [25,31]. The essential
idea is that one input vector is assigned to a cluster
only to a certain extent rather than either &in' or
&out'. The fuzzy assignment is useful particularly at
earlier training stages which guarantees that all
input vectors are included in the formation of a new
code-book represented by all the neurone coupling
weights. Representative examples include direct
fuzzy competitive learning [11], fuzzy algorithms
for learning vector quantization [31,32] and distor-
tion equalized fuzzy competitive learning algorithm
[7], etc. The so-called distortion equalized fuzzy
competitive learning algorithm modi"es the dis-
tance measurement to update the neurone weights
by taking fuzzy membership functions into con-
sideration to optimize the learning process. Spe-
ci"cally, each neurone is allocated a distortion
represented by V

j
(t), j"1, 2,2, M, with their in-

itial values V
j
(0)"1. The distance between the

input vector x and all the neurone weights =
j

is
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then modi"ed as follows:

D
kj
"d(x

k
,=

j
(t))"

<
j
(t)

+M
l/1
<

l
(t)

Ex!=
j
(t)E2. (2.27)

At each training cycle, a fuzzy membership func-
tion, k

kj
(t), for each neurone is constructed to up-

date both distortion V
j

and the neurone weights
given below:

<
j
(t#1)"<

j
(t)#(k

kj
)mD

kj
,

=
j
(t#1)"=

j
(t)#(k

kj
)ma(x

k
!=

j
(t),

where m*1 is a fuzzy index which controls the
fuzziness of the whole partition, and k

kj
is a fuzzy

membership function which speci"es the extent of
the input vector being associated with a coupling
weight. Throughout the learning process, the fuzzy
idea is incorporated to control the partition of
input vectors as well as avoid the under-utilization
problem.

Experiments are carried out to vector quantize
image samples directly without any transform by
a number of typical CLVQ neural networks [7].
The results show that, in terms of PSNR, the fuzzy
competitive learning neural network achieves
26.99 dB for ¸ena when the compression ratio
is maintained at 0.44 bits/pixel for all the neural
networks. In addition, with bit rate being
0.56 bits/pixel, the fuzzy algorithms presented in
[32] achieve a PSNR "gure around 32.54 dB for
the compression of ¸ena which is a signi"cant im-
provement compared with the conventional LBG
algorithm [32].

In this section, we discussed three major develop-
ments in neural networks for direct image compres-
sion. The "rst two conform to the conventional
route of pixel transforms in which principal compo-
nents are extracted to reduce the redundancy
embedded inside input images. The third type
corresponds to the well developed quantization
technique in which neural learning algorithms are
called in to help producing the best possible code-
book. While the basic structure for encoders are
very similar which contain two layers of neurones,
the working procedure is fundamentally di!erent.
Apart from the fact that the pixel transform based
narrow channel networks always have less number

of hidden neurones than those of input ones, they
also require a complete neural network to recon-
struct those compressed images. Yet for those VQ
neural networks, reconstruction stands the same
as their conventional counterparts, which only
involves a look-up table operation. These devel-
opments, in fact, cover two sides of image com-
pression in the light of conventional route: pixel
transform, quantization and entropy coding.
Therefore, one natural alternative is to make these
two developments work together which lead to
a neural network designed to extract the desired
principal components and then followed by an-
other hidden layer of neurones to do the vector
quantization. In that sense, the choice of leading
principal components could be made more #exible.
One simple example is to keep all the principal
components instead of discarding those smaller ones
and then represent them by a code-book which is
re"ned according to their associated eigenvalues.

3. Neural network development of existing
technology

In this section, we show that the existing conven-
tional image compression technology can be de-
veloped right into various learning algorithms to
build up neural networks for image compression.
This will be a signi"cant development in the sense
that various existing image compression algorithms
can actually be implemented by simply one neural
network architecture empowered with di!erent
learning algorithms. Hence, the powerful parallel
computing and learning capability with neural net-
works can be fully exploited to build up a universal
test bed where various compression algorithms can
be evaluated and assessed. Three conventional
techniques are covered in this section which include
wavelet transforms, fractals and predictive coding.

3.1. Wavelet neural networks

Based on wavelet transforms, a number of neural
networks are designed for image processing and
representation [16,24,41,66}68,75]. This direction
of research is mainly to develop existing image
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Fig. 6. Wavelet neural network.

coding techniques into various neural network
structures and learning algorithms.

When a signal s(t) is approximated by daughters
of a mother wavelet h(t) as follows, for instance,
a neural network structure can be established as
shown in Fig. 6 [66}68].

s(t)"
K
+
k/1

w
k
h A

t!b
k

a
k
B , (3.1)

where the w
k
, b

k
and a

k
are weight coe$cients,

shifts and dilations for each daughter wavelet. To
achieve the optimum approximation, the following
least-mean-square energy function can be used to
develop a learning algorithm for the neural net-
work in Fig. 6.

E"

1

2

T
+
t/1

(s(t)!s(t))2. (3.2)

The value of E can be minimized by adaptively
changing or learning the best possible values of the
coe$cients, w

k
, b

k
and a

k
. One typical example is to

use a conjugate gradient method [19,67] to achieve
optimum approximation of the original signal s(t).
Forming the column vectors [u(w)] and [w] from
the gradient analysis and coe$cients w

k
, the ith

iteration for minimising E with respect to [w] pro-
ceeds according to the following two steps:

(i) if k is multiple of n then: [s(w)I]"![g(w)I]
else:

[s(w)i]"![g(w)i]

#

[g(w)i]T[g(w)i]

[g(w)i~1]T[g(w)i~1]
[s (w)i~1]; (3.3)

(ii)

[wi`1]"[wi]#ai[s(w)i]. (3.4)

Step (i) computes a search direction [s] at iter-
ation i. Step (ii) computes the new weight vector
using a variable step-size a. By simply choosing the
step-size a as the learning rate, the above two steps
can be constructed as a learning algorithm for the
wavelet neural network in Fig. 6.

With the similar theory (energy function is
changed into an error function), [41] suggested
a back-propagation and convolution based neural
network to search for the optimal wavelet de-
composition of input images for e$cient image
data compression. The neural network structure is
designed to have one input layer and one output
layer. Local connections of neurones are estab-
lished to complete the training corresponding to
four channels in wavelet decomposition [41,61], i.e.
LL (low pass}low pass), LH (low pass}high pass),
HL (high pass}low pass) and HH (high pass}high
pass). From the well-known back-propagation
learning rule, a convolution based training algo-
rithm is used to optimize the neural network train-
ing in which quantization of neural network output
is used as the desired output to allow back propa-
gation learning. To modify the learning rule, min-
imization of both quantization error and entropy is
taken into consideration by incorporating a so-
called entropy reduction function, Z(Q¹(i, j)), hence
the overall learning rule can be designed as follows:

K
c
(u, v)[t#1]"K

c
(u, v)[t]#g+

i,j

d(i, j)

]S(i!u, j!v)#aDK
c
(u, v)[t],

(3.5)
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Fig. 7. Entropy reduction function.

where K
c
(u, v)[t#1] is the neural network coup-

ling weights for channel c at (t#1)th cycle; g, a are
the learning rate and momentum terms, respective-
ly, in modi"ed back propagation to accelerate
the learning process; S(i!u, j!v) is the original
input image pixel; DK

c
(u, v)[t]"K

c
(u, v)[t]!

K
c
(u, v)[t!1]; d(i, j)"

REf

RK
c
(u, v)

the so-called

weight-update function derived from the local
gradient in the back propagation scheme.

Ef is an error function which is de"ned below:

Ef(i, j)"Z(QT(i, j)) (¹(i, j)!QT(i, j))2/2, (3.6)

where ¹(i, j) is the neural network output used to
approximate wavelet coe$cients;

QT(i, j) is the quantization of ¹(i, j);

Z(QT(i, j))"G
0 for QT(i, j)"0,

1 for DQT(i, j)D"1,

F(n, q) for DQT(i, j)D"n.

Z(QT(i, j)) is the above mentioned entropy reduc-
tion function; with F(n, q) being a ramp function,
Z(QT(i, j)) can be illustrated in Fig. 7.

While the neural network outputs converge to
the optimal wavelet coe$cients, its coupling
weights also converge to an optimal wavelet low
pass "lter. To make this happen, extra theoretical
work is required to re"ne the system design.

Firstly, the standard wavelet transform com-
prises two orthonormal "lters, one low pass and the
other high pass. To facilitate the neural network

learning and its convergence to one optimal
wavelet "lter, the entire wavelet decomposition
needs to be represented by one type of "lter rather
than two. This can be done by working on the
relation between the two orthonormal "lters [2,41].
Hence all the three channels, LH, HL and HH,
can be represented by channel LL, and the whole
wavelet decomposition can be implemented by
training the neural network into one optimal low
pass "lter. This type of redesign produces equiva-
lently a pre-processing of input pixel for LH, HL
and HH channels. Basically, the pre-processing in-
volves a #ipping operation of the input matrix and
an alternating operation of signs for the #ipped
matrix [39].

Secondly, each epoch of the neural network
training is only a suggestion or approximation of
the desired optimal wavelet low-pass "lter, which
also gives us the smallest possible values of the
error function Ef. To make it the best possible
approximation, a post-processing is added to con-
vert the neural network coupling weights into a re-
quired wavelet "lter. Assuming that this desired
wavelet "lter is h@

u
, the distance between h@

u
and the

neural network suggestions can be evaluated as

f (h@
u
)"+

u,v

(h@
u
h@
v
!K

c
(u, v))2. (3.7)

To minimize the distance subject to constraint
equations C

p
(h@

u
)"0, the Langrangian multiplier

method is used to obtain a set of h@
u
, which is given

below:

df (h@
u
)#+

p

j
p
dC

p
(h@

u
)"0, (3.8)

where j
p

is the Lagrangian multiplier, df ( ) ) the
di!erentiation of function f ( ) ) and C

p
(h@

u
) the equa-

tions corresponding to the following constraints for
wavelet low pass "lters [36]:

G
[+

u
h
2u
]!J2/2"0,

[+h
u
h
u`2n

]!d
u,u`2n

"0,

d
ij

is the Dirac delta function.
Experiments reported [39] on a number of image

samples support the proposed neural network
system by "nding out that Daubechie's wavelet
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Fig. 8. IFS neural network.

produces a satisfactory compression with the
smallest errors and Harr's wavelet produces the
best results on sharp edges and low-noise smooth
areas. The advantage of using such a neural net-
work is that the searching process for the best
possible wavelets can be incorporated directly into
the wavelet decomposition to compress images
[41,74]. Yet conventional wavelet based image
compression technique has to run an independent
evaluation stage to "nd out the most suitable
wavelets for the multi-band decomposition [69]. In
addition, the powerful learning capability of neural
networks may provide adaptive solutions for prob-
lems involved in sub-band coding of those images
which may require di!erent wavelets to achieve the
best possible compression performance [4,71].

3.2. Fractal neural networks

Fractally con"gured neural networks [45,64,71]
based on IFS (iterated function systems [3]) codes
represent another example along the direction of
developing existing image compression technology
into neural networks. Its conventional counterpart
involves representing images by fractals and each
fractal is then represented by a so-called IFS which
consists of a group of a$ne transformations. To
generate images from IFS, random iteration algo-
rithm is the most typical technique associated with
fractal based image decompression [3]. Hence,
fractal based image compression features higher
speed in decompression and lower speed in com-
pression.

By establishing one neurone per pixel, two tradi-
tional algorithms of generating images using IFSs
are formulated into neural networks in which all
the neurones are organized as a topology with two
dimensions [64]. The network structure can be
illustrated in Fig. 8 in which w

ij, i{j{
is the coupling

weight between (ij)th neurone to (i@j@)th one, and
s
ij

is the state output of the neurone at position (i, j).
The training algorithm is directly obtained from
the random iteration algorithm in which the coup-
ling weights are used to interpret the self similarity
between pixels [64]. Since not all the neurones in
the network are fully connected, the topology can
actually be described by a sparse matrix theoret-

ically. In common with most neural networks, the
majority of the work operated in the neural net-
work is to compute and optimize the coupling
weights, w

ij, i{j{
. Once these have been calculated,

the required image can typically be generated in
a small number of iterations. Hence, the neural
network implementation of the IFS based image
coding system could lead to massively parallel im-
plementation on a dedicated hardware for generat-
ing IFS fractals. Although the essential algorithm
stays the same as its conventional algorithm, solu-
tions could be provided by neural networks for the
computing intensive problems which are currently
under intensive investigation in the conventional
fractal based image compression research area.

The neural network proposed in the original
reference [64] can only complete image generations
from IFS codes. Research in fractal image compres-
sion, however, focuses on developing fast encoding
algorithms before real-time application can be im-
proved. This involves extensive search for a$ne
transformations to produce fractals for a given im-
age and generating output entropy codes. The
work described [64] actually covers the decom-
pression side of the technology. In addition, the
neural network requires a large number of
neurones arranged in two dimensions which is
the same as the number of pixels in any image.
Yet large number of the neurones are not active
according to the system design. Further work,
therefore, is required to be done along this line of
research.
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Fig. 9. Predictive neural network I.

3.3. Predictive coding neural networks

Predictive coding has been proved to be a power-
ful technique in de-correlating input data for
speech compression and image compression where
a high degree of correlation is embedded among
neighbouring data samples. Although general pre-
dictive coding is classi"ed into various models such
as AR and ARMA, etc., autoregressive model (AR)
has been successfully applied to image compres-
sion. Hence, predictive coding in terms of applica-
tions in image compression can be further classi"ed
into linear and non-linear AR models. Conven-
tional technology provides a mature environment
and well developed theory for predictive coding
which is represented by LPC (linear predictive cod-
ing) PCM (pulse code modulation), DPCM (delta
PCM) or their modi"ed variations. Non-linear pre-
dictive coding, however, is very limited due to the
di$culties involved in optimizing the coe$cients
extraction to obtain the best possible predictive
values. Under this circumstance, a neural network
provides a very promising approach in optimizing
non-linear predictive coding [17,42].

With a linear AR model, predictive coding can be
described by the following equation:

X
n
"

N
+
i/0

a
i
X

n~i
#v

n
"p#v

n
, (3.9)

where p represents the predictive value for the pixel
X

n
which is to be encoded in the next step. Its

neighbouring pixels, X
n~1

,X
n~2

,2,X
n~N

, are
used by the linear model to produce the predictive
value. v

n
stands for the errors between the input

pixel and its predictive value. v
n

can also be
modelled by a set of zero-mean independent and
identically distributed random variables.

Based on the above linear AR model, a multi-
layer perceptron neural network can be construc-
ted to achieve the design of its corresponding
non-linear predictor as shown in Fig. 9. For the
pixel X

n
which is to be predicted, its N neighbour-

ing pixels obtained from its predictive pattern are
arranged into a one dimensional input vector
X"MX

n~1
, X

n~2
,2, X

n~N
N for the neural net-

work. A hidden layer is designed to carry out back
propagation learning for training the neural net-

work. The output of each neurone, say the jth
neurone, can be derived from the equation given
below:

h
j
"f (R)"f A

N
+
i/1

w
ji
x
n~iB , (3.10)

where f (v)"1/(1#e~v) is a sigmoid transfer func-
tion.

To predict those drastically changing features
inside images such as edges, contours, etc., high-
order terms are added to improve the predictive
performance. This corresponds to a non-linear AR
model expressed as follows:

X
n
"+

i

a
i
X

n~i
#+

i

+
j

a
ij
X

n~i
X

n~j

#+
i

+
j

+
k

a
ijk

X
n~i

X
n~j

X
n~k

#2#v
n
.

(3.11)

Hence, another so-called functional link type neu-
ral network can be designed [42] to implement this
type of a non-linear AR model with high-order
terms. The structure of the network is illustrated in
Fig. 10. It contains only two layers of neurones, one
for input and the other for output. Coupling
weights, Mw

i
N, between the input layer and the out-

put layer are trained towards minimizing the resid-
ual energy which is de"ned as

RE"+
n

e
n
"+

n

(X
n
!X

n
)2, (3.12)

where X
n

is the predictive value for the pixel X
n
.

Predictive performance with these neural networks
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Fig. 10. Predictive neural network II.

Fig. 11. Neural network adaptive image coding system.

is claimed to outperform the conventional opti-
mum linear predictors by about 4.17 and 3.74 dB
for two test images [42]. Further research, espe-
cially for non-linear networks, is encouraged by the
reported results to optimize their learning rules for
prediction of those images whose contents are sub-
ject to abrupt statistical changes.

4. Neural network based image compression

In this section, we present two image compres-
sion systems which are developed "rmly based on
neural networks. This illustrates how neural net-
works may play important roles in assisting with
new technology development in the image com-
pression area.

4.1. Neural network based adaptive image coding

The structure of a neural network-based adap-
tive image coding system [21] can be illustrated in
Fig. 11.

The system is developed based on a composite
source model in which multiple sub-sources are
involved. The principle is similar to those adaptive
narrow-channel neural networks described in Sec-
tion 2.1.3. The basic idea is that the input image

can be classi"ed into a certain number of di!erent
classes or sub-sources by features pre-de"ned for
any input image data set. Features of an image are
extracted through image texture analysis as shown
in the "rst block in Fig. 11. After the sub-source or
class to which the input image block belongs is
identi"ed, a K}L neural network transform and
a number of quantization code books speci"cally
re"ned for each individual sub-source are then ac-
tivated by the class label, ¸, to further process and
achieve the best possible data compression.

The LEP self-organization neural network in
Fig. 11 consists of two layers, one input layer and
one output layer. The input neurones are organized
according to the feature sets. Accordingly, the input
neurones can be represented by M(x

mn
), m"1, 2,2,

M
n
, n"1, 2,2, NN, where M

n
is the dimension of

input data with feature set n. It can be seen from
this representation that there are N features in the
input data each of which consists of M

n
elements. In

order to classify the input image data into various
sub-sources, the neurones at the output layer are
represented by M(u

jk
), j"1, 2,2, p; k"1, 2,2, qN,

where p is the number of output sub-sources and
q the number of feature sets or perspectives as
termed by the original paper [21]. The output
neurone representation is also illustrated in Fig. 12
where the neurones in each of the output sub-
sources, for the convenience of understanding, are
represented by di!erent symbols such as square,
triangle, circles and rectangles. It can be seen from
Fig. 12 that each individual sub-source of the input
data is typi"ed by q features or perspectives at the
output layer. Therefore, the overall learning classi-
"cation system comprises q perspective neural net-
works which can be summarized in Fig. 13.
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Fig. 12. Output neurons at LEP neural network.

Fig. 13. LEP overall neural network structure.

To classify the input block pattern, each input
feature is connected to a perspective array of out-
put neurones which represent di!erent sub-sources
or classes. Competitive learning is then run inside
each perspective neural network in Fig. 13 to ob-
tain a small proportion of winners in terms of the
potential values computed at the output neurones.
The potential value is calculated from a so-called
activated function. The winners obtained from each
neural network, in fact, are referred to as activated.
That is because the real winner would be picked up
by the overall neural network rather than each
individual one, and the winner is a sub-source rep-
resented by a column in Fig. 12. Since those ac-
tivated sub-units or neurones picked up by each
individual neural network will not always belong to
the same output sub-source, the overall winner will
not be selected until all of its sub-units are
activated. In Fig. 13, for example, if all triangle
neurones are activated in each perspective neural

network, the overall winner will then be the sub-
source represented by the column of triangles in
Fig. 12. In case no match is found, a new sub-
source has to be added to the system.

An extended delta learning rule is designed to
update the connection weights Mw

(mn)(jk)
, m"

1, 2,2,M
n
; n"1, 2,2,N; j"1, 2,2, p, k"

1, 2,2, qN only for those winning sub-sources. The
weight, w

(mn)(jk)
, de"nes the connection strength

between the (mn)th input neurone and the ( jk)th
output neurone. The modi"cation is

Ds
(mn)(jk)

"d(s
mn

, w
(mn)(jk)

)c
j
a(e

i
), k"1, 2,2, q,

(4.1)

where d(s
(mn)

, w
(mn)(jk)

) is de"ned as similarity
measures [21]; c

j
"+a

k
c
jk

is the so-called total
con"dence factor of sub-source j with respect to the
input pattern. To judge the reliability of learned
information and to decide how far the learning
process can modify the existing connection
strengths, an experience record, e

j
, for each sub-

source is de"ned by the number of times the sub-
source has won the competition. In order to be
adaptive to the spatially and temporally variant
environment, the learning process is also subject to
a forgetting process where an experienced attenu-
ation factor is considered.

The K}L transform neural network implemented
in Fig. 11 is another example of developing the
existing technology into neural learning algorithms
[21]. As explained in Section 2.1, the idea of the
K}L transform is to de-correlate the input data and
produce a set of orthonormal eigenvectors in de-
scending order with respect to variance amplitude.
Hence image compression can be achieved by
choosing a number of largest principal components
out of the whole eigenvector set to reconstruct the
image. The neural network structure is the same as
that of LEP. For the ith neurone at the output
layer, the vector of weight regarding connections to
all the input neurones can be represented by Mw

ij
,

j"1, 2,2, NN, where N is the dimension of input
vectors. After a certain number of complete learn-
ing cycles, all the weight vectors, Mw

ij
, j"1, 2,2,

NN, can be taken as the eigenvectors for the particu-
lar K}L transform. Therefore, each weight vector
associated with the output neurone represents one
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axis of the new co-ordinate system. In other words,
the training of the neural network is designed to
converge all the axes in the output neurones to the
new co-ordinate system described by the orthonor-
mal eigenvectors.

The function within the ith neurone at the output
layer is de"ned as the squared projection of the
input pattern on the ith co-ordinate in N!i#1
dimensional space:

u
i
"A

N
+
j/1

w
ij
s
jB

2
, (4.2)

where w
ij

is the weight of connection between the
jth input neurone and the ith output neurone, and
s
j
is the jth element of the input vector.
The learning rule is designed on the basis of

rotating each co-ordinate axis of the original N-
dimensional Cartesian co-ordinate system to the
main direction of the processed vectors. Speci"-
cally, each time an input vector comes into the
network, all the output neurones will be trained
one by one, sequentially, for a maximum of N!1
times until the angle of rotation is so small that the
axis represented by the neurone concerned is al-
most the same as the main direction of the input
patterns. This algorithm is basically developed
from the mathematical iterations for obtaining
K}L transforms conventionally. As a matter of fact,
the back-propagation learning discussed earlier can
be adopted to achieve a good approximation of the
K}L transform and an improvement over its pro-
cessing speed.

With this adaptive image coding system, a com-
pression performance of 0.18 bit/pixel is reported
for 8 bit grey level images [21].

4.2. Lossless image compression

Lossless image compression covers another im-
portant side of image coding where images can be
reconstructed exactly the same as originals without
losing any information. There are a number of key
application areas, notably the compression of
X-ray images, in which distortion or error cannot
be tolerated.

Theoretically, lossless image compression can be
described as an inductive inference problem, in

which a conditional probability distribution of fu-
ture data is learned from the previously encoded
data set: C"Mx

mn
: n(j and 0)m(N; n"j and

0)m(iN, where the image encoded is of the size
N]M, and x

ij
is the next pixel to be encoded. To

achieve the best possible compression performance,
it is desired to make inferences on x

ij
such that the

probability assigned to the entire two dimensional
data set,

PMx
ij
Di, j3(N, M)N"

N~1, M~1
<

i, j/0

P(x
ij
DS

ij
), S

ij
-C,

(4.3)

is maximized, where S
ij

is the context used to condi-
tion the probability assigned.

Due to the fact that images are digitized from
analogue signals, strong correlation exists among
neighbouring pixels. In practice, therefore, various
prediction techniques [22,27,35,43,44,71] are de-
veloped to assist with the above inferences. The
idea is to de-correlate the pixel data in such a way
that the residue of the prediction becomes an inde-
pendent random data set. Hence, better inferences
can be made to maximize the probabilities allo-
cated to all error entries, and the entropy of the
error data set can also be minimized correspond-
ingly. As a matter of fact, comparative studies
[43,71] reveal that the main redundancy reduction
is achieved through the inferences of the maximum
probability assigned to each pixel encoded. The
context based algorithm [71], for instance, gives
the best performance according to the results re-
ported in the literature.

Normally, the criterion for prediction is to min-
imize the values of errors in which a mean square
error function (MSE) is used to measure the predic-
tion performance. This notion leads to a number of
linear adaptive prediction schemes which produce
a good compression of images on a lossless basis
[37,43]. Since prediction also reduces spatial re-
dundancy in image pixels, another criterion of min-
imizing the zero-order entropy of those errors
proves working better than MSE based prediction
[30] which often leads to non-linear prediction
[44] or complicated linear prediction out of iter-
ations [30]. This is put forward from the observa-
tion that optimal MSE based prediction does not
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Fig. 14. (a) Predictive pattern for entropy optimal linear prediction; (b) multi-layer perceptron neural network structure.

necessarily yield optimal entropy of the predicted
errors. Experiments [30] show that around 10%
di!erence exists between the MSE based prediction
and the entropy based prediction in terms of the
entropy of errors. Under such a context, one possi-
bility of using neural networks for lossless image
compression is to train the network such that min-
imum entropy of its hidden layer outputs can be
obtained. The output values equivalent to the
predicted errors is then further entropy coded by
Hu!man or arithmetic coding algorithms.

The work reported in [30] can be taken as an
example close to the above scheme. In this work,
lossless compression is achieved through both lin-
ear prediction and non-linear prediction in which
linear prediction is used "rst to compress the
smooth areas of the input image and the non-linear
prediction implemented on the neural network is
used for those non-smooth areas. Fig. 14 illustrates
the linear predictive pattern (Fig. 14(a)) and the
multi-layer perceptron neural network structure
(Fig. 14(b)). The linear prediction is designed ac-
cording to the criterion that minimum entropy of
the predicted errors is achieved. This is carried out
through a number of iterations to re"ne the coe$-
cients towards their optimal values. Hence, each
image will have its own optimal coe$cients and
these have to be transmitted as the overhead. After
the "rst pass, each pixel will have a corresponding

error produced from the optimal linear prediction
represented as g(i, j). The pixel is further classi"ed
as being inside the non-smooth area if the predicted
errors of its neighbouring pixels 1, and 2 given in
Fig. 14(a) satisfy the following equation:

TH
1
(Dg(i, j!1)#g(i!1, j)D(TH

2
, (4.4)

where TH
1

and TH
2

stand for the thresholds.
Around the pixel to be encoded, four predicted

errors, Mg
i~1,j

, g
i~1,j~1

, g
i,j~1

, g
i`1,j~1

N, whose
positions are shown in Fig. 15 are taken as the
input of the neural network and a supervised train-
ing is applied to adjust the weights and thresholds
to minimize the MSE between the desired output,
g(i, j), and the real output. After the training is
"nished, the values of weights and thresholds are
transmitted as overheads to the decoding end and
the neural network is ready to apply a further
non-linear prediction to those pixels inside
non-smooth areas. The overheads incurred in both
optimal linear and neural network non-linear
prediction can be viewed as an extra cost for statis-
tics modelling [71]. In fact, the entropy-based cri-
terion is to optimize the predictive coe$cients by
taking probability assignment or statistical model-
ling into consideration. No work has been re-
ported, however, regarding how the coe$cients can
be e$ciently and adaptively optimised under such
a context without signi"cantly increasing the
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Fig. 15. Predictive pattern. Fig. 16. VQ neural network assisted prediction.

modelling cost (intensive computing, overheads
etc.). This remains an interesting area for further
research.

Edge detection based prediction under develop-
ment by the new JPEG-LS standard [40] produces
a simple yet successful prediction scheme in terms
of reducing the predicted error entropy. It takes the
three neighbouring pixels, the north, the west and
the north west location, into consideration to deter-
mine the predictive value depending on whether
a vertical edge or a horizontal edge is detected or
not. Detailed discussion of such a scheme, however,
is outside the category of this paper since it is not
directly relevant to any neural network application.
Further details are referred to the JPEG-LS docu-
ments [40].

With MSE based linear prediction, the main
problem is that the predictive value for any pixel
has to be optimized by its preceding pixel values
rather than the pixel itself. Fig. 15 illustrates an
example of predictive pattern in which the pixel
x
ij

is to be predicted by its neighbouring four pixels
as identi"ed by x

i~1,j~1
, x

i,j~1
, x

i`1, j~1
and

x
i~1, j

. Thus the predictive value of x
ij

can be ex-
pressed as

p
ij
"a1

ij
x
i~1, j

#a2
ij
x
i~1, j~1

#a3
ij
x
i, j~1

#a4
ij
x
i`1, j~1

. (4.5)

To optimize the value of P
ij
, a group of encoded

pixels as shown inside the dashed line area in

Fig. 15 which can also be represented by 6 can
be selected in place of the pixel x

ij
to determine the

best possible values of a1
ij
, a2

ij
, a3

ij
and a4

ij
. When the

MSE criterion is used, the problem comes down to
minimizing the following error function:

e" +
Xij|6

(x
ij
!p

ij
)2. (4.6)

The idea is based on the assumption that the coe$-
cients, a1

ij
, a2

ij
, a3

ij
and a4

ij
, will give the best possible

predictive value P
ij

if they can keep the total error
in predicting all other pixels inside the window in
Fig. 15 to a minimum. The assumption is made on
the ground that the image pixels are highly corre-
lated. But when the window goes through those
drastically changed image content areas like edges,
lines, etc., the assumption would not be correct
which causes serious distortion between the predic-
tive value and the current pixel value encoded. One
way of resolving this problem is to use a vector
quantization neural network to quantize the pixels
in 6 into a number of clusters [27]. The idea is to
use the neural network to coarsely pre-classify all
the pixels inside the window 6 and to exclude
those pixels which are unlikely to be close to the
pixel to be predicted. In other words, only those
pixels which are classi"ed as being inside the same
group by the vector quantization neural network
are involved in the above MSE based optimal lin-
ear prediction. The overall structure of the system
can be illustrated in Fig. 16 in which the vector
quantization neural network is adopted to produce
an adaptive code-book for quantizing or pre-clas-
sifying the part of image up to the pixel to be
predicted. Since the vector quantization is only
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used to pre-classify those previously encoded
pixels, no loss of information is incurred during this
pre-classi"cation process. To this end, such a neu-
ral network application can be viewed as an in-
direct application for lossless image compression.
By considering each pixel as an individual symbol
in a pre-de"ned scanned order, other general loss-
less data compression neural networks can also be
applied for image compression [28,59].

In fact, theoretical results are analysed [56]
based on Kolmogorov's mapping neural network
existence theorem [20] that a C grey level image of
n]n can be completely described by a three-layer
neural network with 2vlog nw inputs, 4vlog nw#2
hidden neurones and vlog Cw output neurones
[56]. This leads to a storage of full connections
represented by: 8 vlog2 nw#(1#vlog Cw)4 log n
#2vlog Cw . Compared with the original image
which requires vlog Cwn2 bits, a theoretical lossless
compression ratio can be expected. Further re-
search, therefore, can be initiated under the guid-
ance of this analysis to achieve the theoretical tar-
get for various classes of input images.

5. Conclusions

In this paper, we have discussed various up-to-
date image compression neural networks which are
classi"ed into three di!erent categories according
to the nature of their applications and design.
These include direct development of neural
learning algorithms for image compression, neural
network implementation of traditional image
compression algorithms, and indirect applications
of neural networks to assist with those existing
image compression techniques.

With direct learning algorithm development,
vector quantization neural networks and narrow-
channel neural networks stand out to be the most
promising technique which have shown competi-
tive performances and even improvements over
those traditional algorithms. While conventional
image compression technology is developed along
the route of compacting information (transforms
within di!erent domains), then quantization and
entropy coding, the principal components extrac-
tion based narrow-channel neural networks pro-

duce better approximation of extracting principal
components from the input images, and VQ neural
networks make a good replacement for quantiz-
ation. Since vector quantization is included in
many image compression algorithms such as those
wavelets based variations, etc., many practical ap-
plications can be initiated in image processing and
image coding related area.

Theoretically, all the existing state-of-the-art im-
age compression algorithms can be possibly imple-
mented by extended neural network structures,
such as wavelets, fractals and predictive coding
described in this paper. One of the advantages of
doing so is that implementation of various tech-
niques can be standardized on dedicated hardware
and architectures. Extensive evaluation and assess-
ment for a wide range of di!erent techniques and
algorithms can be conveniently carried out on gen-
eralized neural network structures. From this point
of view, image compression development can be
made essentially as the design of learning algo-
rithms for neural networks. People often get wrong
impressions that neural networks are computing
intensive and time consuming. The fact is the con-
trary. For most neural networks discussed in the
paper, the main bottleneck is the training or con-
vergence of coupling weights. This stage, however,
is only a preparation for the neural network. This
will not a!ect the actual processing speed. In the
case of vector quantization, for example, a set of
pre-de"ned image samples is often used to train the
neural network. After the training is "nished, the
converged code-book will be used to vector quan-
tize all the input images throughout the whole
process due to the generalization property in neural
networks [4,9]. To this end, the neural network will
at least perform as equally e$cient as that of con-
ventional vector quantizers for software implemen-
tation. As a matter of fact, recent work carried out
at Loughborough clearly shows that when LBG is
implemented on a neural network structure, the
software simulation is actually faster than the
conventional LBG [4]. With dedicated hardware
implementation, the massive parallel computing
nature of neural networks is quite obvious due to
the parallel structure and arrangement of all the
neurones within each layer. In addition, neural
networks can also be implemented on general
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purpose parallel processing architectures or arrays
with programmable capability to change their
structures and hence their functionality [18,73].

Indirect neural network applications are de-
veloped to assist with traditional techniques and
provide a very good potential for further improve-
ment on conventional image coding and compres-
sion algorithms. This is typi"ed by signi"cant
research work on image pattern recognition,
feature extraction and classi"cations by neural net-
works. When traditional compression technology is
applied to those pre-processed patterns and fea-
tures, it can be expected to achieve improvement by
using neural networks since their applications in
these area are well established. Hence, image pro-
cessing based compression technology could be one
of the major research directions in the next stage of
image compression development.

At present, research in image compression neural
networks is limited to the mode pioneered by con-
ventional technology, namely, information compact-
ing (transforms)#quantization#entropy coding.
Neural networks are only developed to target indi-
vidual problems inside this mode [9,15,36,47].
Typical examples are the narrow channel type for
information compacting, and LVQ for quantiz-
ation, etc. Although signi"cant work has been done
towards neural network development for image
compression, and strong competition can be forced
on conventional techniques, it is premature to say
that neural network technology standing alone can
provide better solutions for practical image coding
problems in comparison with those traditional
techniques. Co-ordinated e!orts world-wide are re-
quired to assess the neural networks developed on
practical applications in which the training set and
image samples should be standardized. In this way,
every algorithm proposed can go through the same
assessment with the same test data set. Further
research can also be targeted to design neural net-
works capable of both information compacting and
quantizing. Hence the advantages of both tech-
niques can be fully exploited. Therefore, future re-
search work in image compression neural networks
can be considered by designing more hidden layers
to allow the neural networks go through more
interactive training and sophisticated learning pro-
cedures. Accordingly, high performance compres-

sion algorithms may be developed and imple-
mented in those neural networks. Within the infras-
tructure, dynamic connections of various neurones
and non-linear transfer functions can also be con-
sidered and explored to improve their learning per-
formances for those image patterns with drastically
changed statistics.
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