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Abstract
Given a set of 3D points that we know lie on the

surface of an object, we can de�ne many possible sur-

faces that pass through all of these points. Even when

we consider only surface triangulations, there are still

an exponential number of valid triangulations that all

�t the data. Each triangulation will produce a di�erent

faceted surface connecting the points.

Our goal is to overcome this ambiguity and �nd the

particular surface that is closest to the true object sur-

face. We do not know the true surface but instead we

assume that we have a set of images of the object. We

propose selecting a triangulation based on its consis-

tency with this set of images of the object. We present

an algorithm that starts with an initial rough triangu-

lation and re�nes the triangulation until it obtains a

surface that best accounts for the images of the object.

Our method is thus able to overcome the surface ambi-

guity problem and at the same time capture sharp cor-

ners and handle concave regions and occlusions. We

show results for a few real objects.

1 Introduction
The shape of a 3D object is often represented as a

3D point cloud in vision literature, and much research
has focused on obtaining accurate 3D point clouds in
�elds such as stereo and Structure from Motion. This,
however, is only part of the shape recovery problem.
Often what is desired is a full surface model of the
object. In many cases the surface model of choice is a
triangulation of the features, and this is the model we
consider in this paper.

The existence of many possible triangulations, each
producing a di�erent surface, poses an immediate dif-
�culty in triangulating 3D points. For example, Fig-
ure 1 illustrates two of many possible triangulations of
a given set of 3D points. There is obviously insu�cient
information in the point set alone to de�ne a contin-
uous surface, and choice between these or other solu-
tions is arbitrary. Determining the most \desirable"

Figure 1: Two possible surface triangulations of a 3D
point cloud. There is insu�cient information in the
3D points alone to choose between these or a host of
other possible surfaces.

solution requires either heuristics or further informa-
tion. In this paper we examine how the information
provided by a set of images of the object can be used
to guide selection of a surface triangulation.

Much attention has been paid to the task of obtain-
ing a surface mesh from 3D data points on an unknown
surface in the graphics literature [1, 2, 3, 4, 6, 9]. Typ-
ically geometric properties of the mesh are optimized,
such as relative shape, size and orientation of trian-
gles, in the hope that this will result in faithfulness to
an unknown surface. This works well for dense points
on smooth surfaces, but when the features are sparse
and the object contains sharp corners, mesh properties
alone will not necessarily enforce good approximation
to the true surface and numerous artifacts are often
generated. In many vision problems, such as Structure
from Motion, we obtain sparse 3D data and want to
create a surface model from this. Currently, surfaces
are speci�ed manually [5, 7] or else various heuristics
are used to create a suitable triangulation, such as
performing a 2D Delaunay triangulation in one of the
images and projecting this into 3D. When these meth-
ods produce artifacts, manual correction is necessary.
Example artifacts resulting from selecting a geometri-



Figure 2: Triangulation obtained using Delaunay tri-
angulation in a projected plane and projected back
onto the 3D object. Notice the edges do not cor-
respond to the cube edges, with the result that the
texture-mapped shape on the right has large artifacts.

cally optimized triangulation for surface modeling are
illustrated in Figure 2. Here some of the triangular
faces cut through the true surface, and when the re-
sulting shape is texture-mapped, the deformations are
clearly visible.

Vision applications typically have additional sur-
face information in terms of images of the object. Here
we propose to use the images for automatically deter-
mining the best triangulation of the features. A trian-
gulation determines a texture-mapped surface model
of the object, and we \select" a particular triangula-
tion using the error between the images and the re-
projected surface model. We will formulate this as
a maximum likelihood estimation problem over the
space of triangulations.

Our technique requires optimizing over the space
of valid triangulations. We use edge swaps [12, 9] to
generate new triangulations and depend on a theorem
by Ore [13] to show that this enables us to achieve all
possible triangulations. Then we use a greedy algo-
rithm to search for the best triangulation. Figure 3
illustrates the goal of our algorithm; namely a re�ne-
ment of the surface triangulation that is closer to the
true surface and as a result removes artifacts in the
re-projected images. In this work we do not consider
adding or removing vertices of a triangulation, but
simply ask what is the best triangulation obtainable
from a given vertex set.

2 Surface Modeling
Ideally we would like to �nd the true surface of the

object viewed in a set of images. If we could per-
fectly model surface shape, re
ectance and lighting,
we could create a virtual surface whose projection into
all the images is identical to the actual images. The
optimal virtual surface is consistent with the images,
and while not necessarily unique [11], constitutes our

Figure 3: The surface triangulation in Figure 2 is cor-
rected, and the resulting texture-mapped shape on the
right does not have large artifacts.

surface model. We will make a number of simpli�-
cations and approximations to this surface modeling
task, and our goal will be to �nd a restricted surface
model whose projection into all of the images is as
close as possible to the actual images. We formulate
this as a maximum likelihood estimation problem over
the space of triangulations.

2.1 Assumptions and Approximations

We start with a set of images I = fI1; : : : ; INg of a
rigid object taken with a calibrated camera. We know
the 3D coordinates of a set of (possibly sparse) feature
points on the surface of the object and their projected
coordinates in the image taken by a calibrated camera.
Equivalently we may just have a registered set of fea-
tures in an image set, and use Structure from Motion
to obtain the 3D coordinates and camera positions.
For simplicity and generality we assume a Lambertian
model for the surface re
ectance and constant light-
ing. We will triangulate the feature points and hence
obtain surface detail up to the size of the triangles. We
ignore the possible non-uniqueness of the solution and
assume that the images along with the triangulation
constraints are su�cient to de�ne a unique surface.

2.2 Surface Estimation

Our surface model is a triangulation, Ti, along with
a texture map, Ai, on all of the surface triangles. A
particular triangulation determines a set of edges and
faces connecting the 3D feature points. In general
there are many possible triangulations of a 3D feature
set. Given a triangulation and texture map constitut-
ing the virtual surface, the predicted image set Î is
obtained as a projection of this:

Î = �[Ti;Ai] (1)

where �[: : :] is our known projection camera operator
onto all of the images.

The texture map, Ai, for a given triangulation can
be estimated directly from the actual image set, I,



and the triangulation, Ti, by inverting the projection:

Ai = ��1[Ti; I] (2)

where the inverse projection operator ��1 projects
each image onto the triangulation Ti and averages
faces onto which more than one image projects. Thus
the predicted image Î from equation (1) depends only
on the triangulation Ti and original image sequence I.

Our prior probability on triangulations is assumed
to be uniform, and so our goal will be to obtain the
maximum likelihood triangulation for the given image
set. This is achieved by �nding:

argmax P (IjTi)
Ti

(3)

over all triangulations Ti, where P (IjTi) denotes the
likelihood of a triangulation Ti for image set I. We
can derive an expression for this likelihood in terms of
the actual images and the predicted images as follows.

Suppose there is a triangulation, T�, corresponding
to the true surface and from it we obtain a predicted
image set Î�. Let a pixel in an image be denoted
as x, and we model each pixel in an actual image as
resulting from the back-projected image pixel and a
noise term:

I(x) = Î�(x) + ��: (4)

We assume that the noise, �, is independent for all
pixels in all images, has zero mean and is Gaussian
with variance �2. If we have the image set I(x) and
the correct predicted image set Î�(x), the variance of
the noise can be estimated directly from this equation
as the mean squared error over all M pixels: �2 �P

x2I
(I(x)� Î(x)�)

2=M .
Hence the likelihood of a triangulation is given by

a normal distribution:

P (IjT�) = N (Î(x);�); (5)

with variance:

� =
X

x2I

(I(x) � Î(x))2: (6)

Our predicted images Î are obtained using the pro-
jection: Î = �[Ti;�

�1[Ti; I]] from equations (1) and
(2). The likelihood is maximized when the variance,
�, is minimized. If we approximate the likelihood of
non-optimal triangulations by analogous expressions,
then the maximum likelihood estimate is obtained by
�nding the triangulation that gives the smallest total
variance �. Thus our maximum likelihood solution is
simply the minimum variance solution. This also cor-
responds to the triangulation whose actual and pre-
dicted images have the minimum squared di�erence
over all pixels.
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Figure 4: (a) An example triangulation on �ve vertices.

The boundary B contains 4 vertices and their joining

edges. The four triangular faces are each shaded with a

di�erent pattern. The triangulation in (b) is obtained by

swapping edge e25 of (a) which becomes e13. The swap

operation on edge e45 of the triangulation in (a) is possi-

ble even though the quadrilateral obtained by joining its

adjacent faces, f145 and f345, is not convex. Triangulation

(c) is the result of this swap, and if viewed as a surface

model in 3D, face f135 is hidden. The graph is still planar,

however, and can be re-embedded in the plane so that no

edges intersect except at vertices, as shown in diagram (d).

Finally we note that some edges in (d) cannot be swapped

such as e15 since the new edge that would be formed, in

this case e23, already exists.

3 Surface Triangulations

We have reduced our surface estimation task to a
task of searching for the best triangulation over all
the triangulations on a given vertex set. This is still
an exponential search problem, but at least one that
can be well de�ned and constrained. In this section
we de�ne a triangulation and the space of possible
triangulations. We propose using edge swaps as a basis
for traversing the space of triangulations, and �nally
provide a search algorithm to �nd the best surface
triangulation.

3.1 Triangulation De�nition

Consider a set of 3D features lying on the surface
of an object which we would like to triangulate. For
simplicity we also assume that the object has no holes,
and thus since it is topologically a sphere or a plane
segment, it can be represented by a planar graph Ti
with vertex set fv1; : : : ;vng corresponding to n fea-
ture points and edge set feij; : : :g where edge eij joins
vertices vi and vj.

Figure 4 (a) illustrates a triangulation on �ve ver-
tices. The faces in a triangulation all have three edges,
except for possibly the one external unbounded face



that can have more than 3 edges. The three-edged
faces can be drawn as straight-line triangles and are
denoted as as fijk where vertices vi, vj and vk and
their joining edges form the face boundary. A trian-
gulation boundary, B, is a circuit on a speci�ed sub-
set of the vertices and edges that can partition the
graph into two regions of the plane, one of which is
a single face and the other contains all the remaining
edges and vertices. To reduce the search space, we
assume the boundary on the vertex set is known and
for example may correspond to the convex hull of the
features in one of the images. Surfaces that are topo-
logically spherical do not need a boundary. Finally we
let all triangulations with the same boundary, B, de-
�ne a boundary class. Assuming we know the surface
boundary, our search space consists of all the triangles
of this boundary class.

3.2 Edge Swapping

Searching over the triangulation space necessitates
that we have a method for �nding new triangulations.
We propose using the swap operator to generate new
triangulations from a current triangulation.

The boundaries of two adjacent triangular faces
share a common edge and two common vertices. Per-
forming a swap on this edge deletes the edge and
creates a new edge joining the two vertices of the
faces that are not shared, as illustrated in Figure 4.
The Figure also illustrates some edges that cannot be
swapped, such as edge e15 in (d) and the boundary
edges. Unlike 2D and 2.5D applications [12, 9], we
permit a swap on an edge even when the two adja-
cent triangular faces form a non-convex quadrilateral,
as in edge e45 of Figure 4(a). We permit this be-
cause the particular embedding in the plane of the
resulting triangulation is unimportant and will be dif-
ferent for each image. All that is required is that pla-
narity is maintained, and hence that there exists a
re-embedding of Figure 4(c) such that there are no
intersections of edges, as in Figure 4(d).

We will use our swap operator to search through
the space of triangulations, and we would like guar-
antees both that the swap operator always maintains
valid triangulations and also that there are no trian-
gulations in the search space that cannot be reached
by edge swaps. It can easily be con�rmed that a swap
operator always takes a triangulation of one boundary
class to a valid triangulation of the same boundary
class by showing that the conditions for a triangu-
lation are always met after an edge swap. To show
the generality of swap operators we de�ne an equiva-
lence relationship between triangulations of the same
boundary class to be: TA � TB if and only if TA can

be transformed into TB by a sequence of swaps. Then
we state the following theorem:

Theorem 3.1. All triangulations of a given boundary

class are equivalent under edge swaps.

This theorem is proved for full triangulations and then
extended to boundary cases by Ore [13] page 9. This
theorem guarantees that if there is a true triangula-
tion, T�, then by by using edge swaps we can exhaus-
tively search through the space of triangulations until
we �nd it. It does not, however, preclude an optimiza-
tion algorithm from being trapped by local minima.

3.3 Finding the Best Triangulation

A triangulation de�nes a cost or variance � from
equation (6). Assume we start with some initial tri-
angulation of a vertex set. We are then free to devise
various search methods on the space of triangulations
to �nd the triangulation with minimum cost. We for-
mulate a greedy search as follows:

1. Start with an initial triangulation and �nd the
cost of all the faces, the sum of which equals
the cost of the triangulation, � in equation (6).
For each edge that can be swapped �nd the
cost di�erence between the triangulation before
it is swapped, and the triangulation after it is
swapped.

2. If there are no swaps that reduce the cost of the
triangulation then terminate.

3. Swap the edge that produces the greatest reduc-
tion in cost, �.

4. Update the costs of all faces as well as the change
in cost due to each potential swap.

5. Return to step 2.

In regions of little or no texture, swapping edges
may produce complicated overlapping surfaces. These
surfaces include hidden faces which increase surface
complexity without helping to explain the images. In
order to bias the algorithm to simpler surfaces we as-
sume that each triangle of the 3D surface is visible in
at least one image. Thus we exclude potential swaps
that produce completely hidden faces.

This algorithm converges to a local minimum. Con-
vergence to the true or a \good" surface depends on
the starting triangulation and the local costs of swaps.
Empirically we found very good convergence for con-
vex corners and regions. Concave regions are harder
and occlusions are more likely, and so the chance of be-
ing trapped by local minima in the cost is also higher.
For the complexity of objects shown in this paper,
however, the convergence was good.



Figure 5: Image sequence of church door with features obtained by tracking by hand and then using a SFM
algorithm to recover shape and better feature position estimates. Notice the signi�cant varying specular re
ection
on the door. Although this e�ect is unmodeled and creates a larger re-projection error as shown in Figure 7, it
does so for all the triangulations and the method remains robust to this.

3.4 Method Simplication

There are a number of factors that signi�cantly ef-
fect the e�ciency of the algorithm. First we reduce
the size of our images by a quarter in each dimension
using Gaussian pyramid sub-sampling, and hence re-
duce the number of pixel calculations by 1/16. If swap-
ping an edge between two triangles does not change
the visible area of the two triangles in an image, then
the change in cost from that image is only due to the
two triangles adjacent to the edge. This is the case
when the triangles form a convex quadrilateral in the
image. There are cases, however, when swapping an
edge reveals portions of triangles that were previously
occluded or else covers over previously visible trian-
gles. In these cases the newly revealed or occluded
faces must have their costs updated. A fast approxi-
mate way of achieving this which we implemented is to
add the average variance of a pixel to the cost for each
pixel revealed and subtract this for each pixel covered
over, rather than explicitly calculating the new costs
for each of these faces.

Another simpli�cation we made in our implementa-
tion was in the calculation of the re-projected images,
Î, in equation (1). Instead of perspectively projecting
the images onto the surface and re-projecting them
back, we used a�ne warping of the triangles. For face
f in image Ij, we obtain an estimate of each for its
pixels as:

Îfj(xj) =
X

i

Ifi(xi)Vfi(xi)WfiP
i Vfi(xi)Wfi

: (7)

Here xi is the pixel position in image Ii that corre-
sponds to pixel xj in image Ij. It is found by a�nely
warping the trianglular face f in image Ij onto the tri-
angle in image Ii. The visibility map, Vfi(xi), is 1 if
the pixel xi on face f is visible and 0 if occluded. The
weight, Wfi, given to a pixel is equal to the number
of visible pixels in the triangle in that image. This
averaging scheme gives head-on views of faces more
weight than oblique views. It also provides less blur-
ring than a two-step projection followed by inverse

projection. The a�ne approximation itself is valid so
long as any given triangle does not have signi�cant
perspective distortion.

3.5 Triangle Initialization

If not all the vertices are visible in any one image,
it may be necessary to patch together a number of tri-
angulations from di�erent images. For points visible
in one image we could start with a Delaunay triangu-
lation of these. Alternatively we could select a set of
images in which these points are all visible and greed-
ily grow a triangulation as follows:

1. Start with a closed edge list,E, such as the convex
hull, and a set of vertices on and internal to E.

2. Select one of the edges in E, perhaps the longest
edge. Find all vertices on and internal to E that
form triangles with this edge which do not contain
any of the other vertices in any of the images and
do not intersect any edges in E. Let S be this set
of triangles.

3. Pairwise, compare re-projection costs in overlap-
ping regions of triangles in S and eliminate trian-
gles until the best triangle, T , remains.

4. Remove from E all edges also in T , and add to E
the remaining edges in T .

5. If E still contains edges return to step 2.

In some cases, such as the cube in Figure 3, this
growing method alone can obtain a correct triangu-
lation. In other cases, applying edge swapping can
improve this initial result, as this method does not
use all the pixels in the images and does not handle
occluded faces.

4 Results
We provide results of triangulation re�nement on

three real image sequences. First we show a cube in
Figures 2 and 3. Features were selected and registered
by hand on all seven images of a short sequence. A
Structure from Motion algorithm was used to recover
the 3D position of the features and the camera posi-
tions, orientations and focal length [10]. A standard



Figure 6: On top is a 2D Delaunay triangulation of the
middle image in the sequence. The dashed lines show
edges that result in triangles cutting through or lying
above the surface. Below is the re�ned triangulation.

Figure 7: The re-projected error at each pixel in one
of the images. On the left is the re-projection error
assuming our initial surface triangulation, and on the
right is the re-reprojection error with the �nal re�ned
triangulation.

automated method for triangulating the points is to
perform Delaunay triangulation in one of the images,
and this was done in the middle image as is illustrated
in Figure 2. A number of the faces intersect the true
surface, and the resulting predicted surface does not
correspond well to the image sequence. After running
our re�nement algorithm we obtain the triangulation
and predicted surface shown in �gure 3.

A similar experiment was performed on a sequence
of �ve images of a church door shown in Figure 5 with

a set of hand-tracked features. Structure from Mo-
tion was used to obtain the shape and camera motion
estimates as well as to correct small errors in feature
positions. A Delaunay triangulation was performed in
the middle image as is illustrated in Figure 6. The fea-
ture points and triangle are shown, with the dashed
edges corresponding to edges that force faces to cut
through the true surface or lie above the true surface.
The resulting re-projected error in one of the images
is shown in Figure 7. Applying our re�nement algo-
rithm to this triangulation reduces this re-projected
error and we obtain the triangulation shown in Fig-
ures 6 and 7. Only two of the updated edges cause
poor faces. One of these is not swapped due to insu�-
cient texture and the other because the surface is not
planar. We could apply some texture enhancing op-
erations to the images to overcome the �rst problem
and selecting more points for the second. The result-
ing texture-mapped 3D surfaces are shown in Figure 8.

Finally we performed the same steps on a sequence
of four images of a building. The Delaunay triangula-
tion and our re�ned triangulation along with the cor-
responding texture mapped surfaces are shown in Fig-
ures 9 and 10. We manually selected the boundary.

We note that our sequences contained signi�cant
unmodeled specular re
ections and changes in in-
tensity between images, but these e�ects are similar
across triangulations and so fall out in the noise.

5 Conclusion
We have presented an approach to obtaining surface

models from 3D feature points that uses the images
to guide surface selection. Our method compares the
re-projected images of the predicted surface with the
actual images and uses this measure to select between
competing triangulations and so overcome the surface
ambiguity problem. As a result we can capture sharp
corners which other methods often fail to capture.
We presented an algorithm for searching through the
space of triangulations using edge swaps. We showed
results of our algorithm re�ning typical triangulations
and removing numerous surface artifacts by selecting
a better triangulation. Our method takes us beyond
shape recovery to achieving a surface description of an
unknown object.

By using calibrated cameras and known 3D feature
points, the e�ects of occlusions can be modeled and
used to aid in surface selection. Since each triangula-
tion that is considered must explain all of the image
data, our algorithm is robust to signi�cant levels of
unmodeled e�ects such as specular re
ection and non-
planar surfaces. As long as these unmodeled e�ects
produce similar cost increases in all the triangulations,



Figure 8: On the left are two views of the texture-
mapped surface from the 2D Delaunay triangulation
of Figure 6 showing the artifacts caused by incorrect
triangles. On the right is the result with our re�ned
triangulation shown in the lower part of Figure 6.

Figure 9: On the left is a 2D Delaunay triangulation
and on the right is the re�ned triangulation.

they do not a�ect our choice of surface.

There are still limitations and further areas to pur-
sue. We depend on a judicious selection of feature
points on edges and corners. If, however, we permit-
ted triangles to split and used other cues such as edges
in the images, the algorithm might work with a more
general distribution of features on the object surface.
While in theory we can handle occlusions, they tend
to create local minima in the cost. We plan to inves-
tigate other search methods including randomization
to tackle these more complicated cases.

Figure 10: The triangulated surface created from a 2D
Delaunay triangulation (left) and our re�ned triangu-
lation (right).
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