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ABSTRACT As a mission-critical sensor, SAR has been applied in environmental monitoring and battlefield

surveillance; moreover, SAR target recognition is one of the most important applications of SAR technology.

However, in practical applications, the number of samples available for training is relatively small, so the

SAR target recognition can be regarded as a small sample recognition problem. One of the main directions to

solve the small sample recognition problem is to realize the data augmentation. Therefore, a SAR image data

augmentation method via Generative Adversarial Nets (GAN) is proposed in this paper. The method uses

Wasserstein GAN with a gradient penalty (WGAN-GP) to generate new samples based on existing SAR

data, which can augment the sample number in training dataset. Meanwhile, the sample selection filters

are designed to extract the generated samples with high quality and specific azimuth, which can avoid the

randomness of the data augmentation, and improve the quality of the newly generated training samples.

The experiments based on MSTAR data show that, for three-class recognition problem, when the training

sample is only 108, the proposed method can improve the recognition rate from 79% to 91.6%; and for

ten-class recognition problem, when the training sample is only 360, the proposed method can improve

the recognition rate from 57.48% to 79.59%. Compared with the traditional data linear generation method,

the proposed method shows significant improvement on the quantity and quality of the training samples, and

can effectively solve the problem of the small sample recognition.

INDEX TERMS Synthetic aperture radar, target recognition, small sample recognition, data augmentation,

Generative Adversarial Nets.

I. INTRODUCTION

Synthetic aperture radar (SAR) is a high-resolution imag-

ing radar, which can be worked at all-day and all-weather

conditions. As an important way to use SAR technology,

SAR image target recognition has a wide range of applica-

tions, such as Social Security, Environmental Monitoring and

National Defense etc [1]. Although previous researchers have

done a lot of work, SAR image target recognition is still a very

difficult and challenging research [2].

The current researches for SAR image recognition are

mainly based on the methods from machine learning,

like k-nearest neighbor (KNN) [3], support vector machine

The associate editor coordinating the review of this manuscript and
approving it for publication was Qilian Liang.

(SVM) [4], convolutional neural network (CNN) [5], incre-

mental learning [6] and other algorithms. These classification

methods have high classification accuracy but need a suffi-

cient number of training samples.

In the field of object recognition in optical images,

the ImageNet [7] is a widely used dataset, which contains

about 22,000 classes and nearly 15 million labeled images.

However, data for SAR target recognition is still very limited

in the field of SAR target recognition. Insufficient data limits

the research of SAR target recognition algorithms and the

wide application of SAR technology.

Under contemporary conditions, the SAR target recogni-

tion can be regarded as a small sample recognition problem,

because the number of samples available for training is rela-

tively small. To solve the problem of limited SAR image data,
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it is important to increase the training data rationally via data

augmentation.

Data augmentation is a ubiquitous technology that can

increase the size of training dataset through specific data

transformations. The current data augmentation methods

are mainly include three directions: (1) Geometric data

augmentation, like Rotation/reflection [8], [9], flip, zoom,

shift [10], [11], and scale; (2) Pixels transformation data

augmentation, like color jittering, noise added [12], [13];

(3) Linear synthesis.

Dealing with the SAR image target recognition in lack

of pose images, it proposed increasing the pose coverage of

the training dataset with the pose image synthesis. Based on

a small number of known pose images, [14] uses a sparse

model to linear synthetic SAR images of specific azimuth

angles through a few images with known azimuth angles.

However, we found that some linear synthetic images will

reduce the recognition rate.

While it is often easy for domain experts to specify

individual transformations, constructing and tuning the more

sophisticated compositions typically to achieve state-of-the-

art results is a time-consuming manual task in practice [15].

SAR image simulators based on computer-aided drawing

models play an important role in SAR applications.

RaySAR is a 3D SAR simulator based on ray tracing meth-

ods, which means an enhanced version of the open source

software POV-Ray used to simulate radar signals, namely

azimuth, distance and azimuth elevation [16]. CohRaS@

(Coherent Ray Tracing SAR Simulator) is a SAR simulator

based on ray tracing methods [17]. The ray tracer itself is

based on the concepts developed by Amananatides and Woo

(1987). The simulator is used to simulate small scenes with

high resolution to create training data for the classifier and

sample data for image analyst training. A real-time SAR

image simulation system, which is called SARViz is proposed

in [18]. SARViz uses a rasterization method implemented on

a GPU that allows for very fast simulations, but has certain

limitations in geometry and radiation accuracy.

However, simulators accuracy in these methods is easy to

be influenced by geometric accuracy and simplification in the

process of electromagnetic computation. Therefore, we need

to turn our attention to the field of optical image processing

again.

Currently, generating natural images via deep learning

methods are a research hotpot. Generative adversarial net-

works can generate the samples which are similar to training

samples, by playing games between generative model and

discrimination model. However, training of GAN is diffi-

cult. The loss of generator and discriminator canąŕt indicate

the training process. And the generated samples lack diver-

sity, even sometimes the generated images are full of noise

and difficult to understand. A method of Laplacian pyra-

mid expansion shows its ability to generate the high-quality

images [19], but the goal function seems to be unstable,

mainly due to the introduction of noise when linking multiple

models.

Many papers try to improve this problem. Energy Based

GAN (EBGAN) aims to model the discriminator D(x) as an

energy function [20]. EBGAN also uses its discriminator as

an automatic encoder with an error per-pixel. Deep convo-

lutional generative adversarial networks (DCGAN) relied on

experimental enumeration of discriminators and generators to

find a better set of network architectures [21]. However, it did

not fundamentally solve the problem. In [22] an end-to-end

GANmodel was developed for SAR image simulation-based

directly on real images, but the results are not ideal.

Wasserstein GANs (WGAN) introduces a loss function

which can be used as a measure of convergence [23].

WGAN uses theWasserstein distance to measure the distance

between the distribution of generated data and the real data.

It has made great progress in training stability. But under

certain conditions, the convergence can’t be satisfied and

some generated samples are with low quality.

As the improved version of WGAN, the Wasserstein GAN

with a gradient penalty (WGAN-GP) is proposed with imple-

menting Lipschitz constraints instead of the weight clipping

of WGAN [24]. This method converges faster and can gener-

ate higher quality samples thanWGANwith weight clipping.

Based on the WGAN-GP [24], this paper explores the role

of generating samples and expands the training images for

SAR target recognition. However, the SAR target images

have the characteristics of attitude sensitivity, which means

that, the SAR images of the same target but under different

azimuths will have large differences.

An obvious but important conclusion has been obtained:

when recognizing an unknown sample, only the training sam-

ples, whose azimuth angles are similar and the labels are the

same with the unknown sample, have the major impact [25].

Therefore, it is difficult to use the image or template at a

given azimuth to identify the same target at different azimuth

angles. It needs the training dataset containing as many target

images in all azimuths as possible. So in this paper, the fol-

lowing contributions have been achieved:

(1) Generate the SAR images through WGAN-GP;

(2) Use a binary classification SVM classifier as an image

filter to obtain the samples with high quality;

(3) Design an azimuth discriminator to generate the SAR

samples with specific azimuth.

The rest of this paper is organized as follows.

Section 2 describes the details of the related GAN and

WGAN-GP models. Section 3 shows the whole model of

the proposed method, and in Section 4 the images gener-

ated experiments and recognition experiments are shown.

Section 5 is the conclusion of this paper.

II. THE RELATED THEORY OF WGAN-GP

GAN is a new framework, which can generate the new

samples through the adversarial process. Two models can

be trained at the same time, the generation model G is for

capturing data distribution and the discriminant model D is

for estimating the probability of samples from training data.

The basic structure of GAN is illustrated in Fig.1.
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FIGURE 1. The basic GAN structure.

The core principle of GAN is as following:

min
G

max
D

V (D,G) = Ex∼pdata(x)[logD(x)]

+Ez∼pz(z)[log(1 − D(G(z)))] (1)

The whole formula includes two items. x represents a real

image, z represents the noise that input to the G network,

and G(z) represents the image generated by the G network.

D(x) indicates the probability that the D network determines

whether the image is true (because x is real, so for D,

the closer the value is to 1 the better). And D(G(z)) is the

probability that the D network determines whether the image

generated by G is true.

The purpose of training the discrimination model D is to

maximize the accuracy of discriminability. When this data is

judged to be from real data, the label 1, otherwise, is marked

with 0. To the opposite, the purpose of training the Generative

model G is to minimize the discrimination accuracy of the

discrimination model D. In the training process, GAN adopts

a very direct alternating optimization method, which can be

divided into two parts. The first part is to fix the discrimi-

nation model D, and then optimize the generative model G,

so that the accuracy of the discrimination model is reduced

as much as possible. The other part is to fix the genera-

tive model G, improving the accuracy of the discrimination

model.

WGAN-GPmainly improves GAN from the perspective of

loss function. After the loss function is improved,WGAN-GP

can achieve better performance even at the fully connected

layer. WGAN-GP improves GAN mainly by:

1) The last layer of the discriminator removes the sigmoid.

2) Generator and discriminator loss does not take log.

3) A new type of lipschitz continuity constraint

method-gradient penalty is proposed, which solves the

problem of the disappearance of the training gradient

explosion.

4) Has faster convergence than standard WGAN and can

generate higher quality samples.

5) Provides a stable GAN training method, requires little

tuning, and successfully trains multiple GAN architec-

tures for image generation and language models.

A unevenly distributed distribution Z of 100-dimensional

is set in this paper, and a new vector after Z-input generative

model is generated. Let this new vector to be the fake Image,

marked as D(z). Selecting a picture randomly from the SAR

image dataset and converts the picture into a vector. Let this

vector be the Real Image, marked as x. D(z) or x is the input

of the discrimination network.

In WGAN-GP, the loss functions of the generator G and

discriminator D are:

L(G) = −Ex∼Pg [D(x)] (2)

Eq. 2 shows that the generator wants to pull the score of the

false sample as high as possible. In the entire sample space,

the gradient of the Lp− norm discriminator function D(x) is

required to be no greater than a finite constant K :

‖∇xD(x)‖ p ≤ K , ∀x ∈ χ (3)

That is, when the input sample changes slightly, the score

given by the discriminator cannot change too sharply.

In WGAN, the restriction is implemented by weight clip-

ping. WGAN-GP is an improved version after WGAN,

mainly to improve the conditions of continuity restrictions,

because after clipping the weight to a certain range, such as

clipping to [−0.01, +0.01], andmost of theweights are found

to be on -0.01 and 0.01, which means that most of the weights

of the network are only two possible numbers.

For deep neural networks, the forced cutting weights tend

to cause the gradients disappear or the gradients explode.

In other words, the weights can’t get updated or the weight

changes greatly with each update, which can easily lead to

unstable training. Gradient disappearance and gradient explo-

sion cause the selection of the shear range. If the selection

range is too small, the gradient will disappear and the range

will be slightly larger. The gradient will become larger after

each layer of the network. Gradient explosions occur after

multiple layers.

In order to solve this problem and find a suitable way to

satisfy the Lipschitz continuity condition, WGAN-GP uses a

gradient penalty method to satisfy this continuity condition.

Since the Lipschitz constraint requires that the gradient of

the discriminator does not exceed K, then a loss function

can be used to satisfy this requirement. That is, to find the

discriminator gradient d(D(x)) at first, and then establish

a norm between K and d(D(x)) to achieve a simple loss

function design. Noticing that the numerical space of the

gradient of D is the entire sample space.

For a dataset that contains both the real data set and the

generated image set, the dimension and its height are clearly
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FIGURE 2. The structure of the proposed model, including three parts: samples random generation, samples quality selection and azimuth
selection.

unsuitable for calculation. It is not necessary to sample the

entire dataset (real images and generated images), as long

as the focus is on the areas of the generated sample set,

the actual set of samples, and the area sandwiched between

them. Specifically, we randomly take a pair of true and false

samples, as well as a 0 − 1 random number:

xr ∼ Pr , xg ∼ Pg, ε ∼ Uniform[0, 1] (4)

Then randomly interpolate samples on the lines connecting

xr and xg,

x̂ = εxr + (1 − ε)xg (5)

The loss of WGAN-GP discriminator:

L(D) = −Ex∼Pr [D(x)] + Ex∼Pg [D(x)]

+ λEx∼Px̂ [‖∇xD(x)‖p − 1]2 (6)

The Px̂ is defined as the sampling uniformly along straight

lines between pairs of points sampled from the data distribu-

tion Pr and the generator distribution Pg. Eq. 6 shows that the

discriminator wants to increase the score of the real sample as

much as possible, pulling down the score of the false sample.

The WGAN-GP’s gradient penalty is only applicable to

the true-false sample set area and the intermediate transition

zone. However, the gradient norm of the discriminator is

directly limited to 1. Therefore, the controllability of the

gradient is very strong and it is easy to adjust to a suitable

value scale. Since a gradient penalty is applied on each sam-

ple independently, the Batch Normalization can’t be used in

the discriminator’s model architecture, because it introduces

interdependencies between different samples in the same

batch.

III. THE PROPOSED DATA AUGMENTATION MODEL

WITH GAN

Based on WGAN-GP, a generative countermeasure network

which is suitable for generating usable SAR images is devel-

oped in this paper. The structure of the proposed model

is shown in Fig.2, including three parts: samples random

generation, samples quality selection and azimuth selection.

The model cascades a binary classification SVM classifier

as an image filter. The images generated by WGAN-GP will

be fed into the pre-trained SVM classifier, and the classified

images with high confidence can be retained and the unrecog-

nizable images will be discarded. The azimuth discriminator

can calculate the target azimuth, and a batch of specific

azimuth images can be selected for further training.

A. SAMPLES GENERATED NETWORKS

The generator network of WGAN-GP in this paper fol-

lows the structure of DCGAN’s generator network, but does

not take log for the loss in the network, and adopts the

Lipschitz continuity restriction method with gradient penalty.

Fig.3 shows the structure of the generator network, in which

Deconv is the abbreviation of deconvolutions, bn is the abbre-

viation of batch normalization, Relu is the abbreviation of

Rectified Linear Units, and Tanh represents the hyperbolic

tangent function. Relu and Tanh are both activation functions.

Based on the DCGAN discriminator network, we remove

the last layer’s sigmoid function and do not take log for

the loss in the network, as shown in Fig.4. Conv is the

abbreviation of convolutional, ln is the abbreviation of layer

normalization. LeakyReLu is activation functions.

On the discrimination network D, a value between 0 and

1 is input to represent the probability that the input picture is

a Fake Image or Real Image. Originally, both the generative

model and the discrimination model are not trained, and

the two models became stronger and stronger during the

confrontational training and eventually reached the steady

state. During this process, the input type of the discrimination

model is (xfake, 0) or (xreal, 0). At the beginning, both the gen-

erative model and the discrimination model are not trained.

The twomodels work together in order to confrontation train-

ing. The generation model generates a picture to deceive the

discrimination model. Then the discrimination model decides

whether the SAR image is true or false.

The generate network is used to generate image samples,

and its purpose is to generate an image that is sufficiently

mixed the spurious with the genuine, through continuous
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FIGURE 3. The network structure of the generator network. The generation network of WGAN-GP in this
section follows the structure of DCGAN’s generation network, but the loss in the network is not taken.
Deconv represents the transposition convolution, bn represents the batch normalization, and Relu (Rectified
Linear Units) and Tanh (the hyperbolic tangent function) are activation functions.

FIGURE 4. The network structure of the discriminator network. The discriminative network of WGAN-GP adopted in this section is improved
on the basis of DCGAN’s discrimination network, and the last layer of sigmoid function is removed. Conv represents convolution, ln (Layer
Normalization) surface standardization, and LeakyReLu is an activation function.

training to maximize the probability that the network dis-

criminates the generated image into a real image. That is,

let the discrimination network make error, judges the input

image is a real image instead of judges it as a fake image

generated by the network. In order to learn the distribution Pg
of the generated network on the data x, define an input noise

variable z, mapping z into the data space, and then training,

generating, and optimizing. The discrimination network is

used to determine the true or false of the generated image.

During the training process, half of the data input from the

discrimination network comes from the real training data, and

the other half comes from the fake image generated by the

generate network. In the training process, the discrimination

network attempts to assign a probability value close to 1 to

the real data; and assigns a probability value close to 0 to the

pseudo sample generated by the generating network, thereby

separating the true and false samples. The structure of the

generated network and the discrimination network is shown

in Fig.3 and Fig.4.

Inside the algorithm, the loop trains the discrimination

network so that it can discern the real sample from the input

sample data, and the loop will eventually converge to D(x) =

Pdata(x)/(Pdata(x)+Pg(x)). The parameters of the discrimina-

tion network are then fixed and the training generate network

is updated. After the update is completed, the gradient of the

generation network will direct the generated image to tend to

be judged by the discriminating network as the direction of

the real sample. Unlike the single iteration update of the orig-

inal GAN network, the network used in this chapter is trained

multiple times. After many training, if the generate network

and the discrimination network reach sufficient complexity,

the generate network and the discrimination network reach
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an equilibrium point:Pg = Pdata, and the probability density

function of the generated sample is equal to the probability

density function of the real sample. At this time, the genera-

tion network can generate an image of ‘‘falsely true’’, and the

network cannot determine the authenticity of the generation

network generated image, that is, D(x) = 1/2.

B. SAMPLE SELECTION VIA CLASSIFICATION

In this stage, the model cascades a binary classification SVM

classifier as an image filter, and the images generated by

WGAN-GP are input to the pre-trained SVM classifier [26].

The classified images with high confidence can be retained

and the unrecognizable images will be discarded. The result-

ing images are pre-screened to increase the availability of the

generated images.

In order to improve the SVM classification efficiency,

extract the target features of SAR images is extracted by

Principal Component Analysis (PCA). PCA is an optimal

orthogonal transformation based on the characteristics of

the target [27]. Fig.5 shows the specific process of our

SVM-based SAR image classification. To ensure the con-

sistency of the experiment, the input for training the SVM

discriminator is the same as the input of GAN. Then the

samples generated by GAN are feed to the trained SVM,

if the recognition rate higher than 90%, these samples can

be judged as positive samples, which will be used for further

recognition.

C. SAMPLE SELECTION VIA AZIMUTH FILTER

The azimuth discriminator model includes target

segmentation, edge extraction, and azimuth discrimination.

The specific process is as follows:

1) TARGET SEGMENTATION

The level-set segmentation method is used to segment the

SAR image generated by the Generation Adversarial Net-

works, and represent the extracted target by a binary matrix.

By writing the energy function of the curve C as an energy

function about the level-set function φ [28], the target areas

can be obtained by following formula:

F(c1, c2, φ) = µ

∫
�

δ(φ(x, y))|∇φ(x, y)|dxdy

+ v

∫
�

H (φ(x, y))dxdy

+ λ1

∫
�

|u0(x, y) − c1|
2H (φ(x, y)dxdy

+ λ2

∫
�

|u0(x, y) − c2|
2(1 − H (φ(x, y))dxdy

(7)

in which, x and y are the pixel of the image, µ, ν, λ1, λ2
are the fixed parameters, and µ ≥0, ν ≥0, λ1, λ2 ≥0. φ is

level set function. � represents bounded open subset of R2.

u0 represents a mapping from � → R, here represents an

image consisting of two regions. The constantsc1 andc2 are

the mean of the pixel points inside and outer the curve C.

The segmentation algorithm steps are as follows:

1) Initialize φ0 = φ0 randomly and n=0, where n is the

number of iterations;

2) According to the formula:

c1(φ) = average(u0)in{φ ≥ 0}

c2(φ) = average(u0)in{φ < 0} (8)

calculate the average c1 and c2;

3) According to the iterative formula:

φn+1
i,j − φni,j

1t
= δh(φ

n
i,j)[µcurvatureij−v−λ1(u0,i,j − c1)

2

+λ2(u0,i,j − c2)
2] (9)

solve φn+1, where 1 ≤ i ≤ M , 1 ≤ j ≤ N , n > 0 and

M × N is the number of image pixels.

After the above process, the SAR target after segmentation

and the target region represented with a binary matrix can be

obtained.

2) EDGE EXTRACTION

The edge extraction is performed on the extracted target area.

If the number of target points is fewer than the critical value,

it is determined as an edge point; otherwise, it is a non-edge

point. The number of target points in the surrounding area

for each point in the extracted target matrix is calculated,

and the target edge information is represented as a binary

edge matrix. If the number of target points is fewer than the

preset threshold, the point will be regarded as an edge point

and assigned a value of 1, otherwise the non-edge point is

assigned a value of 0.

3) AZIMUTH CALCULATION

The azimuth discriminator can calculate the target azimuth,

and a batch of specific azimuth images can be selected for

further training. Theminimum bounding rectangle is added to

the minimum edge area, and the angle between the north end

of the vertical direction and the longest side of the minimum

bounding rectangle clockwise is defined as the azimuth of the

target.

After obtaining the azimuth angle information, according

to the actual need, the samples with specific azimuth angle

will be chosen as the new training samples, to improve the

recognition performance. The azimuth selection process is

shown in Fig.6.

IV. EXPERIMENTS

The experiments are mainly based on the MSTAR dataset.

The SAR images used in our experiments include X-band

and HH polarized SAR images with a resolution of 0.3 m

and are suitable for multiple targets, including BMP2 (tank),

BTR70 (armored vehicle), and T72 (tank)., BTR60 (armored

vehicle), 2S1 (cannon), BRDM2 (truck), D7 (bulldozer), T62

(tank), ZIL131 (truck) and ZSU23 / 4 (cannon).
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FIGURE 5. SAR generated images discrimination model to select the samples with high quality.

FIGURE 6. The azimuth selection process: segmentation, binaryzation
and azimuth extraction.

The images are captured at two different depression angles

of 15◦ and 17◦. Similar to the earlier experiments, the images

with depression angle of 17◦ are used as training set, and the

images with depression angle of 15◦ are used for test [25].

All images in the following experiments were cropped by

extracting 64 × 64 patches from the center of the image,

as shown in Fig. 7.

For the preprocessing of training images, the training

images are scaled to the range of [−1, 1] by the activation

function. The model is trained with mini-batch stochastic

gradient descent. The weighted initialization is a normal

distribution with a mean of 0 and a variance of 0.02. The

model learning rate is set to 0.0001, and the momentum term

is set to 0.5. The original type and sample number of training

and testing set is shown in TABLE 1. The network input is

generated by 64 n-dimensional vectors z, and output an image

of 64 × 64. The number of the filter of the first transposed

convolution layer is 64, the convolution kernel is 4 × 4, and

the step of the transposition convolution is s = 2, after each

transposition convolution, the sliding step is 2, the feature

map will be expanded to the original 2 × 2 = 4 times. For

the discrimination network, the input is the image generated

by the generate network, and the output is the probability that

the input image is a real image. The step of discriminating the

network convolution is s = 2. That is, after each transposition

of the convolution, the sliding step is 2, the feature map is

TABLE 1. The original type and sample number of training and testing
set.

reduced to the original 2 × 2 = 4 times. The model diagram

of the generate network is shown in Fig.3. The schematic

diagram of the discrimination model is shown in Fig.4. The

parameter details of the entire model are shown in TABLE 2.

deconv is a deconvolution layer, conv is a convolutional layer,

bn stands for Batch Normalization, and ln stands for Layer

Normalization. The relu (Rectified Linear Units function)

and the Tanh hyperbolic tangent function are both activation

functions.

A. IMAGE AUGMENTATION EXPERIMENTS

The WGAN-GP network model with an azimuth discrimi-

nator is proposed to generate a SAR image with orientation.

SAR images in MSTAR are used as the training dataset of

WGAN-GP, to generate new SAR images by GAN. Some

generated samples without selection is shown in Fig. 8.
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FIGURE 7. Optical images (top) and SAR images (bottom) of ten kinds of target samples. According to the order: BMP2, BTR70, T72, BTR60, 2S1,
BRDM2, D7, T62, ZIL131, and ZSU23/4.

FIGURE 8. The result of WGAN-GP with epoch=500, and the images generated by WGAN-GP but without filter.

TABLE 2. The detail of Model parameter for generating SAR images based on WGAN-GP.

Then the target segmentation and contour extraction on the

generated SAR image are performed. The minimum bound-

ing rectangle of the target contour is built, and the azimuth

angle of this target by calculating the angle between the north

end of the vertical direction and the clockwise angle of the

longest side of theminimumbounding rectangle is calculated.

This method of directional generation of SAR images plays

a significant role in data expansion of SAR image dataset.
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FIGURE 9. The result of WGAN-GP cascading an image filter (epoch=500).

1) SAMPLE SELECTION VIA SVM CLASSIFICATION

In this part, the target BMP-2 9566 in MSTAR dataset is used

as the training sample. Through the process in Fig. 5, a series

of preliminary filtered images can be obtained, as shown

in Fig.9.

a: QUALITY EVALUATION BASED ON OBJECTIVE

PARAMETERS

In addition to subjectively visually judging the quality of the

generated images, Statistical feature histogram, gradient fea-

ture histogram and four representative objective parameters

are selected the measure the quality of the selected images:

Mean, Variance, Equivalent Number of Looks(ENL), Radio-

metric Resolution(RR), which are the efficient and intuitive

assessment for the quality of SAR images.

In reference [29], to evaluate the quality of SAR images,

4 parameters are chosen from the perspective of image

acquisition, including mean, variance, Equivalent Number of

Looks and radiation resolution. It is pointed out that these

four parameters can initially reflect the relative intensity of

the speckle noise of the SAR image and the ability of the SAR

system to distinguish the target backscattering coefficient.

We use these four parameters to reflect whether there is a

commonality between the generated image and the real image

in terms of the relative intensity of the speckle noise and the

ability of the SAR system to distinguish the target backscatter

coefficient.

At TABLE 3, a real SAR image and a generated image

are select randomly to calculate their objective parameters.

Form the results, it can be seen that the mean of the generated

image is close to the real SAR image. However, the difference

TABLE 3. The Objective parameters of generated SAR image.

FIGURE 10. Gray histogram of real image and image generated by
WGAN-GP based directional expansion method.

between the variance of the generated image and the real

image is large. In TABLE 3 ENL is the abbreviation for

Equivalent Number of Looks, RR is the abbreviation for

Radiance resolution.

b: QUALITY EVALUATION BASED ON GRAY HISTOGRAM

AND GRADIENT HISTOGRAM

The gray histogram is a function of the gray level distribution

and is a statistic about the gray level distribution of the image.

Grey histogram represents the number of pixels in a grey level

in an image. Fig.10 shows a comparison of the real image of

the BMP2 9566 target type in the MSTAR dataset with the

generated BMP2 9566 gray histogram. From the comparison,

we can find that the majority of the grey images generated by

the WGAN-GP-based directional expansion method appear

similar to the real image in the image. At the gray level,

the image generated by the directional expansion method

based on WGAN-GP has certain credibility.

The gradient histogram is used to calculate the statisti-

cal value of the direction information of the local image

gradient. In this section, the similarity between the two is

compared by calculating the horizontal (x-direction) and

vertical (y-direction) gradient histograms of the real sample

image and the generated image. Fig.10 shows the real image
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FIGURE 11. Gradient histogram of real image and image generated by
WGAN-GP based directional expansion method.

of the BMP2 9566 target type in the MSTAR data set and

the horizontal and vertical gradient histogram results of the

generated 9566.

Calculated by the Bhattacharyya coefficient: the similarity

between the image generated by the WGAN-GP based direc-

tional expansionmethod and the true image x-direction gradi-

ent histogram is 0.9982, and the similarity of the y-direction

gradient histogram is 0.9984. Combined with the gradient

histogram feature results in Fig.10, it can be found that the

image generated by the WGAN-GP based directional expan-

sion method is very close to the real image and has high

credibility.

c: COMPARE WITH CAD-BASED SIMULATION METHOD

SAR image simulationmethod based on CADmodel is a very

popular simulation method. Firstly, we use FEKO to build

tankmodel and LEPOmodelingmethod to realize simulation.

Simulation results are shown at Fig.12 and Fig.13. Observing

the simulation of the tank model: it can be seen from the

simulation results that the simulation result of the tank model

has a phenomenon of ’top and bottom inversion’.

However, geometric model-based methods have several

drawbacks: First of all, establishing a precise CAD model

for each target in the scene in practical applications is a

very labor-intensive process. Secondly, in the actual envi-

ronment, the target may be rusted or coated, which also

changes the electromagnetic properties of the target. Thirdly,

for non-cooperative targets, researchers cannot measure their

surface condition in practice. In addition, the electromagnetic

approximation is only effective for large size targets. For

small structures in the target, the accuracy of the calculation

method is very low.

For the above reasons, it is expected that some information

about surface conditions can be obtained directly from an

image to achieve image generation.

At last, the samples are selected by azimuth filter. the

images generated in previous section are put into the proposed

azimuth discriminant model and SAR images with specific

angles will be exported. After obtaining the azimuth angle

information, the samples with specific azimuth angle will be

chosen as the new training samples, to fed to the classifier

again. Fig.14 shows the some selected samples with specific

azimuth, which are generated via the proposed model.

B. RECOGNITION PERFORMANCE

Different from CNNs based methods [30], our experiments

are based on a small sample of SVM recognition experiments.

1) SOC CONDITION RECOGNITION EXPERIMENT

(1)Assume that the depression 17◦ training sample has an

azimuthal spacing of 10◦ (equivalent to only 36 training sam-

ples). At this time, the classifier recognition rate is 79.0134%,

and when using GAN to augment the sample with 2 times,

3times, 6 times, 8 times, 9 times and 10 times, the recognition

rates are shown in Fig.15.

FIGURE 12. Fortress 0◦, barrel 5◦.

FIGURE 13. Fortress 60◦, barrel 7◦.
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FIGURE 14. Generate specified azimuth SAR image with our method.

FIGURE 15. Small sample recognition after sample augmentation.

From Fig.15, it can be seen that, in the case of small

samples, the recognition rate can be improved by adding the

SAR image generated by GAN, which is similar to the actual

698 training samples of 94.0658%, but we only use a small

amount of real samples to conduct the confrontation. After the

sample is expanded, the recognition rate of more than 91%

can be achieved, which is a gratifying progress.

(2)The recognition rate of all the depression 17◦ training

samples was 94.0658%. On this basis, when using GAN to

augment the sample 1 times, 3 times, and 5 times, the recog-

nition rate is shown in Fig.16.

(3)To verify the validity and usefulness of the azimuth

image we generated. We have expanded the original image

from 0-180◦ for each type of azimuth to 181 images (one

for each degree), and compared with the real existing 0-180◦

images for recognition rate experiments.

In the BMP-2, BTR-70 and T-72 samples, there were

349 training samples with a target azimuth of 0-180◦

(121 BMP-2 c21, 109 BTR-70 c71, and 119 T-72 132), and,

there were 1365 test samples, the recognition rate of SVM

three-class experiment was 83.0518%. We only completing

BMP-2 c21 to 181, only complete BTR-70 c71 to 181,only

complete T-72 132 to 181, and complete all three categories

individually. The experiment results show in the TABLE 4,

in which OC is the abbreviation for only complete, AC is an

abbreviation for All three types are completed. In TABLE 4

FIGURE 16. Small sample recognition after sample augmentation.

and TABLE 5OC is the abbreviation for only complete, AC is

an abbreviation for All three types are completed.

We have expanded the original image of each type of

azimuth angles from 0-180◦ (the image whose azimuth can-

not be determined in the actual situation is 180-360◦) to

181, and the sample recognition rate can still be improved

in the case of only one piece per degree. If you increase the

sample per degree, you can still further increase the sample

recognition rate.

2) EOC CONDITION RECOGNITION EXPERIMENT

The above experiments were all carried out based on SOC

condition. In order to better verify the validity of the

TABLE 4. Recognition experiment after azimuth image expansion via
GAN.
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generated images, this section also carried out the recognition

experiment under EOC condition:

(1) Under EOC condition, assume that the depression 17◦

training sample has an azimuthal spacing of 10◦ (equivalent

to only 36 training samples). The sample was expanded

by 1 time, 2 times, 3 times, 4 times, and 5 times using

WGAN-GP, the recognition results are shown in Fig.17.

FIGURE 17. Recognition results after small sample expansion (under EOC
condition).

The experiment result in Fig.17 shows that the directional

expansion method based on WGAN-GP has a positive influ-

ence on the recognition result. When the depression is 30◦,

the recognition rate increased from 67.0557% to 86.535%.

Andwhen the depression is 45◦ the recognition rate increased

from 26.7655% to 43.2432%, but due to the noise and other

factors in the image under EOC condition, the extent of the

increase is not as good as the SOC condition.

(2) Selecting a 0-180◦ original training sample with a

depression of 17◦ every 5◦ as a new training set, and

expanding each type of training set to 181 pieces using

the WGAN-GP-based directional expansion method. Under

EOC condition (only 2S1, BRDM-2, ZSU-23-4), 87 train-

ing samples with a target azimuth of 0-180◦ were selected

(including 2S1 29, 29 BRDM-2, 29 ZSU-23-4). A total

of 1114 test set samples with a depression of 30◦ and a

total of 1147 test set samples with a depression of 45◦. The

recognition results of the 0-180◦ completion of the training

samples is shown in Fig.18.

The experiment result in Fig.18 shows that the directional

expansion method based on WGAN-GP has a positive

influence on the recognition result. In the process of comple-

menting the 0-180◦ image under EOC condition, the recog-

nition rate can be gradually increased. The recognition rate

increased from 57.5386% to 70.2513% at depression 30◦, and

the recognition rate increased from 28.2066% to 40.1613%

when the depression was 45◦.

C. COMPARISON EXPERIMENTS

1) THREE-CLASS COMPARISON EXPERIMENT

The traditional method of linearly synthesizing azimuth

images expands the original image from 0-180◦ for each type

FIGURE 18. Recognition experiment of 0-180◦ azimuth image completion
(under EOC condition).

of azimuth to 181 images (one for each degree), and the result

of SVM recognition is as shown in the table TABLE 5:

TABLE 5. Recognition experiment after linear synthetic azimuth image
expansion.

From the experimental results, we can know:We only com-

pleting BMP-2 c21 to 181, the recognition rate is 82.1978%;

only complete BTR-70 c71 to 181, the recognition rate is

84.4689%; only complete T-72 132 to 181 the recognition

rate is 84.1026%; and complete all three categories individ-

ually the recognition rate is 82.4908%. The linear synthesis

method has a positive effect on the expansion results of the

BTR70-C71 and T72-132 categories, and can improve the

recognition rate to some extent. However, due to the neg-

ative influence of BMP2-C21, the overall recognition rate

is reduced. Compared to the linear synthesis method, our

method improves the linear synthesis problem and improves

the overall recognition rate.

2) TEN-CLASS COMPARISON EXPERIMENT

Assume that the depression 17◦ training sample has an

azimuthal spacing of 10◦ (equivalent to only 36 training sam-

ples). At this time, the classifier recognition rate is 57.4784%,

When the sample was expanded by 1 time, 2 times, 3 times,

and 5 times using WGAN-GP, linear synthesis method and

simple rotating method, the comparison results of the recog-

nition rate are shown in Fig.19.

From the results of the comparative experiment shown at

Fig.19, it can be seen that by using the WGAN-GP method to
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FIGURE 19. Small sample recognition after sample augmentation.

FIGURE 20. Target recognition after azimuth complement.

expand the sample to 1 times, 2 times, 3 times, and 5 times,

the recognition rate is on the upward trend. After linear syn-

thesis, the sample was expanded to 1 times, 2 times, 3 times,

and 5 times, and the recognition result showed a trend of

rising first and then decreasing, and the recognition result

was lower than that of WGAN-GP. We also compare the

synthesis method based on simple rotating. The results of the

recognition experiment can be found at Fig.19.

With the simple rotation method, the recognition result

after doubling the sample is higher than the WGAN-GP

based method and the linear synthesis method. This indicates

that the first rotation may generate some useful samples,

which improves the recognition rate to some extent. However,

this advantage has not been maintained. After expanding to

2 times, 3 times, and 5 times, the recognition rate has dropped

rapidly. This also shows that our method is better than the

simple rotation method.

We select each type of azimuth from 0 to 180◦. The original

picture will be selected every 5◦, and will be expanded to

181 frames. There were 318 training samples with a target

azimuth of 0-180◦, which were selected from the 10 sam-

ples (including 35BMP2-c21, 37BTR70-c71, 35 T72-132,

33 BTR60, 2S1 29, BRDM-2 29, D7 32, T62 30,ZIL-131

29,ZSU-23-4 29). There were 2427 test samples, and each

type of sample was expanded to 181 by WGAN-GP and

linear synthesis. The recognition results of the original sam-

ple, 3 types of azimuth complement, 6 types of azimuth

complement and 10 types of azimuth complement are shown

in Fig.20.

It can be seen from the comparison experiment results

Fig.20 that the influence of WGAN-GP on the recogni-

tion result is positive, and in the process of complement-

ing the 0-180◦ image, the recognition rate can be gradually

increased. The linearly synthesized samples have a very seri-

ous negative impact after a small increase in the recognition

rate, which greatly reduces the recognition rate and is lower

than the initial recognition rate.

V. CONCLUSION

In this paper, we solve the small sample recognition prob-

lem by using WGAN-GP to generate specific azimuth SAR

images. The main difficulty encountered in the experimental

process of generating images is the instability of the model.

The clutters and speckles in SAR images led to failure of the

generating. Therefore, a SVM classifier is used to filter out

the failed images in real time, which can reduce the redundant

calculations and improve the success rate for acquiring a spe-

cific azimuth image. Meanwhile, the quality of the generated

image is measured from three aspects: the objective parame-

ters, the accuracy of the binary classifications, and the accu-

racy of the three classifications. The computational results

show that the mean of the generated image is close to the

real SAR image, and the generated images can improve the

recognition efficiency of limited sample target recognition.

Experiments based on MSTAR data show that, for

three-class recognition and ten-class recognition problems,

the proposed method can improve the recognition rate from

79% to 91.6% and 57.48% to 79.59% respectively, which

verify the effectiveness of the proposed method. In the future,

the authors will try to apply this method to other mission

critical sensors, to solve the problem of data lacking.
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