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Abstract. The TNO Human Factors Search–2 image dataset consists
of: a set of 44 high-resolution digital color images of different complex
natural scenes, the ground truth corresponding to each of these scenes,
and the results of psychophysical experiments on each of these images.
The images in the Search–2 dataset are a subset of a larger set that has
been used in a visual search and detection experiment. Each scene
(image) contains a single military vehicle that serves as a search target.
The image dataset, an Excel file with the ground truth and observer data,
and an extensive report describing the dataset are available on CD-ROM
(requests by email to the first author). The dataset can be used to de-
velop and validate digital metrics that compute the visual distinctness
(contrast, conspicuity, or saliency) of targets in complex scenes, and
models of human visual search and detection. The dataset has already
been used in more than ten different studies in the literature, ranging
from studies evaluating target detectability metrics to eye movement
studies and attempts to model the human visual system. In addition to
this work, eight other articles in this special section address the
Search–2 dataset. © 2001 Society of Photo-Optical Instrumentation Engineers.
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1 Introduction

The TNO Human Factors Search–2 image dataset has been
compiled to provide a set of data that can be used to evalu-
ate and validate digital metrics and early vision models that
compute the visual distinctness ~conspicuity, saliency! of
targets in complex natural scenes, and models of the human
visual search and detection capability. We give a concise
overview of the contents of this dataset. An extensive de-
scription is given elsewhere.1

1.1 Measuring Target Distinctness

Human observer experiments designed to quantify visual
target distinctness usually involve search and detection
tasks or contrast detection tasks.

Targets that are highly distinct are usually noticed
quickly. In contrast, targets that are indistinct ~hard to de-
tect, highly similar to their surroundings! usually yield
large search times. Visual search and detection tasks yield
temporal measures that characterize visual target distinct-
ness, like the cumulative detection probability ~i.e., the
fraction of all observers that detect the target after a given
amount of search time! and the mean search time.

The concept of visual lobe or conspicuity area is an
overall measure of target distinctness that captures all fac-
tors contributing to the visual contrast of a target and its
surroundings. It can operationally be defined as the periph-
eral area around the central fixation point from which spe-
cific target information can be extracted in a single
glimpse.2–4

The size and shape of the conspicuity area have been
measured for a range of static targets in static scenes.2–8 It
is found that the conspicuity area is small if the target is
embedded in a complex background ~a surrounding with
high feature variability! or if the target is surrounded by
irregularly positioned nontargets of high similarity ~a sur-
rounding with high spatial variability!. The conspicuity
area is large if the target stands out clearly from a homo-
geneous background.

TNO Human Factors recently developed a simple and
efficient psychophysical procedure to quantify the visual
conspicuity of a target in a complex ~natural! scene,9,10

which has been successfully applied to a range of practical
problems involving the optimization of target visibility.11

With this procedure visual conspicuity can quickly and eas-
ily be determined. Only a few ~typically two or three! ob-
servers are needed to obtain sufficient accuracy. It has been
shown that conspicuity determines human target acquisition
performance in realistic and military relevant complex
scenerios.9 Also, conspicuity measured on photographic
slides agrees with conspicuity measured in the field.9,10

This implies that conspicuity can be used in combination
with photosimulation studies to obtain estimates of human
observer performance in the field.

1.2 Computing Target Distinctness

A range of different metrics have been proposed to compute
the visual distinctness of image subregions ~target areas!
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from digital imagery. Visual distinctness metrics can be

used to compare and rank target detectability, and to quan-

tify background or scene complexity.

Some metrics are based directly on the sampled lumi-

nance values, others involve some nonlinear or noninvert-

ible transformation on the pixel values. They may be com-

puted locally over the target area and its immediate

surround, semilocally on distinct locations in the scene, or

globally over the entire scene.

Local metrics or signal-to-noise ratios quantify the dis-

tinctness of a target in its immediate surroundings. The

general idea is that a target that is highly similar to its local

background will be hard to see. Semilocal metrics are based

on the calculation of likely fixation points for a human

observer searching the scene for a target. The general idea

is that a target will be hard to find ~will be inconspicuous!

if the inspection of the scene requires a large number of

fixations. Fixation points are assumed to correspond to lo-

cal extrema of variance of the graylevel distribution;12

busyness ~e.g., Ref. 13!; curvature of the edge map;14,15 or

symmetry of the graylevel distribution;16,17 or saliency,

which may be any combination of the output of generalized

difference operators operating on length, orientation, con-

trast, contour curvature, size, perimeter, and average

graylevel.18–20

Global conspicuity metrics or signal-to-clutter ratios

take into account the overall structural composition of the

scene. The general idea is that a target situated in a busy

scene ~a complex scene with a large amount of detail simi-

lar to the target, or a scene with a high structural variabil-

ity! will be less conspicuous than the same target situated in

a relatively empty scene ~a scene with low variability!.

Current target acquisition models typically use first- or

second-order statistical metrics to describe the scene infor-

mation content. First-order metrics are only a function of

pixel intensities and contain no information about relative

pixel locations ~spatial image structure!. Second-order met-

rics do contain some spatial information, but it is very dif-

ficult to determine how much and whether it is relevant to

human spatial vision.

Computational models of early human vision typically

process an input image through various spatial and tempo-

ral bandpass filters and compute first-order statistical prop-

erties of the filtered images to compute a target distinctness

metric.21–24

Models of the human visual search and detection capa-

bility that predict the detection probability for targets in

complex ~natural! scenes as a function of time ~e.g.,

Visdet,25 Oracle,26 and GTV27! typically require a large

number of input parameters. The most important apparent

scene parameters are: the mean target luminance, mean tar-

get background luminance, overall luminance level of the

scene, local luminance contrast, angular size of the target,

and the amount of clutter in the scene.

In addition, some models require the display gamma

function21 or the RGB-XYZ color coordinate transform.23

Most of the previously mentioned parameters are supplied

for the images in the Search–2 dataset.1

2 Search–2 Image Dataset

2.1 General Information

The TNO-TM Search–2 dataset contains a well docu-
mented collection of high resolution digital images. Each
image represents a military vehicle in a complex rural
background ~Fig. 1~a!!. The exact position in the scene, the
viewing distance, and the orientation of each vehicle are
given in a separate datasheet. Target mask ~binary! images
are included ~Fig. 1~c!!, so that each target can easily be
located ~extracted!, and computations can be restricted to
the visible parts of the target support ~Fig. 1~b!!. Close-up
views of all targets are also provided ~Fig. 2!. A digitized
Kodak color calibration slide allows the user to compute
the gamma correction and the XYZ-RGB transform. Fi-
nally, human visual search time statistics and visual lobe
measurements of the target are provided for each scene.

2.2 Image Registration

The original images were taken during the distributed in-
teractive simulation, search, and target acquisition fidelity
~DISSTAF! field test, which was designed and organized by
Night Vision and Electronic Sensors Directorate ~NVESD!,
Fort Belvoir, Virginia, and which was held in May and June
1995 in Fort Hunter Liggett, Califonia. The scenes were

captured on Kodak 5045 EB 100 36324-mm color slides

using a Canon T70 camera equipped with a 300-mm lens.
This corresponds to a field of view of 6.9 deg horizontal by
4.6 deg vertical.

A Kodak PCD Imaging Workstation 4220, equipped
with a Kodak Professional PCD Film Scanner 4045, is used
to digitize the slides in 64-Base Kodak PCD format onto a
Kodak Digital Science Pro Photo CD Master Disc. This

scanner digitizes 614434096 pixels over a 35-mm frame

of film, whose dimensions are 36324 mm (1.42

30.94 in). This translates to a scanning resolution of ap-

proximately 4400 pixels/inch in both dimensions. The an-
gular size of one ~square! pixel is therefore approximately 4
sec of arc. The scene balance algorithm of the Kodak PCD
Imaging Workstation 4220 was turned off.

2.3 Image Data

The nine military vehicles that serve as visual search targets
are listed in Table 1 and shown in Fig. 2 ~an extensive
description and detailed images of these vehicles are given
elsewhere28!.

The ground truth and observer data for each of the 44
images in the Searchq2 dataset includes the values of the
following parameters:

• the distance ~in meters! between the target and the
location of the camera

• the aspect angle of the vehicle ~in degrees!

• the coordinates of the target center ~in pixels! in the

614434096 images

• the horizontal and vertical size of the visible ~i.e., not
occluded! parts of the target ~both in pixels and in
meters!

• the target area, defined as the number of pixels that
represent the visible part of the target

Toet, Bijl, and Valeton: Image dataset . . .
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• the mean luminance ~in cd/m2! of, respectively, the

scene, the target, and the surround of the target. Some

targets have clearly distinct bright and dark parts. For

these targets the mean luminance of the bright and

dark parts are given separately. Some targets are partly

surrounded by grass and partly by trees. For these tar-

gets the mean luminance of the grass and the mean

luminance of the trees are given separately. The illu-

minance of the scene is also given ~in lux!.

• the number of correct detections, the number of false

responses, and the number of missed detections, for a

total of 62 observers

Fig. 1 (a) A full size (614434096) target scene, (b) a 5123512
subregion containing the target, as indicated by the white outlines in
(a), and (c) the corresponding subregion of the binary mask repre-
senting the visible parts of the target support.

Fig. 2 The nine military vehicles used as search targets (for an explanation of the abbreviations see Table 1).

Table 1 Targets occurring in the Search–2 images.

Type Description
Length

(m)
Width
(m)

Height
(m)

BMP-1 Russian armed personnel
carrier (APC)

6.74 2.94 1.94

BTR-70 Russian APC 7.54 2.80 2.13

HMMVV-Scout Jeep (general purpose
vehicle)

4.72 2.18 1.83

HMMVV-Tow Jeep with antitank weapon 4.72 2.18 1.83

M1A1 American main battle tank
(MBT)

7.92 3.65 2.96

M3-Bradley American APC 6.45 3.30 2.97

M60 American MBT 6.95 3.63 3.29

M113 American APC 4.86 2.69 2.20

T72 Russian MBT 6.91 3.46 2.19
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• the mean, geomean, and median search time, and the
size of the visual lobe for detection and identification,
respectively.

The visibility of the targets varies largely throughout the
entire stimulus set. This is mainly due to variations in the
structure of the local background, the viewing distance, the
luminance distribution over the target support ~shadows!,
the orientation of the targets, and the degree of occlusion of
the targets by vegetation.

2.4 Target Close-Ups

Search and detection models that use learning methods,
e.g., neural nets, to derive characteristic target classification
features need to be trained on high resolute target represen-
tations. The same holds for methods that depend on tem-
plate matching and correlational approaches. The dataset
therefore includes three different close-up views of each
target vehicle: a front view, an oblique front view, and an
oblique rear view. These images can also be used to famil-
iarize observers performing search and detection tasks with
the scenes.

2.5 Target Masks

Some computational methods require a precise definition of
the target support. Other methods need a definition of the
local background24 or the definition of a zone within which
background elements are able to interfere with target
details.29 The image set therefore includes masks of the
visible parts of the target support. A local background sup-
port can easily be constructed by dilating these masks with
an appropriate structuring element, e.g., by using the maxi-
mum filter in Photoshop with a square structuring element30

and subtracting the original mask from the dilated mask.
The size of the structuring element determines the size of
area around the target support, which is considered as the
local background.

2.6 Calibration Image

The information that is needed to compute the conversion
of pixel values to display luminance and chromaticity val-
ues is also supplied with the dataset.

An opaque slide was digitized to quantify the effect of
the dark current of the Kodak PCD Film Scanner 2000. A
blank slide was also digitized to test the homogeneity of the
digitizer and its maximum digital output value.

A Kodak calibration slide is included to enable the esti-
mation of the display gamma function ~from the grayscale
patches! and the RGB-XYZ transformation matrix ~from
the color patches!. This slide was projected on the same
screen that was used in the observer experiments. The ~x,y!
chromaticity coordinates of the Kodak Color Control
Patches and the luminance coordinate ~Y; cd/m2! of the
Kodak grayscale patches, as measured from the image pro-
jected onto the screen, are included in the dataset.

3 Search Experiment

The 44 digitized target scenes in the TNO Human Factors
Search–2 dataset are part of a larger set of images that have
been used as stimuli in a visual search and detection ex-
periment. As a result, there are a number of measures avail-
able that characterize observer performance for each of

these images. The following sections briefly describe the
experiment and its results. A detailed description is given
elsewhere.9,31

3.1 Stimuli

The 256 images used in this experiment represent 44 dif-
ferent rural scenes and are captured at Fort Hunter Liggett,
California. This set includes 144 images that contain ex-
actly one military vehicle that serves as a search target and
112 images without a target.

3.2 Apparatus

A Kodak Ektapro 7000 carousel slide projector, equipped
with a 90-mm lens, was used to project the slides onto a
white screen. A second projector was used to create a bright
boundary around the projected scene. A PC was used to
control the stimulus presentation and record the observer
responses.

3.3 Procedure

This section presents a brief description of the experimental
procedure. A detailed description of the experimental de-
sign is given elsewhere.9,31

3.3.1 General procedure

First the visual acuity of the subject was tested. Then the
subject was shown three close-ups of each of the nine tar-
gets ~27 slides in total!: one front view and two side views.
The presentation of the close-ups of the vehicles merely
served to familiarize the subject with the outline of the
search targets. The subject was instructed not to memorize
the targets or their characteristic details, since there is no
need to classify the targets in the actual search experiment.
The intention of this instruction is to remind the subject that
the targets are man-made objects with straight and clear-cut
edges and sharp corners, in contrast to natural objects
~rocks, bushes! that generally have jagged and fuzzy edges.

After the presentation of the close-up views of the tar-
gets, a test run consisting of ten trials was performed to
familiarize the subject with the visual search procedure.
The observer was free to choose a search strategy, and was
not requested to scan the image in a certain order or to start
the search at a certain location.

A computer was used to control the order and duration
of the presentation of the stimuli and to register the re-
sponse times and the estimated target locations.

A search trial started with the presentation of a new
scene. The subject’s task was to search for a military ve-
hicle in the image and to press the space bar of the com-
puter keyboard immediately on detection of the target. The
temporal interval that elapsed between the onset of the dis-
played scene and the moment the subject indicated that the
target had been found ~by pressing the space bar! was reg-
istered and adopted as the search time. The displayed scene
disappeared immediately after the subject responded, and a

slide showing a 10310 rectangular grid with cells num-

bered from 0 to 99 was displayed instead. The subject was
then requested to indicate the perceived location of the tar-
get by entering the number of the grid cell that covered the
perceived target location. The total duration of the stimulus
presentation was limited to 60 s. An auditory warning sig-
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nal was presented 50 s after the onset of the presentation if
no response has been registered during the preceding pre-
sentation interval. In the remaining 10 s of the presentation
interval, the subject either selected the most likely target
from a number of perceived candidate targets ~i.e., anything
in the scene that to some degree resembles a target!, or
entered a ‘‘don’t know’’ response code. This procedure
serves to prevent the occurance of extremely long search
times, to reduce the number of ‘‘don’t know’’ responses,
and to increase the number of false alarms.

The analysis of false alarms is very important, since this
may indicate what features are used by human observers to
detect the presence of a target.

The 256 slides were distributed over four carousels of 64
slides each. A Latin square design32 was used to control the
order in which the slides within each carousel and the car-
ousels themselves were presented to the subjects. This is
done to minimize learning effects in the course of the ex-
periment. The duration of a complete run was about two
hours.

3.3.2 Scene familiarity

Familiarity with a scene may affect search performance,
since an observer may notice a change in the scene without
actually distinguishing a target. To analyze this effect the
observers were divided into two groups. One group was
only presented with the target images. For the other group,
the presentation of a target image was preceded by the pre-
sentation of the corresponding empty scene. The empty
scene was presented during 15 s. The time delay between
the presentation of the empty scene and the presentation of
the target image was 3 s. For 8 of the 44 scenes, no empty
scene was available. In this case a text slide containing the
message ‘‘No empty scene’’ was presented for three sec-
onds prior to the target image presentation.

3.3.3 Edge effect

Observers tend to fixate on the center of an image.33 As a
result search times for targets near the edges of an image
can be up to 30% longer than search times for the same
targets when they are close to the center of the image, in-
dependent of the target distinctness.34 The image set used in
this experiment includes each scene either two or four
times ~28 scenes were captured with the target at four dif-
ferent locations in the camera field of view, and 16 scenes
with the target at two different locations, amounting to a
total of 144 images!. The different images of the same
scene correspond to different orientations of the optical axis
of the camera, so that the target is at different locations in
the field of view. Estimates of the previously mentioned
edge effect can therefore be obtained from the analysis of
the corresponding observer data.

3.4 Subjects

A total of 64 civilian observers, aged between 18 and 45
years, participated in the experiment. Approximately half of
these were women, the other half were men. All subjects
have ~corrected to! normal vision, with an acuity better than
1.25 arcmin21.

3.5 Viewing Conditions

Viewing was binocular. The experiments were performed in

a dimly lit room. The images are captured on 36324-mm

slides using a 300-mm lens. This corresponds to a field of
view of 6.9 deg horizontal by 4.6 deg vertical. The slides
were projected onto a screen area with a width of 1.65 m
and a height of 1.11 m. The distance between the lens of the
projector and the screen was 4.13 m. The observer was
seated at a distance of 1.3 m from the screen. At this view-
ing distance the projected image subtends 65 deg horizontal
by 46 deg vertical. This corresponds to an enlargement of
the original scene by a factor of about 10.

A second projector was used to present a continuously
visible 13-deg-wide bright border around the projection of
the search scenes. This bright border serves to reduce the
variations in the adaptation level of the observers resulting
from large overall variations in brightness that occur be-
tween successive slide presentations.

3.6 Results and Discussion

The basic data collected in this experiment are the detection
time and the correctness of the response ~whether the true
or false target was detected!. The correctness of the re-
sponse was determined by comparing the reported location
of the target with its actual location ~stored in file for each
target image!. These data are collected for each of the 144
target images, and for 64 observers, making a total of 9216
responses. For each target image the mean, median, and
geometric mean of the search time, are computed for all
correct detections. In addition, the number of correct detec-
tions, the number of false detections, and the number of
missed targets are given.

The time needed to detect a target depends on the posi-
tion of the target in the scene, the starting position of the
eye, and the stategy that is used. As a result, temporal mea-
sures of visual search performance are highly variable. A
large number of repetitions is therefore required to obtain a
reliable estimate of a search time measure, e.g., the mean
search time. Each observer should view each scene only
once ~the search is obviously over once the target is found!.
This means that a large number of observers are required to
perform a search experiment.

Search performance is usually expressed as the cumula-
tive detection probability as a function of time, and ap-
proximated by35–41

Pd~ t !5

0 : t,t0

P`@12exp~2t2t0!/t# : t>t0

~1!

where Pd(t) is the fraction correct detections at time t, P`

is the probability of a correct response after an infinite

amount of search time, t0 is the minimum time required to

respond, and t is a time constant.
As Eq. ~1! clearly shows, search times are not normally

distributed. Therefore, simple search time statistics may not
correctly characterize observer performance. In most situa-

tions, search time is restricted and Pd(t) need not approach

P` for targets that are hard to find. As a result, the mean of

the observed search times may underestimate the true
mean, i.e., the mean over the observation period may be
less than the mean that would result if the search went on
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for an infinite amount of time. Other measures may there-
fore be more suitable to characterize observer search per-
formance, such as the median, geometric mean, and upper
and lower quartiles.

3.6.1 Scene familiarity

The analysis of the results shows no effect of scene famil-
iarity on search performance. Therefore, in all further
analyses, no distinction is made between target image pre-
sentations with and without a preceding empty scene, and
the data for all remaining 62 observers are combined.

3.6.2 Edge effect

The results show a strong effect of target location on aver-
age search time. Search times are lowest for target locations
near the center of the image, and up to 50% longer for
targets that are positioned near the edges of the image. This
result agrees with the finding that observers preferably per-
form searches near the center of the display.33 However, for
the present experiment this hypothesis can not be verified,
since no eye movements were recorded. For the stimulus
set used in this experiment, the target positions are care-
fully balanced over the display area ~over different angular
distances from the center of the screen and over different
radial orientations!. As a result, the edge effect only con-
tributes about 3% to the total standard error in the search
time data. Since the total standard error in the search time
data for each individual target image is about 14%, the
contribution of the edge effect is relatively small.

The 44 target images selected for the Search–2 dataset
correspond to the target locations that are closest to the
center of the image. This is done to ensure that the target
images are surrounded on all sides by a large fraction of the
background, which is a prerequisite for some computational
algorithms.

4 Visual Lobe Measurements

4.1 Concept

Target conspicuity is operationally defined as the maximum
distance between target and foveation, measured in the
fronto-parallel plane through the target ~i.e., in the plane
that is parallel to the image plane and at the same distance
from the observer as the target!, at which the target can still
be visually resolved from its surroundings. This conspicuity
measure has been shown to be9 independent of viewing
distance, consistent among observers, and meaningful in
the sense that it correlates with search time. The conspicu-
ity distance is easy and quick to measure with only a few
observers, and can be used on familiar scenes.11

The conspicuity distance is closely related to the concept
of conspicuity area, which is operationally defined as the
peripheral area around the central fixation point from which
specific target information can be extracted in a single
glimpse.2–4 The conspicuity area is small if the target is
embedded in a complex background ~a surround with high
feature variability! or if the target is surrounded by irregu-
larly positioned nontargets of high similarity ~a surround
with high spatial variability!. The conspicuity area is large
if the target stands out clearly from a homogeneous back-
ground.

4.2 Procedure

The conspicuity distance measurement procedure is as fol-
lows. The slide representing the scene and the target is
projected continuously. First a moveable fixation dot is su-
perimposed on the projected image by means of a laser
pointer. This fixation dot is initially positioned at a large
angular distance from the target location. Subjects are then
instructed to move the pointer slowly in the direction of the
target while fixating the laser dot projected on the screen,
and to stop moving the pointer when the target first be-
comes noticeable. The image is then replaced by the pro-
jection of a reference grid with numbered cells, and the
position of the fixation dot relative to this grid is recorded.
Since the position of the target is known, the distance from
the target at which its visibility is first reported can then be
computed. This distance is adopted as the characteristic
spatial extent of the conspicuity area of the target.

A subject can use two different criteria to determine
whether the target is visible or not. The first criterion is
whether there is anything at the location of the target that
contrasts with the local background in some way ~color,
shape, texture, luminance, etc.!. This criterion yields a vi-
sual lobe for the detection of the target. The second crite-
rion that can be used is whether the spatial structure at the
location of the target really originates from the target ~can
be discriminated as being the target!. This criterion yields a
visual lobe for the identification of the target.

Each lobe measurement is repeated at least three times.
Subjects are usually able to make a setting within one
minute.

4.3 Results

The detection lobes range between 0.73 and 3.58 deg. The
identification lobes range between 0.06 and 2.66 deg.

5 Concluding Remarks

The Search–2 image dataset has already been used in the
literature to establish the relation between visual conspicu-
ity and search time,9–11 develop and validate computational
visual target distinctness metrics,42–47 validate visual search
and detection models and metrics,48,49 and develop compu-
tational models of human visual attention.50–53

In the current special section, eight articles address the
Search–2 dataset.54–61

The authors are currently involved in experiments in
which the eye fixations of human observers searching the
scenes will be recorded. These data will be made available
in future updates of the dataset.
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