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Abstract. In this paper, we propose a new model for image restoration and image decomposition
into cartoon and texture, based on the total variation minimization of Rudin, Osher, and Fatemi
[Phys. D, 60 (1992), pp. 259–268], and on oscillatory functions, which follows results of Meyer
[Oscillating Patterns in Image Processing and Nonlinear Evolution Equations, Univ. Lecture Ser. 22,
AMS, Providence, RI, 2002]. This paper also continues the ideas introduced by the authors in a
previous work on image decomposition models into cartoon and texture [L. Vese and S. Osher, J.
Sci. Comput., to appear]. Indeed, by an alternative formulation, an initial image f is decomposed
here into a cartoon part u and a texture or noise part v. The u component is modeled by a function
of bounded variation, while the v component is modeled by an oscillatory function, bounded in the
norm dual to | · |

H
1

0

. After some transformation, the resulting PDE is of fourth order, envolving the

Laplacian of the curvature of level lines. Finally, image decomposition, denoising, and deblurring
numerical results are shown.
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1. Introduction and motivations. An important task in image processing is
the restoration or reconstruction of a true image u from an observation f . Given
an image function f defined on Ω, with Ω ⊂ R

2 an open and bounded domain, the
problem is to extract u from f . The observation f is usually a noisy and/or blurred
version of the true image. In order to solve this inverse problem in the denoising case,
one of the most well-known techniques is by energy minimization and regularization.
To this end, for f ∈ L2(Ω), Rudin, Osher, and Fatemi [19] have proposed the following
minimization problem:

inf
u
F (u) =

∫

Ω

|∇u| + λ

∫

Ω

|f − u|2dxdy.(1.1)

Here, λ > 0 is a weight parameter,
∫

Ω
|f − u|2dxdy is a fidelity term, and

∫

Ω
|∇u|

is a regularizing term to remove the noise. The term
∫

Ω
|∇u| is the total variation

of u. If u ∈ L1(Ω) and
∫

Ω
|∇u| < ∞, then u ∈ BV (Ω), the space of functions of

bounded variation (the gradient is taken in the sense of measures). This space allows
for discontinuities along curves; therefore edges and contours are kept in the image u,
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which is the minimizer of this convex optimization problem. Existence and uniqueness
results of this minimization problem can be found in [1], [7], [20], [2].

Formally minimizing the functional (1.1) yields the associated Euler–Lagrange
equation:

u = f +
1

2λ
div

( ∇u

|∇u|

)

in Ω,
∂u

∂�n
= 0 on ∂Ω.

This model performs very well for denoising of images, while preserving edges.
However, smaller details, such as texture, are destroyed if the parameter λ is too
small. To overcome this, Meyer [15] proposed a new minimization problem, changing
in (1.1) the L2(Ω)-norm of (f − u) by a weaker norm, more appropriate to represent
textured or oscillatory patterns. This is defined as follows [15].

Definition 1.1. Let G denote the Banach space consisting of all generalized

functions f(x, y) which can be written as

f(x, y) = ∂xg1(x, y) + ∂yg2(x, y), g1, g2 ∈ L∞(Ω),(1.2)

induced by the norm ‖f‖∗ defined as the lower bound of all L∞(Ω)-norms of the

functions |g|, where �g = (g1, g2), |g(x, y)| =
√

g1(x, y)2 + g2(x, y)2, and where the

infimum is computed over all decompositions (1.2) of f .
As Meyer mentions, the space G is the dual of the space W 1,1(Ω) (the set of

functions f such that ∇f ∈ L1(Ω)2). He also introduces two other spaces, denoted
by F and E. The space F is defined as G, but now g1, g2 belong to the John and
Nirenberg space BMO(Ω), instead of L∞(Ω). Finally, the third space E considered
by Meyer is defined as G, but g1, g2 belong to the Besov space B−1,∞

∞ (Ω). E coincides
with Ḃ−1,∞

∞ (Ω).
Meyer shows that if the component v := f − u represents texture or noise, then

it has to be modeled by one of these three larger spaces G,F,E. If f − u ∈ G, then
he proposes the following new image restoration model:

inf
u

{

E(u) =

∫

Ω

|∇u| + λ‖f − u‖∗

}

.(1.3)

Note that this convex model cannot be solved directly, due to the form of the ∗-
norm of (f − u). We cannot express directly the associated Euler–Lagrange equation
with respect to u.

In a recent work [21], the first and last authors have proposed a first practical
method to overcome this difficulty. They have proposed the following convex mini-
mization problem, as an approximation of (1.3):

inf
u,g1,g2

{

Gp(u, g1, g2) =

∫

Ω

|∇u| + λ

∫

Ω

|f − (u+ ∂xg1 + ∂yg2)|
2dxdy

+ µ

[
∫

Ω

(

√

g2
1 + g2

2

)p

dxdy

]
1

p

}

,(1.4)

where λ, µ > 0 are tuning parameters, and p → ∞. As λ → ∞ and p → ∞, the
first term ensures that u ∈ BV (Ω), and the second and third terms ensure that
div�g ≈ (f − u) ∈ G. The minimization is made with respect to u, g1, and g2. Three
coupled equations are then obtained from the computation of the associated Euler–
Lagrange equations. In [21], image decomposition results into cartoon and texture,
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and applications to texture discrimination have been proposed. For more details, we
refer the reader to [21]. Note that if in (1.4) we take p = 2, with v = div�g, �g ∈ L2(Ω),

then the quantity ‖v‖ = infg1,g2∈L2(Ω)

√

∫

Ω
(g2

1 + g2
2)dxdy is exactly the seminorm of

H−1(Ω), the dual to H1
0 (Ω) (see, for instance, [10]). The minimization (1.4) yields the

decomposition f = u+ v+w, where u ∈ BV (Ω), v = div�g with small ‖�g‖Lp(Ω) norm,

and the residual w = − 1
2λdiv( ∇u

|∇u| ). In the limit, if λ → ∞, then ‖w‖L2(Ω) → 0.

In [21], very satisfactory results of image decomposition into cartoon plus texture
have been obtained even if λ is not too large.

In this paper, we propose an alternative practical approach, and we solve a sim-
plified version of (1.3) and (1.4). We decompose f into u + v, with u ∈ BV (Ω), and
v = △P a generalized function (a distribution) with small norm, dual to the seminorm
of H1

0 (Ω). The precise formulation is given in the next section. Moreover, this new
algorithm is a decomposition of the form f = u + v, while the original method [21]
(which started this line of research) led to an f = u+ v+w model, with w a residual
made as small as possible by increasing λ. In fact, ‖w‖∗ ≤ 1

2λ (see [21]). The new
algorithm is simplified; the minimization is performed only with respect to one un-
known, u, and an interesting and new fourth order equation is obtained, equivalent
to the proposed minimization model.

Recent related work is as follows: in Bertalmio et al. [4], an application of the
model from [21] to image inpainting has been proposed. In Vese and Osher [22], the
model from [21] is further analyzed and developed. Also, the authors Aujol et al. [3]
have recently proposed an interesting model for image decomposition, following [15]
and [21].

Related PDEs of fourth order, arising in image analysis, can be found, for instance,
in [7], [12], and [11].

For more related details on the topic of oscillations in nonlinear analysis, we refer
the reader to [17]. Other works for restoration of textured images by total variation
minimization, in a wavelet framework, are by Malgouyres [13], [14]. Also, texture
modeling by statistical methods was proposed by Zhu, Wu, and Mumford in [23], [24]
and by Casadei, Mitter, and Perona in [5], among many others. In particular, we
refer to Mumford and Gidas [16] for a stochastic model, in a related approach, for
natural images. For more related references, we refer the reader to [21] and references
therein.

For related results, alternative methods, and image decomposition methods using
wavelets and harmonic analysis, we refer the reader to [15] and references therein.

The proposed new model is derived as follows.

2. Description of the proposed model. Assume that f −u = div�g, with �g ∈
L2(Ω)2. We can then formally assume the existence of a unique Hodge decomposition
of �g as

�g = ∇P + �Q,

where P ∈ H1(Ω) is a single-valued function and �Q is a divergence-free vector field.
From here, we obtain that f−u = div�g = △P . Now, we express P = △−1(f−u), and
we propose the following new convex minimization problem, a simplified and modified
version of (1.3):

inf
u
E(u) =

∫

Ω

|∇u| + λ

∫

Ω

|∇(△−1)(f − u)|2dxdy.(2.1)
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This new minimization problem is obtained from (1.3) by neglecting �Q from the
expression for �g and by considering the (L2-norm)2 instead of the L∞-norm for |�g|.

The precise formulations and assumptions are as follows. Consider the data

f ∈ BV (Ω) +

{

v ∈ L2(Ω),

∫

Ω

v(x, y)dxdy = 0

}

.

Then, by the embedding of BV (Ω) into L2(Ω), we deduce that in fact f ∈ L2(Ω).
We first recall the following theorem (see, for instance, [8]).
Theorem 2.1. Let V0 = {P ∈ H1(Ω) :

∫

Ω
P (x, y)dxdy = 0}. If v ∈ L2(Ω), with

∫

Ω
v(x, y)dxdy = 0, then the problem

−△P = v,
∂P

∂n
|∂Ω = 0,(2.2)

admits a unique solution P in V0.

Now, for each v ∈ L2(Ω), with
∫

Ω
v(x, y)dxdy = 0, there is a unique P with the

properties from Theorem 2.1. We will express this as P = △−1v, and this gives a
sense to the last term in (2.1).

This new minimization problem can therefore be written using the norm in
H−1(Ω), as defined by ‖v‖2

H−1(Ω) =
∫

Ω
|∇(△−1)v|2dxdy. Indeed, we can write

inf
u
E(u) =

∫

Ω

|∇u| + λ‖f − u‖2
H−1(Ω).(2.3)

Formally minimizing (2.1), we obtain the Euler–Lagrange equation:

2λ△−1(f − u) = div
( ∇u

|∇u|

)

,
∂u

∂n
|∂Ω = 0,

∂div
(

∇u
|∇u|

)

∂n
|∂Ω = 0.(2.4)

Instead of directly solving (2.4), we apply the Laplacian to (2.4) to obtain

2λ(u− f) = −△
[

div
( ∇u

|∇u|

)]

,
∂u

∂n
|∂Ω = 0,

∂div
(

∇u
|∇u|

)

∂n
|∂Ω = 0,(2.5)

which we shall solve by driving to steady state

ut = −
1

2λ
△
[

div
( ∇u

|∇u|

)]

− (u− f),

u(0, x, y) = f(x, y),
∂u

∂n
|∂Ω = 0,

∂div
(

∇u
|∇u|

)

∂n
|∂Ω = 0.

Remark. The assumption that v := f − u satisfies
∫

Ω
(f − u)dxdy = 0 is auto-

matically satisfied by (2.5). This can be simply obtained by integrating the PDE in
(2.5) in space and using integration by parts and the boundary condition on the cur-
vature operator, in the sense of distributions. Therefore, by our model, the residual
v satisfies the property of noise or texture of being of zero mean.

Remark. Let us justify now our procedure of minimizing (2.1) in a simple general
framework to show that we still decrease the initial energy. Assume that we solve

inf
u

∫

Ω

F (u)dxdy.
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Embedding the minimization in a dynamic scheme based on gradient descent, we
obtain

ut = −Fu.

We then replace this last equation by

ut = △Fu.

We show that the initial energy is still decreasing under the new flow. Indeed, we
have

d

dt

(
∫

Ω

F (u)dxdy

)

=

∫

Ω

Fuutdxdy =

∫

Ω

Fu△Fudxdy

=

∫

Ω

div(Fu∇Fu)dxdy −

∫

Ω

|∇Fu|
2dxdy

=

∫

∂Ω

Fu
∂

∂�n
(Fu)dS −

∫

Ω

|∇Fu|
2dxdy.

This is a descent direction ( d
dt (

∫

Ω
F (u)dxdy) < 0) if

(a) Fu = 0 or ∂
∂n (Fu) = 0 on ∂Ω,

(b) ∇Fu is not identically zero if Fu is not.
The condition (a) ∂

∂n (Fu) = 0 on ∂Ω is true in our framework. (b) is also true.
We believe that it is remarkable that a TV minimization model leads to an equiva-

lent fourth order Euler–Lagrange PDE. Moreover, edges are kept in the u component,
as we shall see in the numerical examples. Note that, by the Rudin–Osher–Fatemi
(ROF) model, the curvature k = div( ∇u

|∇u| ), defined in the generalized sense, satisfies

k ∈ L2(Ω), while by the new model, k ∈ H1(Ω). So in the new model, the regular-
ization is stronger than by the ROF model; therefore smaller details with the new
model will be better separated from larger features. However, both models satisfy
∫

Ω
k(x, y)dxdy = 0.
We also have the following interesting property of the residual v := f − u, where

u is a minimizer of (2.1), giving information about vanishing moments. We state this
simple result in the following theorem.

Theorem 2.2. Assume f ∈ L2(Ω). For any subdomain Ω′ of Ω, if u is the

formal solution of (2.4), then
∫

Ω′

(f − u)wdxdy = 0

for each function w ∈ H1(Ω′) with △w = 0 in Ω′, as long as K = 0 and ∂K
∂n = 0 on

∂Ω′, where K denotes the curvature operator of level lines of u.
Proof. The proof of this theorem can be obtained by multiplying (2.5) by w and

then integrating over Ω′ in space and applying integration by parts.
We can also show existence of minimizers for (2.1) as follows.
Theorem 2.3. For f ∈ BV (Ω) + {v ∈ L2(Ω),

∫

Ω
v(x, y)dxdy = 0}, the mini-

mization problem

inf
u

{

F (u) =

∫

Ω

|∇u| + λ

∫

Ω

|∇△−1(f − u)|2dxdy,

∫

Ω

(f − u)dxdy = 0

}

(2.6)

has a solution u ∈ BV (Ω).
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Proof. Let un be a minimizing sequence of (2.6). Then there is a constant M > 0
such that

∫

Ω
|∇un| ≤ M for all n ≥ 0. By the Poincaré inequality, we obtain that

there is a positive constant C, depending only on Ω, such that

∥

∥

∥
un −

∫

Ω
un

|Ω|

∥

∥

∥

L2(Ω)
≤ C

∫

Ω

|∇u|.

Since
∫

Ω
un =

∫

Ω
f , for all n ≥ 0, we deduce that un is uniformly bounded in

L2(Ω), and therefore in L1(Ω). Then we deduce that un is uniformly bounded in
BV (Ω): there is a constant C ′ such that

‖un‖BV (Ω) = ‖un‖L1(Ω) +

∫

Ω

|∇u| ≤ C ′.

Therefore, there is a subsequence of un, still denoted un, and u ∈ BV (Ω), such that
un → u strongly in L1(Ω) and weakly in BV − w∗, as n→ ∞. Moreover,

∫

Ω

|∇u| ≤ lim inf
n→∞

∫

Ω

|∇un|.

On the other hand, to each un of the minimizing and convergent subsequence (un)
we can associate a unique Pn ∈ H1(Ω), such that f−un = −△Pn, from Theorem 2.1.
We have that ‖∇Pn‖

2
L2(Ω) ≤ M , for all n ≥ 0, and also that

∫

Ω
Pndxdy = 0. Again,

by the Poincaré inequality, we obtain that

∥

∥

∥
Pn −

∫

Ω
Pn

|Ω|

∥

∥

∥

L2(Ω)
= ‖Pn‖L2(Ω) ≤ C‖∇Pn‖

2
L2(Ω) ≤ C ′′

for all n ≥ 0. Therefore, there is a subsequence of Pn, still denoted Pn, and P ∈
H1(Ω), such that Pn → P in L2(Ω), with

∫

Ω
Pdxdy = 0. In fact, by uniqueness of

the limit, we need to have also f − u = −△P . Therefore, we also have that

‖∇P‖2
L2(Ω) = ‖∇△−1(f − u)‖2

L2(Ω) ≤ lim inf
n→∞

‖∇Pn‖
2
L2(Ω) = ‖∇△−1(f − un)‖2

L2(Ω).

We finally deduce that

F (u) ≤ lim inf
n→∞

F (un);

therefore u is a minimizer of (2.6). Clearly,
∫

Ω
(f − u)dxdy = 0.

We will present numerical results of image denoising, obtained using the model
(2.5), in section 4. Comparison with the standard models of Rudin, Osher, and
Fatemi [19] and Vese and Osher [21] are also presented. We have also considered the
restoration problem in the presence of both blur and noise. The original ROF model
for restoring blurry, noisy imaging appeared in [18]. In this case, if K : L2(Ω) →
L2(Ω) is a linear and continuous operator modeling the blur, and such that K∗, its
adjoint operator, commutes with the Laplacian △, then the model for deblurring and
denoising is obtained in a similar manner: the convex energy to be minimized is

inf
u
E(u) =

∫

Ω

|∇u| + λ

∫

Ω

|∇(△−1)(f −Ku)|2dxdy.(2.7)

Following the same operations, we arrive at the transformed Euler–Lagrange equation

2λ(K∗Ku−K∗f) = −△
[

div
( ∇u

|∇u|

)]

.(2.8)
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We again solve this by our new descent procedure, which becomes

ut = −
1

2λ
△
[

div
( ∇u

|∇u|

)]

− (K∗Ku−K∗f), u(0, ·, ·) = f(·, ·).

Note that if K is a convolution operator, then it commutes with the Laplace operator.
Following [7] and [20], under appropriate assumptions on K, it is possible to modify
the proof of Theorem 2.3 for the deblurring case (2.7).

Remark. We end this section by a simple but intuitive discussion and comparison
of the norms in H−1(Ω) used here and the G norm used by Meyer [15].

Consider v : [0, 1] → R such that
∫ 1

0
v(x)dx = 0. Then let ĝ(x) =

∫ x

0
v(ξ)dξ. Let

M , m be such that

M = ĝ(x1) ≥ ĝ(x) ≥ ĝ(x2) = m for all x ∈ [0, 1].

Then

(A) g(x) =

∫ x

0

v(ξ)dξ −
(M +m

2

)

has the smallest L∞[0, 1]-norm among all primitives of v, and

‖v‖∗ =
M −m

2
=

1

2

∫ x1

x2

v(ξ)dξ.

For example, if v = sin 2πnx, then ‖v‖∗ = ‖sin2πnx‖∗ = 1
4πn .

Next, let P be such that v = P ′′(x), with P ′(0) = P ′(1) = 0. Then P ′′ = g′, and

(B) g = P ′ =

∫ x

0

v(s)ds.

We have ‖v‖2
H−1[0,1] = ‖g‖2

L2[0,1] =
∫ 1

0
(
∫ x

0
v(s)ds)2.

Note that the only difference between (A) and (B) is the constant M+m
2 . Thus,

‖sin2πnx‖2
H−1[0,1] =

∫ 1

0

(1 − cos 2πnx

2πn

)2

dx =
1

4π2n2

3

2
.

In two dimensions, on the unit square, we can write

v =

∞
∑

n,m=1

an,m cos 2πnx cos 2πmy.

Then

△−1v = −

∞
∑

n,m=1

an,m
cos 2πnx cos 2πmy

n2 +m2

and

‖∇△−1v‖2
L2(Ω) = π2

∞
∑

n,m=1

a2
m,n

n2 +m2
.
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3. Some additional theoretical results. We present in this section some the-
oretical results of the new model, similar to those mentioned by Meyer in [15], on the
initial ROF model. We recall the notation v := f − u, with u a minimizer.

(I) ‖△−1f‖∗ ≤ 1
2λ if and only if u = 0, v = f .

(II) ‖△−1f‖∗ >
1
2λ if and only if ‖△−1v‖∗ = 1

2λ and

−

∫

Ω

(△−1v(x, y))u(x, y)dxdy =
1

2λ
‖u‖BV (Ω),

where ‖u‖BV (Ω) =
∫

Ω
|∇u| (recall that v := f − u).

Proofs.
(I) The minimizer is u = 0, v = f if and only if, for any h ∈ BV (Ω),

‖h‖BV + λ‖∇△−1(f − h)‖2
2 ≥ λ‖∇△−1f‖2

2.

Expanding this inequality, we obtain

‖h‖BV (Ω) + λ‖∇△−1h‖2
2 ≥ −2λ

∫

h(△−1f)dxdy.

Replacing h first by +ǫh and then by −ǫh, and letting ǫ→ 0, we obtain

‖△−1f‖∗ ≤
1

2λ
.

The inverse implication is also true: starting with this last inequality, then reversing
the steps, we arrive at the desired inequality using (a) the fact that △−1f ∈ L2(Ω)
and (b) Lemma 3 from [21].

(II) We have

‖u+ ǫh‖BV + λ‖∇(△−1(v − ǫh))‖2
2 ≥ ‖u‖BV + λ‖∇△−1v‖2

2;

then

‖u‖BV + |ǫ|‖h‖BV + λ‖∇(△−1(v − ǫh))‖2
2 ≥ ‖u‖BV + λ‖∇△−1v‖2

2.

Again, expand in the last inequality to get

|ǫ|‖h‖BV + λǫ2‖∇△−1h‖2
2 ≥ −2ǫλ

∫

h△−1vdxdy.

Changing ǫ→ −ǫ and taking ǫ→ 0, we obtain, as before,

‖△−1v‖∗ ≤
1

2λ
.

In the next step, we take h = u in the first equation above. If −1 < ǫ < 1, we
have

ǫ‖u‖BV + λǫ2‖∇△−1u‖2
2 ≥ −2λǫ

∫

u△−1vdxdy.

If ǫ < 0, we have

‖u‖BV ≤ 2λ

∫

u(−△−1v)dxdy.
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If ǫ > 0, then

‖u‖BV ≥ 2λ

∫

u(−△−1v)dxdy,

and therefore
∫

u(−△−1v)dxdy = 1
2λ‖u‖BV . This implies that ‖△−1v‖∗ = 1

2λ .
Now, to verify the converse, we have

‖u+ ǫh‖BV + λ‖∇(△−1(v − ǫh))‖2
2

≥ −2λ

∫

(△−1v)(u+ ǫh) + λ‖△−1v‖2
2 + 2λǫ

∫

(△−1v)h+ λǫ2‖△−1h‖2
2

= −2λ

∫

(△−1v)udxdy + λ‖△−1v‖2
2 + λǫ2‖△−1h‖2

2

= ‖u‖BV + λ‖△−1v‖2
2 + λǫ2‖△−1h‖2

2

≥ ‖u‖BV + λ‖△−1v‖2
2.

In the case of restoration and deblurring, if

û = argmin
u

‖u‖BV + λ‖∇△−1(Ku− f)‖2
2,

then the analogous results are as follows:
(I) If ‖K∗△−1f‖∗ ≤ 1

2λ , then û = 0 and v̂ = f .

(II) If ‖K∗△−1f‖∗ ≥ 1
2λ , then ‖K∗△−1v̂‖∗ = 1

2λ and (û,K∗△−1v̂) = − 1
2λ‖û‖BV .

The proofs for these results are similar.
Remark. Following Chambolle [6], we have an interesting characterization of the

quantity v = f − u for u the minimizer of our variational problem (2.1):

v = P
(1)
K/2λ(−△−1f) = argmin

w∈K/2λ

∫

Ω

(∇(w + 2λ△−1f))2dxdy.

Here

K = {divg| g ∈ L2(Ω)2, ‖g‖∞ ≤ 1};

P
(1)
K/2λ is the H1 orthogonal projection onto K/2λ of −△−1f . This result is obviously

closely related with the results (I) and (II) above, just as Chambolle’s original result [6]
is related to Lemma 4 and Theorem 3, p. 32, of Meyer [15].

Again following Chambolle, we define

J(u) =

∫

|∇u| = sup

{
∫

Ω

udivξdxdy| ξ ∈ C1
c (Ω), ‖ξ‖∞ ≤ 1

}

.

Then

J∗(u) = sup
u∈L2(Ω)

∫

Ω

(uv − J(u))dxdy =

{

0 if v ∈ K,
+∞ otherwise.

Minimizing the functional defined in (2.1) gives us

−2λ△−1(f − u) ∈ ∂J(u),
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where ∂J(u) is the subdifferential of the functional J(u) (see Ekeland and Temam [9]
for the terminology). Since J is convex, by duality we obtain

u ∈ ∂J∗(−2λ△−1(f − u))

or

0 ∈ 2λ(f − u) − 2λf + 2λ∂J∗(−2λ△−1(f − u)).

Thus w = −2λ△−1(f − u) is the minimizer of

‖∇(w + 2λ△−1f)‖2

2
+ 2λJ∗(w).

This is our desired result.

4. Numerical results for image restoration. We present in this section our
numerical results obtained with the proposed new model and comparisons with the
TV model from [19]. In the experiments comparing our method with the classical
TV model, the parameter λ has been chosen such that the L2-norms of the v parts
coincide. We also show comparisons with the original decomposition model introduced
in [21].

In Figure 1, we show results obtained using both models on a textured image
with a scale feature for different decreasing values of the parameter λ. The first row
shows the minimizer u, while the third row shows v := f − u, respectively. The same
experiment has been performed using the classical TV model; the second row shows
the minimizer uTV , while the fourth row shows vTV := f − uTV . The parameter λ
for the case of the TV model has been selected in each case in order to accomplish
‖vTV ‖2 = ‖v‖2. We note that the new model separates better the textured details
from the larger regions: the small textured details are in the v component, while the
larger regions are kept in the u component. Using the standard TV model, small
textured details are still kept in the uTV component, while contours of larger regions
can be seen in the vTV component; therefore, the separation between texture and
nontexture is not that well made using the standard TV model. These remarks can
be seen on the third column in Figure 1.

The same experiment has been performed on an image composed of four different
Brodatz textures (see Figure 2). The corresponding u, v, uTV , and vTV are displayed
in Figure 3 (recall that in the TV result λ has been chosen such that ‖vTV ‖2 = ‖v‖2).
The same remarks can be made by looking at these results: the new model separates
better the nontexture details, represented in u, from the texture details, represented
in v (compare the right upper squares of the u components in Figure 3, top and
bottom). We also show in Figure 4 the absolute value of v and vTV (after histogram
equalization for visualization purposes).

Figure 5 corresponds to a real image where there is a high presence of textures
combined with nontextured parts. We have made the same kind of experiment as for
the Brodatz textures, which are shown in Figures 6 and 7, respectively. The u and v
components are displayed in Figure 6, while the absolute value of the v components
is displayed in Figure 7. Again, we can make the same observation: the new model
separates better the textured details shown in v from nontextured images kept in u.
Indeed, if we look to the v components from Figure 6, we still see the hands in the
result produced by the standard TV model. These are not seen in the v component
produced by the new model. On the other hand, details like the eyes are much better
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Fig. 1. Top: original grid image. First row: from left to right, computed u for λ =
1, 0.1, 0.001, 0.0001 with the new model. Second row: computed u for the TV model. Third row:
computed v for the new model. Fourth row: computed v for the TV model. In each case the TV
result has been computed such that the L2-norm of v is the same as in the new model.

kept in the u component of the new model. These remarks can also be noticed in
Figure 7. In other words, the new model performs much better in keeping the main
contours in the u component, instead of the v component. The new model performs
better for separating the main larger features from the textured features. We also
show in Figure 6 a comparison with the model from [21] (obtained very fast, using
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Fig. 2. Original image composed of four different Brodatz textures.

only 100 time iterations). From these comparisons, we note that, on this image, the
present new model has fewer edges in the v component, thus giving again a very good
result. More comparisons with the original model [21] are presented in Figure 8, where
the two image decomposition models give slightly different but comparable results.

Figures 9, 10, and 11 show the performance of the new model compared with the
classical TV model for the denoising problem. Figure 9 corresponds to the woman
image before and after corrupting it with white Gaussian noise of standard deviation
10. Figure 10 shows the denoised image using our approach and the classical TV
model. In both cases the parameter λ has been computed using the gradient projection
method in order to satisfy the constraint ‖fnoise − u‖2 = σ2 (although there is no
proof on the convergence of λ using the gradient projection method; in practice it
seems to work). Figure 11 just shows a zoom of a textured part of the image.

We present also some results concerning the deblurring/denoising problem using
the woman image (Figures 12 and 13) and the satellite image (Figures 14 and 15).
If we carefully compare the results from Figure 15, together with the PSNR and the
RMSE, we see that the new model performs better in this denoising-deblurring case.

Finally, we end this section with a decomposition result on an image with an
object with fractal boundary (corresponding to the “Sierpinsky pentagon”), using the
new model. The result of the decomposition is remarkable, as shown in Figure 16:
the cartoon part is well represented in the component u, while the oscillatory fractal-
like boundaries are kept in the v component. We plan to extend this example to
decomposition and representation of shapes in three dimensions in a future work.
The shape will be represented by characteristic functions f .

5. Conclusion. In this paper, we have proposed a new model for image restora-
tion and image decomposition into cartoon plus texture, which combines the total
variation minimization from the ROF model [19] with a norm for oscillatory func-
tions proposed by Meyer [15] involving the H−1 norm. The new model performs
better on textured images, and the “residual” component v has less structure than in
the standard TV model. We also present some theoretical analysis of the model.
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Fig. 3. Top: Decomposition into u (left) and v (right) using our method. Bottom: Decompo-
sition into u (left) and v (right) using the TV model. In order to compare we have chosen λ in the
TV model such that the L2-norm of v is the same in both cases.
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Fig. 4. Absolute value of v in our case (left) and for the TV model (right). An equalization of
the histogram has been performed for visualization purposes.

Fig. 5. Original woman image.
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Fig. 6. u (left) and v (right) using the new method (top), the TV model (middle), and [21]
(bottom). We choose λ in the TV model such that the L2-norm of v is the same in the first and
second rows.



364 STANLEY OSHER, ANDRÉS SOLÉ, AND LUMINITA VESE

Fig. 7. Absolute value of v in our case (left) and for the TV model (right). An equalization of
the histogram has been performed for visualization purposes.

                                    

Fig. 8. More comparisons with the model [21] from (1.4). Top: the proposed new model.
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Fig. 9. Original woman image (left) and corrupted image with white Gaussian noise of σ = 10
(right).

Fig. 10. Left: denoised image using the new model. Right: denoised image using the TV model.
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Fig. 11. Zoom of a textured zone, from left to right, top to bottom: original, noisy, denoised
with the new model, denoised with the TV model.

Fig. 12. Original image (left) and the corrupted image (Gaussian blur of σ = 3 plus additive
Gaussian noise of σ = 1).
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Fig. 13. Restoration using the proposed model (left) and the TV model (right).

Fig. 14. Original image (left) and the corrupted image (Gaussian blur of σ = 4 plus additive
Gaussian noise of σ = 1). The values for the PSNR (peak to signal to noise ratio) and the RMSE
(root mean square error) are, respectively, PSNR = 21.66dB and RMSE = 0.0826.
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Fig. 15. Restoration using the proposed model (left, PSNR = 24.10dB and RMSE = 0.0624)
and the TV model (right, PSNR = 23.98dB and RMSE = 0.0633). Observe that the proposed model
gives a slightly better result (higher PSNR and lower RMSE) than the classical TV model.
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Fig. 16. Decomposition of an image with an object with fractal boundary (corresponding to the
“Sierpinsky pentagon”) using the new model. Top: f ; bottom left: u; bottom right: v.
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