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Image Decomposition and
Separation Using Sparse
Representations: An Overview
This overview paper points out that signal and image processing, as well as
many other important areas of engineering, can benefit from the techniques

it discusses.

ByM. Jalal Fadili, Jean-Luc Starck, Jérôme Bobin, and Yassir Moudden

ABSTRACT | This paper gives essential insights into the use of

sparsity and morphological diversity in image decomposition

and source separation by reviewing our recent work in this field.

The idea to morphologically decompose a signal into its building

blocks is an important problem in signal processing and has far-

reaching applications in science and technology. Starck et al. [1],

[2] proposed a novel decomposition methodVmorphological

component analysis (MCA)Vbased on sparse representation of

signals. MCA assumes that each (monochannel) signal is the

linear mixture of several layers, the so-called morphological

components, that are morphologically distinct, e.g., sines and

bumps. The success of this method relies on two tenets: sparsity

and morphological diversity. That is, each morphological com-

ponent is sparsely represented in a specific transform domain,

and the latter is highly inefficient in representing the other

content in the mixture. Once such transforms are identified, MCA

is an iterative thresholding algorithm that is capable of decou-

pling the signal content. Sparsity and morphological diversity

have also been used as a novel and effective source of diversity

for blind source separation (BSS), hence extending the MCA to

multichannel data. Building on these ingredients, we will provide

an overview the generalizedMCA introduced by the authors in [3]

and [4] as a fast and efficient BSS method. We will illustrate the

application of these algorithms on several real examples. We

conclude our tour by briefly describing our software toolboxes

made available for download on the Internet for sparse signal

and image decomposition and separation.

KEYWORDS | Blind source separation; image decomposition;

morphological component analysis; sparse representations

I . INTRODUCTION

Although mathematics has it million-dollar problems, in

the form of Clay Math Prizes, there are several billion

dollar problems in signal and image processing. Famous

ones include the cocktail party problem (separate a

speaker voice from a mixture of other recorded voices

and background sounds at a cocktail party). These signal-

processing problems seem to be intractable according to

orthodox arguments based on rigorous mathematics, and

yet they keep cropping up in problem after problem.

One such fundamental problem involves decomposing a

signal or image into superposed contributions from

different sources; think of symphonic music, which may

involve superpositions of acoustic signals generated by

many different instrumentsVand imagine the problem of

separating these contributions. More abstractly, we can see

many forms of media content that are superpositions of

contributions from different Bcontent types,[ and we can

imagine wanting to separate out the contributions from
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each. We can easily see a fundamental problem; for ex-

ample, an N-pixel image created by superposing K different

types offers usN data (the pixel values), but there may be as

many as N � K unknowns (the contribution of each content

type to each pixel). Traditional mathematical reasoningV

in fact, the fundamental theorem of linear algebraVtells us

not to attempt this: there are more unknowns than equa-

tions. On the other hand, if we have prior information

about the underlying object, there are some rigorous results

showing that such separation might be possibleVusing a

sparsity prior.

The idea to morphologically decompose a signal into

its building blocks is an important problem in signal and

image processing. Successful methods for signal or image

separation can be applied in a broad range of areas in

science and technology including biomedical engineering,

medical imaging, speech processing, astronomical imag-

ing, remote sensing, communication systems, etc. An

interesting and complicated image content separation

problem is the one targeting decomposition of an image

to texture and piece-wise-smooth (cartoon) parts. A

functional-space characterization of oscillating textures

was proposed in [5] and was used for variational

cartoon þ texture image decomposition [6]. Since then, we

have witnessed a flurry of research activity in this appli-

cation field.

In [1] and [2], the authors proposed a novel

decomposition methodVmorphological component anal-

ysis (MCA)Vbased on sparse representation of signals.

MCA assumes that each signal is the linear mixture of

several layers, the so-called morphological components,

that are morphologically distinct, e.g., sines and bumps.

The success of this method relies on the assumption that

for every component behavior to be separated, there

exists a dictionary of atoms that enables its construction

using a sparse representation. It is then assumed that

each morphological component is sparsely represented in

a specific transform domain. And when all transforms

(each one attached to a morphological component) are

amalgamated in one dictionary, each one must lead to

sparse representation over the part of the signal it is

serving while being highly inefficient in representing the

other content in the mixture. If such dictionaries are

identified, the use of a pursuit algorithm searching for the

sparsest representation leads to the desired separation.

MCA is capable of creating atomic sparse representations

containing as a by-product a decoupling of the signal

content.

Over the last few years, the development of multi-

channel sensors motivated interest in methods for the

coherent processing of multivariate data. Consider a

situation where there is a collection of signals emitted by

some physical sources. These could be, for example, dif-

ferent brain areas emitting electric signals; people speak-

ing in the same room, thus emitting speech signals; or

radiation sources emitting their electromagnetic waves.

Assume further that there are several sensors or re-

ceivers. These sensors are in different positions, so that

each records a mixture of the original source signals with

different weights. The so-called blind source separation

(BSS) problem is to find the original sources or signals

from their observed mixtures, without prior knowledge

of the mixing weights, and by knowing very little about

the original sources. Some specific issues of BSS have

already been addressed, as testified by the wide litera-

ture in this field. In this context, as clearly emphasized

by previous work, it is fundamental that the sources to be

retrieved present some quantitatively measurable diversity

or contrast (e.g., decorrelation, independence, morpho-

logical diversity, etc.). The seminal work of [7] and [8]

paved the way for the use of sparsity in BSS. Recently,

sparsity and morphological diversity have emerged as a

novel and effective source of diversity for BSS for both

underdetermined and overdetermined BSS; see the com-

prehensive review in [4]. Building on the sparsity and

morphological diversity ingredients, the authors proposed

the generalized MCA (GMCA) as a fast and efficient

multichannel sparse data-decomposition and BSS method

[3], [4], [9].

A. Organization of the Paper
Our intent in this paper is to provide an overview of the

recent work in monochannel image decomposition and

multichannel source separation based on the concepts of

sparsity and morphological diversity. The first part of this

paper is devoted to monochannel sparse image decompo-

sition, and the second part to blind sparse source sepa-

ration. In this review, our goal is to highlight the essential

concepts and issues, and to describe the main algorithms.

Several applications to real data are given in each part to

illustrate the capabilities of the proposed algorithms. We

conclude our tour by providing pointers to our software

toolboxes that implement our algorithms and reproduce

the experiments on sparse signal and image decomposition

and source separation.

B. Notations
The ‘p-norm of a (column or row) vector x is kxkp :¼

ð
P

i jx½i�j
pÞ1=p with the usual adaptation when p ¼ 1 and

kxk0 :¼ limp!0 kxkpp is the ‘0 pseudonorm, i.e., the

number of nonzero components. Bold symbols represent

matrices and X
T is the transpose of X. The Frobenius

norm of X is kXkF ¼ TraceðXT
XÞ1=2. The kth entry of yi

(respectively, yj) is yi½k� (respectively, yj½k�), where yi is the
ith row and yj is the jth column of Y. An atom is an

elementary signal-representing template. Examples might

include sinusoids, monomials, wavelets, and Gaussians. A

dictionary % ¼ ½�1; . . . ; �L� defines a N � L matrix whose

columns are unit ‘2-norm atoms �i. When the dictionary

has more columns than rows, it is called overcomplete or

redundant. We are mainly interested here in overcomplete

dictionaries.
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II . MONOCHANNEL SPARSE
IMAGE DECOMPOSITION

A. Morphological Component Analysis
Suppose that the N-sample signal or image x is the

linear superposition of K morphological components,

possibly contaminated with noise

y ¼
X

K

k¼1

xk þ "; �2" ¼ Var½"�Gþ1:

The MCA framework aims at solving the inverse problem

that consists in recovering the components ðxkÞk¼1;...;K

from their observed linear mixture, as illustrated in the top

of Fig. 1. MCA assumes that each component xk can be

sparsely represented in an associated basis %k, i.e.,

xk ¼ %k�k; k ¼ 1; . . . ;K

where �k is a sparse coefficient vector (sparse means that

only a few coefficients are large and most are negligible).

Thus, a dictionary can be built by amalgamating several

transforms ð%1; . . . ;%KÞ such that, for each k, the rep-

resentation of xk in %k is sparse and not, or at least not as

sparse, in other %l, l 6¼ k. In other words, the

subdictionaries ð%1; . . . ;%KÞ must be mutually incoher-

ent. Thus, the dictionary %k plays a role of a discriminant

between content types, preferring the component xk over
the other parts. This is a key observation for the success

of the separation algorithm. Owing to recent advances in

computational harmonic analysis, many novel representa-

tions, including the wavelet transform, curvelet, contour-

let, steerable, or complex wavelet pyramids, were shown

to be very effective in sparsely representing certain kinds

of signals and images. Thus, for decomposition purposes,

the dictionary will be built by taking the union of one or

several (sufficiently incoherent) transforms, generally

each corresponding to an orthogonal basis or a tight

frame.

However, the augmented dictionary % ¼ ½%1 � � �%K�
will provide an overcomplete representation of x.
Because there are more unknowns than equations, the

system x ¼ �� is underdetermined. Sparsity can be used

to find a unique solution, in some idealized cases; there

is an extensive literature on the subject, and the

Fig. 1. Illustration of the (top) image decomposition and (bottom) BSS problems using sparsity and morphological diversity.

For the bottom part, each source is itself a mixture of morphological components [see (4)] to be isolated.
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interested reader may refer to the comprehensive review

paper [10].

In [1] and [2], it was proposed to solve this under-

determined system of equations and recover the morpho-

logical components ðxkÞk¼1;...;K by solving the following

constrained optimization problem:

min
�1;...;�K

X

K

k¼1

k�kkpp such that y�
X

K

k¼1

%k�k

�

�

�

�

�

�

�

�

�

�

2

� � (1)

where k�kpp is the penalty quantifying sparsity (the most

interesting regime is for 0 � p � 1) and � is typically

chosen as a constant time
ffiffiffiffi

N
p

��. The constraint in this

optimization problem accounts for the presence of noise

and model imperfection. If there is no noise and the linear

superposition model is exact ð� ¼ 0Þ, an equality con-

straint is substituted for the inequality constraint. This

formulation is flexible enough to incorporate external

forces that direct the morphological components to better

suit their expected content; these forces will fine-tune the

separation process to achieve its task. As an example for

such successful external force, [1] proposed to add a total

variation penalty [11] to the cartoon part in order to direct

this component to fit the piecewise-smooth model.

B. MCA Algorithm
Equation (1) is not easy to solve in general, especially

for p G 1 (for p ¼ 0, it is even NP-hard). Nonetheless, if all

components xl ¼ �l�l but the kth are fixed, then it can be

proved that the solution �k is given by hard thresholding

(for p ¼ 0) or soft thresholding (for p ¼ 1) the marginal

residuals rk ¼ y�P

l6¼k �l�l. These marginal residuals rk

are relieved from the other components and are likely to

contain mainly the salient information of xk. This intuition
dictates a coordinate relaxation algorithm that cycles

through the components at each iteration and applies a

thresholding to the marginal residuals. This is what

justifies the steps of the MCA algorithm summarized in

Algorithm 1, where TH�ð�Þ denotes component-wise thresh-

olding with threshold �: hard thresholding HT�ðuÞ¼u
if juj > � and zero otherwise, or soft-thresholding ST�ðuÞ ¼
umaxð1� �=juj; 0Þ.

Beside coordinate relaxation, another important

ingredient of MCA is iterative thresholding with varying
threshold. Thus, MCA can be viewed as a stagewise

hybridization of matching pursuit (MP) [12] with block-

coordinate relaxation [13] to (approximately) solve (1).

The adjective stagewise is because MCA exploits the fact

that the dictionary is structured (union of transforms),

and the atoms enter the solution by groups rather than

individually unlike MP. As such, MCA is a salient-to-fine
process where, at each iteration, the most salient content

of each morphological component is iteratively comput-

ed. These estimates are then progressively refined as the

threshold � decreases towards �min.

In the noiseless case, a careful analysis of the recovery

properties (uniqueness and support recovery) of the MCA

algorithm and its convergence behavior when all %k are

orthobases can be found in [9] and [14].

C. Dictionary Choice
From a practical point of view, given a signal x, we

will need to compute its forward (or analysis)

transform by multiplying it by %
T . We also need to

reconstruct any signal from its coefficients �. In fact,

the matrix % and its adjoint %T corresponding to each

transform are never explicitly constructed in memory.
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Rather, they are implemented as fast implicit analysis and

synthesis operators taking a signal vector x and returning

%
Tx ¼ Tx (analysis side), or taking a coefficient vector �

and returning %� (synthesis side). In the case of a simple

orthogonal basis, the inverse of the analysis transform is

trivially T
�1 ¼ %; whereas, assuming that % is a tight

frame implies that the frame operator satisfies %%
T ¼ cI,

where c > 0 is the tight frame constant. Hence,TT ¼ % is

the Moore–Penrose pseudoinverse transform (corre-

sponding to the minimal dual synthesis frame), up to the

constant c. In other words, the pseudoinverse reconstruc-

tion operator Tþ corresponds to c�1
%. It turns out that

T
þ� is the reconstruction operation implemented by most

implicit synthesis algorithms.

Choosing an appropriate dictionary is a key step

towards a good sparse decomposition. Thus, to represent

efficiently isotropic structures, a qualifying choice is the

wavelet transform [15], [16]. The curvelet system [17] is a

very good candidate for representing piecewise smooth

ðC2Þ images away from C2 contours. The ridgelet transform

[18] has been shown to be very effective for sparsely re-

presenting global lines in an image. For locally oscillating

textures, one can think of the local discrete cosine trans-

form (DCT) [15], waveatoms [19] or brushlets [20]. These

transforms are also computationally tractable particularly

in large-scale applications and, as stated above, never

explicitly implement % and T. The associated implicit fast

analysis and synthesis operators have typical complexities

of OðNÞ, with N the number of samples or pixels (e.g.,

orthogonal or biorthogonal wavelet transform) or

OðN logNÞ (e.g., ridgelets, curvelets, and local DCT,

waveatoms).

What happens if none of the known fixed transforms

can efficiently sparsify a morphological component; e.g., a

complex natural texture. In [21], the authors have ex-

tended the MCA algorithm to handle the case where the

dictionary attached to each morphological component is

not necessarily fixed a priori as above but learned from a

set of exemplars in order to capture complex textural

patterns.

D. Thresholding Strategy
In practice, hard thresholding leads to better results.

Furthermore, in [14], we empirically showed that the use

of hard thresholding is likely to provide the ‘0-sparsest
solution. As far as the thresholding decreasing strategy is

concerned, there are several alternatives. For example, in

[1] and [2], linear and exponential decrease were advo-

cated. In [14], a more elaborated strategy coined MOM

(for mean-of-max) was proposed.

E. Handling Bounded Noise
MCA handles in a natural way data perturbed by

additive noise " with bounded variance �2
". Indeed, as

MCA is a coarse-to-fine iterative procedure, bounded noise

can be handled just by stopping iterating when the residual

is at the noise level. Assuming that the noise variance �2" is
known, the algorithm may be stopped at iteration t when
the ‘2-norm of the residual satisfies krðtÞk2 �

ffiffiffiffi

N
p

�".

Alternatively, one may use a strategy reminiscent of de-

noising methods by taking �min ¼ ��", where � is a

constant, typically between three and four.

F. Applications
Fig. 2 shows examples of application of the MCA sparse

decomposition algorithm to three real images: (a)–(c)

Barbara, (d)–(f) X-ray riser image, and (g)–(j) an astro-

nomical image of the galaxy SBS 0335-052. The riser in

Fig. 2(d) is made of a composite material layer, a layer of

steel-made fibers having opposite lay angles, and lead-

made markers used as a reference to calibrate the X-ray

camera. The observed image is corrupted by noise. The

structures of interest are the curvilinear fibers. The astro-

nomical image of Fig. 2(g) is contaminated by noise and a

stripping artifact; the galaxy of interest is hardly visible in

the original data.

The dictionaries used for the three images are,

respectively: local DCT þ curvelets for Barbara to decom-

pose it into cartoon þ texture parts; translation invariant

wavelets þ curvelets for the riser image; and ridgelets þ
curvelets þ translation invariant wavelets for the astro-

nomical image. The details of the experimental setup

including the parameters of the dictionaries for each image

are found in [22]. From Fig. 2(e) and (f), one can clearly

see how MCA managed to get rid of the lead-made markers

while reconstructing the curvilinear fibers structure. In

Fig. 2(j), the galaxy has been well detected in the wavelet

space while the stripping artifact was remarkably captured

and removed owing to ridgelets and curvelets.

III . MULTICHANNEL SPARSE
SOURCE SEPARATION

A. The Blind Source Separation Problem
In the BSS setting, the instantaneous linear mixture

model assumes that we are given m observations (chan-

nels) fy1; . . . ; ymg, where each yj is a row-vector of size N;
each channel is the linear mixture of n sources

8j 2 f1; . . . ;mg; yj ¼
X

n

i¼1

aj½i�si þ "j (2)

or, equivalently, in matrix form

Y ¼ ASþE (3)

where Y ¼ ½yT1 ; . . . ; yTm�
T
is the m� N measurement mat-

rix whose rows are the channels yj, S ¼ ½sT1 ; . . . ; sTn �
T
is the
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A source matrix whose rows are the sources si, and A is

the m� n mixing matrix. A defines the contribution of

each source to each channel. An m� N matrix E is added

to account for instrumental noise or model imperfections.

See Fig. 1.

Source separation techniques aim at recovering the

original sources S by taking advantage of some informa-

tion contained in the way the signals are mixed. In the

blind approach, both the mixing matrix A and the

sources S are unknown. Source separation is overwhelm-

ingly a question of contrast and diversity. Indeed, source

separation boils down to devising quantitative measures

of diversity or contrast to extricate the sources. Typical

measures of contrast are statistical criteria such as

independence (i.e., independent component analysis

(ICA) [23]) or sparsity and morphological diversity; see

[3], [4], [7], [24], and [25] and references therein.

B. Generalized Morphological Component Analysis
The GMCA framework assumes that the observed data

Y is a linear instantaneous mixture of unknown sources

S with an unknown mixing matrix A, as in (3). For

notational convenience, the dictionaries in the multi-

channel case will be transposed versions of those

considered in the single-channel case in Section II; each

dictionary %k is now a matrix whose rows are unit-norm

atoms. Thus, we let % be the concatenation of K
transforms % ¼ ½%T

1 ; . . . ;%
T
K �

T
.

The GMCA framework assumes a priori that the

sources ðsiÞi¼1;...;n are sparse in the dictionary %, 8i
si ¼ �i%, where �i is sparse (or compressible). More

precisely, in the GMCA setting, each source is modeled as

the linear combination of K morphological components,

where each component is sparse in a specific basis

8i 2 f1; . . . ; ng; si ¼
X

K

k¼1

xik ¼
X

K

k¼1

�ik%k: (4)

GMCA seeks an unmixing scheme, through the estima-

tion of A, which leads to the sparsest sources S in the

dictionary %. This is expressed by the following opti-

mization problem:

min
A;�

X

n

i¼1

X

K

k¼1

k�ikkpp such that kY�A�%kF � �

and kaik2 ¼ 1 8i ¼ 1; . . . ; n (5)

where typically p ¼ 0 or a relaxed version with p ¼ 1. But

other sparsity regularization terms can be used in (5), e.g.,

Fig. 2. MCA of three real two-dimensional images. Barbara: (a) original, (b) cartoon component (curvelets), (c) texture (local DCT).

X-ray riser image: (d) observed, (e) isotropic structures and background (wavelets), (f) curvilinear fibers (curvelets).

Galaxy SBS 0335-052: (g) observed, (h) ridgelet component, (i) curvelet component, (j) detected galaxy (wavelets).
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mixed-norms [26]. The unit ‘2-norm constraint on the

columns of A avoids the classical scale indeterminacy of

the product AS in (3). The reader may have noticed that

the MCA problem (1) is a special case of the GMCA

problem (5) when there is only one source n ¼ 1 and one

channel m ¼ 1 (no mixing). Thus GMCA is indeed a

multichannel generalization of MCA.

Equation (5) is a difficult nonconvex optimization

problem even for convex penalties p � 1. More con-

veniently, the product AS can be split into n � K multi-

channel morphological components: AS ¼
P

i;k a
ixik ¼

A�% ¼
P

i;k a
i�ik%k. Based on this decomposition,

GMCA yields an alternating minimization algorithm to

estimate iteratively one term at a time. It has been shown

in [3] that estimating the morphological component

xik ¼ �ik%k assuming A and xfpqg6¼fikg can be obtained

through iterative thresholding for p ¼ 0 and p ¼ 1.

Now, considering fixed fapgp 6¼i and S, updating the

column ai is then just a least squares estimate

ai ¼ 1

ksik22
Y�

X

p 6¼i

apsp

0

@

1

AsTi : (6)

This estimate is then projected onto the unit sphere to

meet the unit ‘2-norm constraint in (5).

C. GMCA Algorithm
The GMCA algorithm is summarized in Algorithm 2. In

the same vein as MCA, GMCA also relies on a salient-to-fine

strategy. More precisely, GMCA is an iterative thresholding

algorithm such that, at each iteration, it first computes

coarse versions of the morphological components for a fixed

source si. These raw sources are estimated from their most

significant coefficients in %. Then, the corresponding

column ai is estimated from the most significant features

of si. Each source and its corresponding column ofA is then

alternately and progressively refined as the threshold �
decreases towards �min. This particular iterative threshold-

ing scheme provides robustness to noise, model imperfec-

tions, and initialization by working first on the most

significant features in the data and then progressively incor-

porating smaller details to finely tune the model parameters.

As a multichannel extension of MCA, GMCA is also robust

to noise and can be used with either linear or exponential

decrease of the threshold [3], [4]. Moreover, hard thresh-

olding leads to its best practical performance.

D. Unknown Number of Sources
In BSS, the number of sources n is assumed to be a

fixed known parameter of the problem. This is rather an

exception than a rule, and estimating n from the data is a

crucial and strenuous problem. Only a few works have

attacked this issue. One can think of using model selection

criteria such as the minimum description length used in

[27]. In [4], a sparsity-based method to estimate n within

the GMCA framework was proposed. Roughly speaking,

this selection procedure uses GMCA to solve a sequence of

problems (5) for each constraint radius �ðqÞ with

increasing q, 1 � q � m. In [4], it was argued to set �ðqÞ
to the Frobenius-norm of the error when approximating

the data matrixY with its largest q singular vectors; see [4]
for further details.

E. Hyperspectral Data
In standard BSS, A is often seen as a mixing matrix of

small size m� n. On the other hand, there are applications
in which one deals with data from instruments with a very

large number of channels m, which are well organized

according to some physically meaningful index. A typical

example is hyperspectral data, where images are collected in
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a large number (i.e., hundreds) of contiguous regions of the

electromagnetic spectrum. Regardless of other definitions

appearing in other scientific communities, the term

Bhyperspectral[ is used here for multichannel data model

(3) where the number of channels m is large and these

channels achieve a uniform sampling of some meaningful

physical index (e.g., wavelength, space, time), which we

refer to as the spectral dimension. For such data, it then

makes sense to consider the regularity of the spectral sig-

natures ðaiÞi¼1;...;n. For instance, these spectral signatures

may be known a priori to have a sparse representation in

some specified possibly redundant dictionary 8 of spectral
waveforms.

In [4] and [28], the authors propose a modified GMCA

algorithm capable of handling hyperspectral data. This is

achieved by assuming that each rank-one matrix Xi ¼ aisi
has a sparse representation in the multichannel dictionary

%�8 [9], [29] (� is the Kronecker product); i.e., 8i
si ¼ �i% and ai ¼ 8�i, where �i and �i are both sparse.

The separation optimization problem for hyperspectral

data is then

min
�;�

1

2
Y�

X

n

i¼1

8�i�i%

�

�

�

�

�

�

�

�

�

�

2

F

þ
X

n

i¼1

�ik�i�ik1 (7)

where a Laplacian prior is imposed on each �i con-

ditionally on �i, and vice versa. Remarkably, this joint

prior preserves the scale invariance of (3). Equation (7) is

again a nonconvex optimization problem for which no

closed-form solution exists. In the line of the GMCA

algorithm, thanks to the form of the ‘1-penalty in (7), a

block-relaxation iterative thresholding algorithm was

proposed in [4] and [28] that alternately minimizes (7)

with respect to � and �. It was shown by these authors that
the update equations on the coefficient matrices are

�ðtþ1Þ ¼ ST	ðtÞ �ðtÞT�ðtÞ
� ��1

�ðtÞT
8

T
Y%

T

� �

�ðtþ1Þ ¼ ST
ðtÞ 8
T
Y%

T�ðtÞT �ðtÞ�ðtÞT
� ��1

� �

: (8)

	ðtÞ is a vector of length n and entries 	ðtÞ½i� ¼ �ðtÞk�iðtÞk1=
k�iðtÞk

2

2; 

ðtÞ has length m and entries 
ðtÞ½j� ¼ �ðtÞk�ðtÞ

j k
1
=

k�ðtÞ
j k

2

2
; and �ðtÞ is a decreasing threshold. The multichan-

nel soft-thresholding operator ST	 acts on each row i with
threshold 	½i� and ST
 acts on each column j with

threshold 
½j�.

F. Applications

BSS: We first report a simple BSS application. Fig. 3

shows (a) two original sources and (b) the two noisy

mixtures [signal-to-noise ratio (SNR) ¼ 10 dB]. GMCA

was applied with a dictionary containing curvelets and

local DCT. As a quantitative performance measure of BSS

methods, we use the mixing matrix criterion �A ¼
kIn � P̂AþAk1, where Âþ is the pseudoinverse of the

estimate of the mixing matrix A and P is a matrix that

reduces the scale/permutation indeterminacy of the mix-

ing model. Fig. 3(c) compares GMCA to popular BSS

techniques in terms of �A as the SNR increases. We

compare GMCA to ICA JADE [30], relative Newton algo-

rithm (RNA) [31] that accounts for sparsity, and EFICA

[32]. Both RNA and EFICA were applied after

Bsparsifying[ the data via an orthonormal wavelet trans-

form. It can be seen that JADE performs rather badly,

while RNA and EFICA behave quite similarly. GMCA

seems to provide much better results, especially at high

noise level.

Color Image Denoising: GMCA can be applied to color

image denoising. This is illustrated in Fig. 4, where the

original RGB image is shown in (a). Fig. 4(b) shows the

RGB image obtained using a classical undecimated

wavelet-domain hard thresholding on each color plane

independently. GMCA is applied to the RGB color

channels using the curvelet dictionary. In the notation of

Section III-A, we have m ¼ 3 channels (color planes); each

color channel is yj, j ¼ 1; 2; 3, n ¼ 3 sources; and A plays

the role of the color space conversion matrix. Unlike

classical color spaces (e.g., YUV, YCC), where the con-

version matrix from RGB is fixed, the color space conver-

sion matrix is here estimated by GMCA from the data. As

such, GMCA is able to find adaptively the appropriate

color space corresponding to the color image at hand.

Once A is estimated by GMCA, we applied the same

undecimated wavelet-based denoising to the estimated

sources. The denoised data are obtained by coming back to

the RGB space via the estimated mixing matrix. Fig. 4(c)

shows the GMCA-based denoised image. Clearly, denois-

ing in the BGMCA color space[ is substantially better than

in the RGB space (or other color spaces such as YUV or

YCC; see [3]).

Hyperspectral Data Processing: In this experiment, we

consider m ¼ 128 mixtures of n ¼ 5 source images. The

sources are drawn at random from a set of structured

images shown in Fig. 5(a). For the spectra (i.e., columns

of A), we randomly generated sparse coefficient vectors

ði ¼ 1; . . . ; nÞ ði ¼ 1; . . . ; nÞ with independent Gaussian-

distributed nonzero entries and then applied the inverse

orthogonal wavelet transform to these sparse vectors to

get the spectra. % was chosen as the curvelet dictionary.

Fig. 5(b) gives four typical noisy observed channels with
SNR ¼ 20 dB. The sources recovered using GMCA
(Algorithm 2) and its hyperspectral extension (iteration
of Section III-E) are shown, respectively, in Fig. 5(c) and
(d). Visual inspection shows that GMCA is outperformed
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by hyperspectral GMCA, which better accounts for both
spatial and spectral sparsity.

IV. REPRODUCIBLE RESEARCH SOFTWARE

Following the philosophy of reproducible research, two

toolboxes, MCALab and GMCALab [22], are made

available freely for download.1 MCALab and GMCALab

have been developed to demonstrate key concepts of MCA

and GMCA and make them available to interested re-

searchers and technologists. These toolboxes are libraries

of MATLAB routines that implement the decomposition

1http://www.morphologicaldiversity.org.

Fig. 3. Example of BSS with (a) two sources and (b) two noisy mixtures. (c) depicts the evolution of the mixing matrix criterion �A

with input SNR [solid line: GMCA; dashed line: JADE; (þ): RNA; (?): EFICA].

Fig. 4. (a) Original RGB image with additive Gaussian noise SNR ¼ 15 dB. (b) Wavelet-based denoising in the RGB space.

(c) Wavelet-based denoising in the ‘‘GMCA color space.’’

Fadili et al. : Image Decomposition and Separation Using Sparse Representations

Vol. 98, No. 6, June 2010 | Proceedings of the IEEE 991

Authorized licensed use limited to: CALIFORNIA INSTITUTE OF TECHNOLOGY. Downloaded on June 04,2010 at 22:14:32 UTC from IEEE Xplore.  Restrictions apply. 



and source separation algorithms overviewed in this paper.

They contain a variety of scripts to reproduce the figures in

our own papers, as well as other exploratory examples not

included in the papers.

V. CONCLUSION

In this paper, we gave an overview of how sparsity and

morphological diversity can be used advantageously to

regularize image decomposition and blind source separa-

tion problems. We also reported several numerical

experiments to illustrate the wide applicability of the

algorithms described. We believe that this is an exciting

field where many interesting problems are still open.

Among them, we may cite, for instance, the theoretical

guarantees of the sparsity-regularized BSS problem and

sharper theoretical guarantees for the decomposition

problem by exploiting geometry. h

Fig. 5. (a) Images used as sources. (b) Four noisy mixtures out ofm ¼ 128 (SNR ¼ 20 dB). (c) Recovered sources using GMCA.

(d) Recovered sources using hyperspectral GMCA.
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