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Abstract

Perceptual image quality assessment (IQA) adopts a computational model to assess the image quality in a fashion,

which is consistent with human visual system (HVS). From the view of HVS, different image regions have different

importance. Based on this fact, we propose a simple and effective method based on the image decomposition for

image quality assessment. In our method, we first divide an image into two components: edge component and

texture component. To separate edge and texture components, we use the TV flow-based nonlinear diffusion method

rather than the classic TV regularization methods, for highly effective computing. Different from the existing

content-based IQA methods, we realize different methods on different components to compute image quality. More

specifically, the luminance and contrast similarity are computed in texture component, while the structural similarity is

computed in edge component. After obtaining the local quality map, we use texture component again as a weight

function to derive a single quality score. Experimental results on five datasets show that, compared with previous

approaches in the literatures, the proposed method is more efficient and delivers higher prediction accuracy.

Keywords: Image quality assessment, Nonlinear diffusion, TV flow

1 Introduction
With the wide use of digital image, image quality assess-

ment (IQA) becomes extremely important in many appli-

cations, such as image acquisition, watermarking, com-

pression, transmission, restoration, enhancement, and

denoising [1–3]. During the past decades, major advances

have occurred in image quality assessment. Generally,

the IQA methods can be classified into two classes: one

is the subjective assessment, where the image quality is

decided by human observers. The other is the objective

assessment, whose goal is to design algorithms to mimic

the subjective judgment accurately and automatically. In

practice, subjective assessment is usually inconvenient,

time-consuming, and expensive. This drawback makes it

impractical in real-world applications. According to the

availability of a reference image, objective IQA indices can

be classified as full reference (FR), no-reference (NR), and

reduced-reference (RR) methods.

Due to the significant advantages of the objective IQA,

a lot of excellent schemes have been proposed based

on it. These schemes can generally be categorized into
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three types: intensity-based methods, human visual sys-

tem (HVS)-based methods, and structure feature-based

methods [4]. The classical examples of intensity-based

methods, including the mean squared error (MSE) and

peak signal-to-noise ratio (PSNR) [5], are widely used in

FR-IQA because of their simplicity and clear meaning.

However, they regard the image as simple signals when

evaluating its quality, which cannot coincide with human’s

subjective evaluation.

To address this problem, many HVS property-based FR-

IQA methods are proposed. Unlike MSE or PSNR, the

HVS property-based methods try to construct a mathe-

matic model to simulate HVS characteristics, including

visual masking effect [6], contrast [7], and just notice-

able differences [8]. The noise quality measure index and

the visual signal-to-noise ratio index (VSNR) emphasize

the importance of HVS sensitivity to different visual sig-

nals, such as the luminance, the contrast, the frequency

content, and the interaction between them. However, as

pointed out in [9, 10], since the knowledge about the

various processing stages in the HVS is less, there is no

satisfying visual perception model that account for all the

experimental findings on the HVS.
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The structural similarity image (SSIM) index proposed

by Wang et al. [3] brings FR-IQA to the structure-based

stage [11]. The method is derived from the hypothesis

that the HVS is highly adapted for extracting the struc-

tural information from the visual scene, and therefore, a

measurement of structural similarity can provide a good

approximation of the perceived image quality. Due to the

success of SSIM, the contrast and structure information

are considered as two important factors in the evaluation

of FR-IQA. Based on this idea, a number of modifica-

tions have been proposed to improve SSIM’s performance

[12–15]. Based on the fact that HVS is selective for a

certain range of spatial frequencies [16]. In [12], the multi-

scale method is introduced into SSIM, this method incor-

porates the SSIM at five different resolutions with the

application of successive low-pass filtering. In [13], Wang

and Li improved the original MSSSIM to the information

content weighted SSIM index (IWSSIM) by introducing

a new information content weighting (IW)-based qual-

ity score. In [14], Chen et al. proposed gradient SSIM

(G-SSIM); in this method, contrast similarity and struc-

tural similarity are computed in gradient domain. In [15],

SSIM is used directly in the discrete wavelet decomposi-

tion band, then the whole image quality can be evaluated

by the weighted mean of all the bands. In [17], Wang

et al. proposed patch-based objective quality assessment

method using an adaptive representation of local patch

structure and evaluating their perceptual distortions in

different ways. Since SSIM is proven to be more effective

in quantifying the suprathreshold compression artifacts,

such as artifacts that distort the structure of an image

[18], it has been used in various scenarios, such as video

coding and image denoising [19, 20]. In [19], Wang et al.

proposed a perceptual video coding framework based on

SSIM-inspired divisive normalization. In [20], the SSIM

index is embedded into the framework of non-local means

image denoising.

In the last few decades, some effective features that can

well characterize contrast and structural information in

image are employed to improve the performance of the

FR-IQA metrics [11, 21–23]. For example, the gradient

magnitude have been used to characterize contrast and

structural information, and have played important roles in

recent FR-IQA methods.

Based on the fact that different image regions have dif-

ferent importance for HVS, some researchers attempt to

assign visual importance weights to improve the perfor-

mance of the FR-IQA indices [11, 23, 24]. Zhang et al. pro-

posed a Riesz-transform based feature similarity (RFSIM)

[23] index for FR-IQA. This method consists of three

steps. First, the first- and second-order Riesz transforms

are introduced to characterize local structures in images.

Then, based on the assumption that HVS is sensitive to

image edges, key locations are marked by a mask formed

by the Canny operator. Finally, only those Riesz transform

coefficients within key locations are used for evaluating

visual quality scores. Recently, Zhang et al. [11] also pro-

posed a feature similarity (FSIM) index where the phase

congruency and the gradient magnitude are used to mea-

sure the local structures. However, the above-mentioned

works are too time-consuming, which cannot be used in

the real-time applications.

In this paper, we take two important facts into consider-

ation, one is different image regions have different impor-

tance for HVS, the other is different quality metrics have

different sensitive in different regions. Inspired by this,

we propose a simple and effective image decomposition-

based structural similarity (IDSSIM) index for image

quality assessment. In our method, we first partition

an image into two components: edge and texture com-

ponents, using the TV flow based nonlinear diffusion

method. Then, themean and standard deviation of texture

component are used to evaluate the local luminance and

contrast similarity; the gradient magnitude of edge com-

ponent is used to evaluate the local structural similarity.

The effects of the changes in edge and texture are inte-

grated using different weights to obtain the local image

quality score. Finally, the texture component is employed

as a weight function to derive a single similarity score.

Since the chrominance information will also affect HVS

in understanding the images, we further extend our pro-

posed IDSSIM by incorporating the chrominance infor-

mation with the color IQA, and we call this extension

IDSSIMc. The experimental results on five benchmark

datasets demonstrate that our proposed method provides

a reliable performance of FR-IQA.

The rest of this paper is organized as follows. In

Section 2, we illustrate the proposed model in details.

Experimental results on five datasets are given in

Section 3, and the conclusion follows in Section 4.

2 Image decomposition-based structural
similarity index

2.1 Motivation

The rationale behind the proposed methods is that the

edge and texture regions have different importance for

vision perception. As shown in Fig. 1, panel a is a ref-

erence image while panels d and g are its two distorted

versions (the distortion types are additive gaussian noise

and non-eccentricity pattern noise, respectively). Panels

b, e, and h are the edge component of panels a, d, and g,

respectively. Panels c, f, and i are the texture component of

a, d, and g, respectively. We can see that images in panels

c and f have more obvious differences than those in panels

b and e. In contrast, the differences in panels b and h are

more obvious than those in panels c and i. This exam-

ple clearly illustrates that different regions show different

sensitivity in different distortion types. To further specify
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a b c

d e f

g h i
Fig. 1 Examples of image decomposition. a is a reference image while d and g are its two distorted versions (the distortion types are additive

gaussian noise and non-eccentricity pattern noise, respectively); b, e, and h are the edge component of a, d, and g, respectively; c, f, and i are the

texture component of a, d, and g, respectively

this statement, we analyze three representative methods

PSNR, SSIM, and FSIM in different image regions in

TID2013. The following steps demonstrate the process:

1. Divide an image into two component, edge and

texture, using the TV flow-based image

decomposition. More details about this method are

illustrated below.

2. Compute the PSNR, SSIM, and FSIM index for each

region.

3. Compute the Spearman correlation coefficient in

different components.

From Table 1, the best results for PSNR and SSIM are

obtained only when considering the texture regions of an

image. For the PSNR and SSIM results in Table 1, it can

be explained by the contrast sensitivity curve (CSF), which

considers that human eyes are more sensitive to median

Table 1 Performance of FSIM and SSIM in different region

Edge region Texture region Origin

PSNR 0.6604 0.7969 0.7247

SSIM 0.7158 0.8037 0.7508

FSIM 0.8012 0.7906 0.8009

frequency in comparison with lower and higher frequen-

cies. Since the gradient magnitude is the high frequency

component of an image, the FSIM shows the best per-

formance in edge region. Motivated by this observation,

we propose to implement different methods on differ-

ent regions to compute image quality. The luminance and

contrast are two important attribute for characterizing the

quality of an image [3]. Since human sensitivity to the

contrast performs well in median frequency, we compute

the luminance and contrast similarity in texture region.

Besides the luminance and contrast, the structural also

plays an important role in the perceived visual quality.

Here, we compute the structural similarity in the edge

image. In the following, we explain the proposed method

in detail.

2.2 Proposedmethod

In this section, we propose a novel FR-IQA method based

on the image decomposition. The proposed image quality

metric works with luminance only. The RGB color inputs

are converted into YIQ color space [25], defined as

⎡

⎣

Y

I

Q

⎤

⎦ =

⎡

⎣

0.299 0.587 0.114

0.596 −0.274 −0.322

0.211 −0.523 0.312

⎤

⎦

⎡

⎣

R

G

B

⎤

⎦ (1)



Yang et al. EURASIP Journal on Image and Video Processing  (2016) 2016:31 Page 4 of 13

where Y represents the luminance information, I and Q

convey the chrominance information.

The framework of IDSSIM is demonstrated in Fig. 2,

which consists of the following four steps:

(1) Partition an image into edge and texture component

images, using the TV flow image decomposition.

(2) Compare the luminance and contrast similarity in

texture image.

(3) Compare the structural similarity in edge image.

(4) Compute the global perceptual quality scores with

the texture as the weight function.

2.3 TV flow-based image decomposition model

An image can be regarded as the sum of the edge image

u (being piecewise smooth and with sharp edge along

the contour) and the texture image v (only containing

fine-scale details, usually with some oscillatory nature),

defined as: f = fu + fv. The image decomposition is

widely used in the literature of image coding, image

denoising, image registration, and texture discrimina-

tion. A general way to obtain this decomposition using

the variational approach is to solve the problem min
{

TV
(

fu
)

|
∥

∥fu − f
∥

∥

B
≤ σ

}

, where TV
(

fu
)

denotes the

total variation of fu and ‖·‖B is a norm. The total varia-

tion of fu is minimized to regularize uwhile keeping edges

like object boundaries of f in fu [26]. In our method, we

use a TV flow-based nonlinear diffusion technique [27],

which is the parabolic counterpart to TV regularization

[18], instead of TV regularization. In 1D, TV flow and

TV regularization yield exactly the same output. In 2D,

this equivalence could not be proven so far; however, both

processes at least approximate each other very well [27].

The edge image fu of the image evolves under progress

of artificial time t according to the partial differential

equation (PDE)

fu = ut+1,ut+1 = ut + div
(

g
(
∣

∣▽ut
∣

∣

)

▽ ut
)

(2)

where t is the iteration number, div is the divergence oper-

ator, ▽ is the gradient operator, and g(·) is the diffusivity

function.

Note that it is critical to choose the proper diffusivity

function g(·). In order to reduce the smoothing at edges,

the diffusivity g(·) is chosen as a decreasing function of the

edge detector ▽ut . In this paper, we choose the TV flow

[28], defined as:

g(x) =
1

ǫ + x
(3)

where ǫ is a small positive constant.

In practice, the nonlinear diffusion is quite inefficient,

which limits its practical application. To overcome its lim-

itation, we adopt an efficient approach, called the additive

operator splitting (AOS) scheme, which is defined as:

ut+1 =
1

2

(

(

f − 2τAx

(

ut
))−1

+
(

f − 2τAy

(

ut
))

ut
−1

)

ut

(4)

where Ax and Ay denote the diffusion matrices com-

puted in the horizontal and vertical directions, respec-

tively. Compared with the implicit schemes, this scheme

uses backward Euler method to obtain a system of linear

equations, which is stable for any time step. The efficiency

of the diffusion can be improved by using larger time step.

More details about the method can be found in [29].

Reference Image

and 

Distorted Image

Color space 

conversion

(RGB to YIQ)

TV flow based 

Image 

Decomposition

Texture 

component

Edge 

component

Standard deviation

Comparison

Combination

Mean value

Comparison

Gradient modulus

Comparison

Combination
IDSSIMc

Index

Weight function

Chrominance components 

Comparison

Fig. 2 The framework of the proposed approach. First, the RGB color reference and distorted images are converted into YIQ color space. The

luminance channel of reference and distorted images are divided into edge and texture components. Then, the mean and standard deviation of

texture component are used to evaluate the local luminance and contrast similarity; the gradient magnitude of edge component is used to

evaluate the local structural similarity. The effects of the changes in edge and texture are integrated using different weight methods to obtain the

local image quality score. Moreover, I and Q, two chrominance channels, are used as features to characterize the quality degradation caused by

color distortions. Finally, the texture component is employed as a weighting function to derive a single similarity score
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In the following, the texture image is defined as:

fv = f − ut (5)

where t is the number of iterations. Examples of edge and

texture images are shown in Fig. 1. The performance vari-

ations according to the time step τ and iteration number t

settings are given in Section 3.

2.4 Image decomposition-based structural similarity

With the extracted edge and texture images, in this

section, we present a novel IDSSIM index for FR-IQA.

Suppose that we are going to calculate the similarity

between reference image f1 and distorted image f2. The

computation of IDSSIM consists of two stages. In the first

stage, the local similarity map is computed, and then in

the second stage, we pool the similarity map into an over-

all quality score. We separate the IDSSIM measurement

between f1 (x) and f2 (x) into two components, each for

edge image or texture image.

For similarity measurement in texture image, we divide

the task of texture image similarity measurement into two

components: luminance and contrast similarity. Similar to

[3], we use the mean and standard deviation as estimate

of the signal luminance and contrast, respectively. Let μ1

and μ2 denote the mean of texture images fv1 and fv2; let

σ1 and σ2 denote the standard deviation of texture images

fv1 and fv2. The similarity of the local statistics is defined

as:

Sμ(x) =
2μ1 (x) · μ2 (x) + C1

μ1 (x)2 + μ2 (x)2 + C1

(6)

Sσ (x) =
2σ1 (x) · σ2 (x) + C2

σ1 (x)2 + σ2 (x)2 + C2

(7)

where C1 and C2 are positive constant to increase the

stability of Sμ(x) and Sσ (x).

Specially, we use an K ∗ K circular-symmetric Gaussian

weighting function W = {wi | i = 1, 2, . . . ,N}, with a

standard deviation of 1.5 samples, normalized to unit sum,

the same as [3]. The estimates of μ (x) and σ (x) are then

modified accordingly as:

μ (x) =

N
∑

i=1

wixi (8)

σ (x) =

(

N
∑

i=1

wi (xi − μ (x))2

)

1
2

(9)

Finally, Sμ(x) and Sσ (x) are combined to get the texture

image local similarity TS(x), defined as:

TS (x) =
[

Sμ(x)
]α

· [Sσ (x)]β (10)

where α and β are two parameters used to adjust the rela-

tive importance of Sμ(x) and Sμ(x). In our experiment, we

set α = β = 1.

Now, we introduce how to compute the structural sim-

ilarity in the edge image. Structural information is an

excellent attribute for characterizing the quality of an

image. Proper structural change may even improve the

perceptual quality of images. There are different meth-

ods for structural measurement, such as gradient modulus

(GM), Harris response, etc. Thus, we chose gradient mod-

ulus to compute the structural similarity. There are several

differentiation operators that can accomplish this task

[30–34], such as Sobel operator [30], Prewitt operator

[31], and Scharr operator. In this paper, we choose Prewitt

operator. With Prewitt operator, the partial derivatives

Gx (x) and Gy (x) are calculated as:

Gx (x) =

⎡

⎣

−1 0 1

−1 0 1

−1 0 1

⎤

⎦∗f (x) ,Gy (x) =

⎡

⎣

1 1 1

0 0 0

−1 −1 −1

⎤

⎦∗f (x)

The GM of f (x) is then computed as Gx (x) =
√

G2
x (x) + G2

y (x). Let G1 and G2 denote the GM of edge

images fu1 and fu2, then, the structural similarity is defined

as:

ES(x) =
2G1 (x) · G2 (x) + C3

G1 (x)2 + G2 (x)2 + C3

(11)

Then, TS (x) and ES (x) are combined to get the local

similarity S (x) of f1 (x) and f2 (x), defined as:

S (x) = [TS (x)]γ · [ES (x)]δ (12)

After computing the local similarity Sμ(x) at each loca-

tion x, the overall similarity can be calculated. The most

commonly used pooling strategy is average pooling, i.e.,

simply averaging the local quality map as the final FR-IQA

score. However, different locations have different contri-

butions to HVS’ perception of image [11]. In [11] and

[35], the phase congruency and visual saliency map are

used as the weighting function in the overall similarity.

Based on the analysis above, for a given location x, if

anyone of fv1 and fv2 has a significant difference diffu-

sion value, it implies that this position x will have a high

impact on HVS. Therefore, we use TMm = max
(

fv1, fv2
)

to weight the importance of Sμ(x) in the overall similarity,

the IDSSIM index is defined as:

IDSSIM =

∑

x∈η S (x) · TMm (x)
∑

x∈η TMm (x)
(13)

where η means the whole image spatial domain.

2.5 Extension to color IQA

It is known that variations of chrominance components

also affect perceived visual quality in color images. To
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Table 2 Benchmark datasets for evaluating IQA indices

Dataset Reference images Distorted images Distorted types Subjects

TID2013 25 3000 24 971

TID2008 25 1700 17 838

CSIQ 30 866 6 35

LIVE 29 779 5 161

A57 3 54 6 7

reflect this effect on IDSSIM, we devise two similar-

ity measures SI and SQ by comparing two chrominance

values, defined as:

SI(x) =
2I1 (x) · I2 (x) + C4

I1 (x)2 + I2 (x)2 + C4

(14)

SQ(x) =
2Q1 (x) · Q2 (x) + C5

Q1 (x)2 + Q2 (x)2 + C5

(15)

where C4 and C5 are positive constants. Finally, the

IDSSIM index can be extended to IDSSIMc, defined as:

IDSSIMc =

∑

x∈η S (x) ·
[

SI(x) · SQ(x)
]λ

· TMm (x)
∑

x∈η TMm (x)

(16)

where λ is a parameter used to adjust the relative

importance of chrominance features.

3 Simulation result and discussion
3.1 Databases and evaluation criteria

The performance of the proposed method is tested on

four well-known image quality assess databases, including

TID2013 database [36], TID2008 database [37], Categor-

ical Image Quality (CSIQ) database [38], LIVE database

[39], and A57 database [40]. The characteristics of these

databases are listed in Table 2.

In the following experiments, we use four evalua-

tion criteria to compare the performance of the FR-IQA

methods: the Spearman rank order correlation coeffi-

cient (SROCC), the Kendall rank order correlation coeffi-

cient (KROCC), the Pearson linear correlation coefficient

(PLCC), and the root-mean-squared error (RMSE). The

SROCC and KROCC are used to measure the prediction

monotonicity of an IQA index; the larger the value, the

better the performance. Since these two criteria only focus

on the rank of the data points and ignore the relative dis-

tance between data points. Before computing the other

two criteria, it is customary to apply a logistic transform to

obtain a nonlinear mapping between the objective scores

and subjective mean opinion scores. The PLCC is used to

measure the correlation degree between objective scores

and the subjective mean opinion scores (MOS) after non-

linear regression; larger value means better performance.

The RMSE measures the prediction consistency; smaller

valuemeans better performance. For the nonlinear regres-

sion, we use the following mapping function [39]:

0 1000 2000 3000 4000 5000
0.78
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R

O
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C
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0.7
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C
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Fig. 3 Different parameters performance The performance of IDSSIM in terms of SROCC with different parameters on a TID2008 and b TID2013

datasets
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Table 3 Parameters setting for IDSSIM

Parameter K C1 C2 C3 C4 C5 t τ γ δ

Value 2 6.5 170 185 200 200 1 500 0.7 0.3

f (x) = β1 ·

(

1

2
−

1

1 + exp (β2 · (x − β3))

)

+β4 ·x+β5

(17)

where βi, i = 1, 2, . . . , 5 are parameters to be fitted. More

details about the four performance metrics can be found

in [13]. We compare our method with the 10 other state-

of-the-art and representative FR-IQA methods, including

VIF [41], GSM [21], PSNR [5], VSNR [40], SSIM [3], MSS-

SIM [12], IWSSIM [13], RFSIM [23], FSIM/FSIMc [11],

and SFF [42].

3.2 Determination of parameters

There are several parameters required to be determined

for IDSSIM/IDSSIMc. We tuned the parameters based

on the TID2013 database, which contains 25 reference

images in TID2013 and the associated 3000 distorted

images. The tuning criterion is that the parameter value

leading to a higher SROCC would be chosen. In order to

show the performance according to the parameters (time

step τ and iteration number t) of IDSSIM/IDSSIMc, we

conducted experiments where the size of the time step

and the iteration numbers are varied. As shown in Fig. 3,

we can see that the SROCC increases with the increase of

time step and iteration numbers. It is also noteworthy that

a smaller number of iterations and a larger time step can

also guarantee a significant improvement, with less pro-

cessing time. Considering its overall performance on all

the benchmark databases, the parameters are set the num-

ber of iterations t = 1 and τ = 500. The parameters of

IDSSIM/IDSSIMc are listed in Table 3.

In IDSSIM pooling stage, the texture image is used as a

weighting function. Figure 4 shows the influences of using

texture component as a weighting function. This experi-

ment is carried out on five databases: TID2013 database

[36], TID2008 database [37], CSIQ database [38], LIVE

database [39], and A57 database [40]. The Spearman’s

rank ordered correlation coefficient (SROCC) is used as

the evaluation criterion here. From Fig. 4, we observe

that the IDSSIM has better performance when the texture

image is adopted as the weight function.

3.3 Performance evaluation

In this section, we compare the competing FR-IQA mod-

els’ performance on the five FR-IQA databases in terms

of SROCC, KROCC, PLCC, and RMSE. It is noticed that,

except the FSIMc, SFF, and IDSSIMc, all the other IQA

indices are based on the luminance component of the

image. The results are listed in Table 4. For each perfor-

mance measure, the three FR-IQA indices producing the

best results are highlighted in italics. In Table 5, we list

the performance ranking of all the IQA metrics accord-

ing to their SROCC values. For fairness, the FSIMc, SFF,

and IDSSIMc indices, which also exploit the chrominance

information of images, are excluded in Table 5. Notice that

most of the metrics perform well in the LIVE database,

and the LIVE database only contains a few distortion

types. Therefore, the experimental results on TID are

more reliable.

In Table 4, we can see that the proposed IDSSIMc per-

forms consistently well on all the benchmark databases.

TID2013 TID2008 CSIQ LIVE A57
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
None weighted function

Weighted function

Fig. 4Weight function performance. The SROCC of IDSSIM with weight function and IDSSIM without weight function to evaluate on LIVE, TID2008,

TID2013, CSIQ, and A57 databases
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Table 4 Comparison of 8 IQA indices on three benchmark datasets

VIF GSM PSNR VSNR SSIM MSSSIM IWSSIM RFSIM FSIM FSIMc SFF IDSSIM IDSSIMc

TID
2013

SROC 0.6769 0.7946 0.6862 0.6812 0.7417 0.7859 0.7779 0.7744 0.8015 0.8510 0.8513 0.8304 0.8608

KROC 0.5147 0.6255 0.5043 0.5084 0.5588 0.6047 0.5977 0.5951 0.6289 0.6665 0.6588 0.6451 0.6781

PLCC 0.7720 0.8464 0.6902 0.7402 0.7895 0.8329 0.8319 0.8333 0.8589 0.8769 0.8706 0.8584 0.8813

RMSE 0.7880 0.6603 0.8976 0.8392 0.7608 0.6861 0.6880 0.6852 0.6349 0.5959 0.6099 0.6358 0.5859

TID
2008

SROC 0.7491 0.8504 0.5245 0.7046 0.7749 0.8542 0.8559 0.8680 0.8805 0.8840 0.8767 0.8736 0.8852

KROC 0.5860 0.6596 0.3696 0.5340 0.5768 0.6568 0.6636 0.6780 0.6946 0.6991 0.6882 0.6827 0.7023

PLCC 0.8084 0.8422 0.5309 0.6820 0.7732 0.8451 0.8579 0.8645 0.8738 0.8762 0.8817 0.8646 0.8741

RMSE 0.7899 0.7235 1.1372 0.9815 0.8511 0.7173 0.6895 0.6746 0.6525 0.6468 0.6333 0.6742 0.6518

CSIQ SROC 0.9195 0.9108 0.8057 0.8106 0.8756 0.9133 0.9213 0.9295 0.9242 0.9310 0.9627 0.9451 0.9419

KROC 0.7537 0.7374 0.6080 0.6247 0.6907 0.7393 0.7529 0.7645 0.7567 0.7690 0.8281 0.7947 0.7875

PLCC 0.9277 0.8964 0.8001 0.8002 0.8613 0.8991 0.9144 0.9179 0.9120 0.9192 0.9643 0.9317 0.9335

RMSE 0.0980 0.1164 0.1575 0.1575 0.1334 0.1449 0.1063 0.1042 0.1022 0.1034 0.0695 0.0953 0.0941

LIVE SROC 0.9636 0.9561 0.8755 0.9274 0.9479 0.9513 0.9567 0.9401 0.9634 0.9645 0.9649 0.9516 0.9555

KROC 0.8282 0.8150 0.6864 0.7616 0.7963 0.8045 0.8175 0.7816 0.8337 0.8363 0.8365 0.8063 0.8095

PLCC 0.9604 0.9512 0.8721 0.9231 0.9449 0.9489 0.9522 0.9354 0.9597 0.9613 0.9632 0.9473 0.9501

RMSE 7.6137 8.4327 13.368 10.506 8.9455 8.6188 8.3473 9.6642 7.6780 7.5269 7.3460 8.7514 8.5221

A57 SROC 0.6223 0.9018 0.6189 0.9355 0.8066 0.8394 0.8706 0.8215 0.9181 – – 0.9285 –

KROC 0.4589 0.8724 0.4309 0.8031 0.6058 0.6478 0.6848 0.6324 0.7639 – – 0.7741 –

PLCC 0.6158 0.7231 0.6587 0.9472 0.8017 0.8504 0.9035 0.8475 0.9252 – – 0.9282 –

RMSE 0.1936 0.1206 0.1849 0.0781 0.1469 0.1293 0.1052 0.1305 0.0933 – – 0.0900 –

The top 3 indices are highlighted in italics

On the largest database TID2013, the proposed method

IDSSIMc achieves the best results. SFF is the second best

performing method. On TID2008, IDSSIMc shows the

best performance, closely followed by FSIMc. The results

on CSIQ and LIVE databases show that, even though it

is not the best, IDSSIMc performs only slightly worse

than the best results. On the A57 database, VSNR per-

forms the best, and IDSSIM and IWSSIM perform almost

the same. In Table 5, we can see that our methods achieve

Table 5 Ranking of IQA metrics’ performance (except for FSIMc,

SFF, and IDSSIMc) on five databases

Method TID2013 TID2008 CSIQ LIVE A57

VIF [41] 10 8 5 1 9

GSM [21] 3 6 7 4 4

PSNR [5] 8 10 10 10 10

VSNR [40] 9 9 9 9 1

SSIM [3] 7 7 8 7 8

MSSSIM [12] 4 5 6 6 6

IWSSIM [13] 5 4 4 3 5

RFSIM [23] 6 3 2 8 7

FSIM [11] 2 1 3 2 3

IDSSIM 1 2 1 5 2

The proposed methods are highlighted in italics

the best results on almost all the databases, except for

TID2008 and LIVE. Even on these two databases, how-

ever, the proposed IDSSIM is only slightly worse than the

best results.

Table 6 shows the result of the weighted-average

SROCC, KROCC, and PLCC results over three datasets.

The weight assigned to each dataset linearly depends

Table 6 Weighted-average performances over three datasets

Method SROCC KROCC PLCC

VIF [41] 0.7639 0.6043 0.8247

GSM [21] 0.8460 0.6752 0.8640

PSNR [5] 0.6824 0.5046 0.6852

VSNR [40] 0.7376 0.5648 0.7573

SSIM [3] 0.7947 0.6113 0.8143

MSSSIM [12] 0.8422 0.6618 0.8596

IWSSIM [13] 0.8409 0.6641 0.8654

RFSIM [23] 0.8411 0.6634 0.8658

FSIM [11] 0.8601 0.6901 0.8831

FSIMc [11] 0.8846 0.7101 0.8928

SFF [42] 0.8872 0.7116 0.8977

IDSSIM 0.8730 0.6960 0.8814

IDSSIMc 0.8900 0.7156 0.8949

The top 1 index is highlighted in italics
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Fig. 5 Scatter plots of subjective MOS against scores obtained by model prediction on the TID2013 database a IFC, b VIF, c GSM, d PSNR, e VSNR,

f SSIM, gMSSSIM, h IWSSIM, i RFSIM, j FSIM, k IDSSIM and l IDSSIMc
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on the number of distorted images contained in that

dataset. The results show that the performance of pro-

posed IDSSIM/IDSSIMc is superior to other meth-

ods. Moreover, Fig. 5 shows the scatter plots of the

subjective scores against objective scores predicted on

TID2013. Compared with other scatter plots, the pro-

posed IDSSIM and IDSSIMc show better linearity and

correlation. It is, therefore, reasonable to conclude

that objective scores predicted by IDSSIM/IDSSIMc is

more correlated with subjective ratings than the other

methods.

3.4 Statistical significance

In order to make statistically meaningful conclusions on

the models performance, the left-tailed F-test is con-

ducted on the prediction residuals between the metric

outputs (after nonlinear mapping) and the subjective rat-

ings. Let F denotes the ratio between the residual vari-

ances of two different metrics, Fcritical is calculated based

on the number of residuals and a given confidence level.

If F is larger than Fcritical, then the difference between

the two metrics is considered to be significant at the

specified confidence level. The Fcritical with 95 % confi-

dence is shown in Fig. 6 for the TID2008 and TID2013

databases. In Fig. 6, the proposed metric is compared

with the other metrics regarding the statistical signifi-

cance. In each entry, the symbol “1” or “0” means that

on the image databases indicated by the first column of

the table, the proposed metric is statistically (with 95 %

confidence) better or worse, respectively, when compared

with its competitors indicated by the first row. We can

see that on TID2013 databases, IDSSIMc is significantly

better than all the other models except for FSIMc. On

TID2008 database, IDSSIMc is significantly better than all

the other models except for SFF and FSIMc. Note that on

the two databases, no IQA model performs significantly

better than IDSSIMc.

3.5 Performance comparison on individual distortion

types

To further examine the robustness of the FR-IQA

schemes, we compare the performance of our method

TID2013 VIF GSM PSNR VSNR SSIM MSSSIM IWSSIM RFSIM FSIMc SFF IDSSIMc

VIF

GSM

PSNR

VSNR

SSIM

MSSSIM

IWSSIM

RFSIM

FSIMc

SFF

IDSSIMc

a

TID2008 VIF GSM PSNR VSNR SSIM MSSSIM IWSSIM RFSIM FSIMc SFF IDSSIMc

VIF

GSM

PSNR

VSNR

SSIM

MSSSIM

IWSSIM

RFSIM

FSIMc

SFF

IDSSIMc

b

Fig. 6 The results of statistical significance tests of the competing IQA models on the a TID2013 and b TID2008 databases. The value of “1”

(highlighted in green) indicates that the model in the row is significantly better than the model in the column, while the value of “0” (highlighted in

red) indicates that the first model is not significantly better than the second one
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Table 7 SROCC valuse of IQA indices for each type of distortions in TID2013 and TID2008

Dis.Type VIF GSM PSNR VSNR SSIM MSSSIM IWSSIM RFSIM FSIM FSIMc SFF IDSSIM IDSSIMc

TID
2013

AGN 0.8996 0.9063 0.9338 0.8270 0.8687 0.8663 0.8448 0.8877 0.8984 0.9115 0.9070 0.8981 0.9264

ANC 0.8428 0.8175 0.8667 0.7266 0.7726 0.7729 0.7514 0.8476 0.8207 0.8536 0.8166 0.8316 0.8496

SCN 0.8835 0.9158 0.9245 0.8024 0.8515 0.8543 0.8166 0.8821 0.8749 0.8905 0.8998 0.8822 0.9129

MN 0.8449 0.7292 0.8355 0.7118 0.7766 0.8074 0.8019 0.8366 0.7943 0.8093 0.8184 0.8233 0.8188

HFN 0.8972 0.8869 0.9182 0.8566 0.8633 0.8648 0.8589 0.9145 0.8991 0.9058 0.9066 0.9000 0.9099

IN 0.8536 0.7964 0.9000 0.7343 0.7503 0.7628 0.7281 0.9062 0.8072 0.8250 0.7870 0.8595 0.8541

QN 0.8161 0.8841 0.8754 0.8356 0.8657 0.8705 0.8467 0.8968 0.8719 0.8806 0.8638 0.8462 0.8838

GB 0.9649 0.9689 0.9102 0.9469 0.9667 0.9672 0.9701 0.9697 0.9550 0.9550 0.9674 0.9692 0.9630

DEN 0.9064 0.9432 0.9503 0.9104 0.9254 0.9267 0.9152 0.9359 0.9301 0.9330 0.9090 0.9405 0.9456

JPEG 0.9191 0.9284 0.9217 0.9007 0.9200 0.9265 0.9197 0.9398 0.9378 0.9386 0.9272 0.9414 0.9493

JP2K 0.9516 0.9601 0.8858 0.9273 0.9468 0.9504 0.9506 0.9518 0.9576 0.9588 0.9575 0.9589 0.9645

JGTE 0.8441 0.8512 0.8060 0.8181 0.8493 0.8475 0.8387 0.8786 0.8463 0.8610 0.8830 0.8655 0.8709

J2TE 0.8760 0.9181 0.8905 0.8407 0.8828 0.8888 0.8656 0.9102 0.8912 0.8918 0.8707 0.9045 0.9062

NEPN 0.7719 0.8130 0.6791 0.6652 0.7821 0.7968 0.8010 0.7704 0.7917 0.7936 0.7667 0.7470 0.7830

Block 0.5306 0.6418 0.3297 0.1771 0.5720 0.4800 0.3716 0.0338 0.5489 0.5531 0.1785 0.5292 0.4266

MS 0.6275 0.7874 0.7571 0.3632 0.7751 0.7906 0.7833 0.5547 0.7530 0.7486 0.6653 0.6626 0.6994

CTC 0.8523 0.4856 0.4466 0.3319 0.4314 0.4633 0.4592 0.5591 0.4686 0.4755 0.4902 0.4858 0.4713

CCS 0.3099 0.3573 0.6388 0.3676 0.4141 0.4099 0.4196 0.0204 0.2748 0.8358 0.8268 0.6690 0.8385

MGN 0.8466 0.8347 0.8831 0.7644 0.7803 0.7785 0.7727 0.8487 0.8469 0.8569 0.8434 0.8788 0.8813

CN 0.8948 0.9124 0.8413 0.8690 0.8565 0.8527 0.8761 0.8917 0.9120 0.9135 0.9007 0.9051 0.9188

LCNI 0.9229 0.9562 0.9155 0.8821 0.9057 0.9067 0.9037 0.9009 0.9466 0.9485 0.9261 0.8988 0.9391

LCQD 0.8463 0.8972 0.9201 0.8695 0.8542 0.8554 0.8401 0.8959 0.8759 0.8815 0.8794 0.8890 0.8963

CHA 0.8848 0.8822 0.8797 0.8644 0.8774 0.8784 0.8681 0.8990 0.8714 0.8925 0.8788 0.8927 0.8870

SSR 0.9371 0.9667 0.9108 0.9364 0.9460 0.9482 0.9474 0.9325 0.9564 0.9576 0.9536 0.9536 0.9621

TID
2008

AGN 0.8838 0.8606 0.9070 0.7727 0.8106 0.8085 0.7869 0.8415 0.8566 0.8758 0.8731 0.8501 0.8974

ANC 0.8750 0.8090 0.8994 0.7793 0.8029 0.8053 0.7920 0.8621 0.8527 0.8930 0.8625 0.8595 0.8821

SCN 0.8709 0.8941 0.9169 0.7664 0.8143 0.8209 0.7713 0.8475 0.8486 0.8718 0.8951 0.8653 0.9074

MN 0.8683 0.7452 0.8515 0.7294 0.7794 0.8106 0.8088 0.8533 0.8021 0.8263 0.8365 0.8523 0.8455

HFN 0.9074 0.8945 0.9270 0.8800 0.8773 0.8733 0.8702 0.9181 0.9152 0.9233 0.9187 0.9091 0.9100

IN 0.8464 0.7234 0.8723 0.6471 0.6732 0.6907 0.6464 0.8805 0.7452 0.7719 0.7483 0.8074 0.8141

QN 0.8816 0.8799 0.8696 0.8261 0.8530 0.8588 0.8176 0.8950 0.8564 0.8725 0.8471 0.8481 0.8869

GB 0.9540 0.9599 0.8684 0.9330 0.9544 0.9563 0.9636 0.9408 0.9471 0.9471 0.9623 0.9574 0.9529

DEN 0.9182 0.9724 0.9416 0.9299 0.9529 0.9582 0.9473 0.9399 0.9602 0.9618 0.9383 0.9539 0.9657

JPEG 0.9167 0.9393 0.8717 0.9174 0.9251 0.9321 0.9208 0.9385 0.9369 0.9385 0.9322 0.9438 0.9571

JP2K 0.9709 0.9761 0.8131 0.9515 0.9629 0.9699 0.9738 0.9487 0.9773 0.9780 0.9764 0.9694 0.9765

JGTE 0.8585 0.8790 0.7565 0.8113 0.8677 0.8680 0.8588 0.8534 0.8707 0.8756 0.8567 0.8701 0.8861

J2TE 0.8500 0.8935 0.8308 0.7909 0.8576 0.8606 0.8202 0.8591 0.8543 0.8554 0.8385 0.8602 0.8680

NEPN 0.7619 0.7386 0.5814 0.5715 0.7107 0.7376 0.7724 0.7274 0.7491 0.7514 0.6969 0.6824 0.7415

Block 0.8320 0.8862 0.6192 0.1926 0.8462 0.7557 0.7623 0.6258 0.8493 0.8470 0.5368 0.7520 0.7811

MS 0.5095 0.7190 0.7107 0.3714 0.7230 0.7336 0.7066 0.4335 0.6720 0.6553 0.5224 0.5514 0.5902

CTC 0.8403 0.6691 0.6042 0.4746 0.4411 0.6380 0.6301 0.5431 0.6481 0.6509 0.4635 0.6459 0.6629

The top 3 indices are highlighted in italics
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Table 8 Analysis of the processing time for the proposed method

Modules Decomposition Texture similarity Edge similarity Chrominance similarity IDSSIM IDSSIMc

Time(s) 0.066 0.008 0.019 0.026 0.093 0.119

Ratio 55.4 % 6.7 % 15.9 % 22 % 78.1 % 100 %

with other methods on each distortion type in TID2013

and TID2008 databases. In this experiment, we only

use the SROCC values as the performance measure.

For each performance measure, the top three results

are highlighted in italics. From Table 7, we can clearly

see that IDSSIMc is among the top three indices 15

times on TID2013 and 10 times on TID2008. Thus,

we can have the following conclusions: when the dis-

tortion is of a specific type, the proposed method also

performs well.

3.6 Computational cost

The computational cost of each FR-IQA method is also

measured. This experiment is performed on a 2.5-GHz

Intel core i5 processor with 10 GB RAM. The software is

Matlab R2014a. All distorted images in TID2013 dataset

are used. To analyze the processing time in detail, we

divided the proposed scheme into four main steps: image

decomposition, compare the luminance and contrast sim-

ilarity in texture image, compare the structural similar-

ity in edge image, and compute the global perceptual

quality scores. The average processing time for the test

dataset is shown in Table 8. These results show that

the performance of the proposed method may be con-

sidered sufficient to allow its implementation in real-

time applications. It should be noted that the image

decomposition process is the element that consumes

most of the processing time. The average processing

time of each FR-IQA method is listed in Table 9.

From Table 9, we can see that PSNR and GMS are

much faster than IDSSIM. However, their performances

are fairly worse than IDSSIM. Specifically, IDSSIM

runs much faster than the other modern IQA indices

which could achieve the state-of-the-art prediction

performance.

As mentioned earlier, the IQA algorithm can be not

only used for quality assessment tasks but also pervasively

used in many other applications. A direct application of

IQA measures is to use them to benchmark the image

processing algorithms and systems [43]. For example, the

rate distortion (RD) curves are often used to character-

ize the performance of image coding systems, where the

RD function is defined as the bit rate distortion between

the original and decoded images. A lower RD curve indi-

cates a better image coder. To compute this distortion

and obtain the RD curve, a lot of methods based on MSE

are proposed. However, these methods suffer from low

accuracy. As we mentioned earlier, the RD curve can be

used to precisely evaluate the image coder only if the IQA

methods have higher accuracy. To improve the accuracy,

VIF, FSIM, and MSSSIM are proposed. However, these

methods suffer from low computation efficiency, which

renders them cannot be used in many applications. Differ-

ent from previous work, our proposed IDSSIM not only

has the high accuracy but also achieves the high efficiency,

which is very attractive and competitive for real-time

applications.

4 Conclusions
In this paper, we propose an efficient and robust method

for image quality assessment. Different from prior arts,

we realize different methods on different components to

compute image quality. The inspiration behind this paper

is that different quality metrics have different sensitiv-

ity in different regions. We also propose to exploit the

AOS scheme to compute the diffusion map efficiently. In

the pooling stage, the texture component image is used

to weight the importance of local quality map. We then

extended IDSSIM to IDSSIMc by incorporating the image

chromatic features into consideration. Finally, we con-

duct extensive experiments on five databases; the results

demonstrate that our proposed methods yield a superior

performance than the other state-of-the-art methods.

Table 9 Time cost Of each FR-IQA index

Method Time cost(s)

VIF [41] 0.977

GSM [21] 0.028

PSNR [5] 0.003

VSNR [40] 0.498

SSIM [3] 0.022

MSSSIM [12] 0.136

IWSSIM [13] 0.519

RFSIM [23] 0.165

FSIMc [11] 0.512

SFF [42] 0.143

IDSSIM 0.093

IDSSIMc 0.119

The proposed methods are highlighted in italics
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