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Abstract. We construct an algorithm to split an image into a sum u + v of a bounded variation component and a
component containing the textures and the noise. This decomposition is inspired from a recent work of Y. Meyer. We
find this decomposition by minimizing a convex functional which depends on the two variables u and v, alternately
in each variable. Each minimization is based on a projection algorithm to minimize the total variation. We carry
out the mathematical study of our method. We present some numerical results. In particular, we show how the u
component can be used in nontextured SAR image restoration.
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1. Introduction

1.1. Preliminaries

Image restoration is one of the major goals of image
processing. A classical approach consists in consid-

∗Current address: UCLA Department of Mathematics, Los Angeles,
CA 90095-1555.

ering that an image f can be decomposed into two
components u + v. The first component u is well-
structured, and has a simple geometric description: it
models the homogeneous objects which are present in
the image. The second component v contains the os-
cillating patterns (both textures and noise). An ideal
model would split an image into three components
u + v + w, where v should contain the textures of
the original image, and w the noise.
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In Section 1, we begin by recalling some models pro-
posed in the literature. Then our model is introduced in
Section 2. We give a powerful algorithm to compute the
image decomposition we want to get. We carry out the
mathematical study of our model in Section 3. We then
show some experimental results. We compare our al-
gorithm with the classical total variation minimization
method in Section 4. In Section 5, we give an applica-
tion to SAR images, the u component being a way to
carry out efficient restoration.

1.2. Related Works

1.2.1. Rudin-Osher-Fatemi’s (ROF) Model. Images
are often assumed to be in BV(�), the space of functions
with bounded variation (even if it is known that such
an assumption is too restrictive [1]). We recall here the
definition of BV(�) (we suppose that �, the domain of
the image, is a bounded Lipschitz open set):

Definition 1.1. BV(�) is the subspace of functions
u ∈ L1(�) such that the following quantity is finite:

J (u) = sup

{ ∫
�

u(x) div (ξ (x))dx/ξ ∈ C1
c (�; R

2),

‖ξ‖L∞(�) ≤ 1

}
(1.1)

BV(�) endowed with the norm ‖u‖BV (�) = ‖u‖L1(�) +
J (u) is a Banach space.

If u ∈ BV (�), the distributional derivative Du is a
bounded Radon measure and (1.1) corresponds to the
total variation |Du|(�).

In [11], the authors decompose an image f into a
component u belonging to BV(�) and a component v

in L2(�). In this model v is supposed to be the noise.
In such an approach, they minimize (see [11]):

inf
(u,v)∈BV (�)×L2(�)/ f =u+v

(
J (u) + 1

2λ
‖v‖2

L2(�)

)
(1.2)

In practice, they compute a numerical solution of
the Euler-Lagrange equation associated to (1.2). The
mathematical study of (1.2) has been done in [4].

1.2.2. Meyer’s Model. In [8], Y. Meyer points out
some limitations of the model developed in [11]. He
proposes a different decomposition which he believes
is more adapted:

inf
(u,v)∈BV (R2)×G(R2)/ f =u+v

(J (u) + α‖v‖G) (1.3)

The Banach space G(R2) contains signals with large
oscillations, and thus in particular textures and noise.
We give here the definition of G(R2).

Definition 1.2. G(R2) is the Banach space composed
of the distributions f which can be written

f = ∂1g1 + ∂2g2 = div(g) (1.4)

with g1 and g2 in L∞(R2). On G, the following norm
is defined:

‖v‖G = inf
{
‖g‖L∞(R2) = ess sup

x∈R2

|g(x)|/v = div(g),

g = (g1, g2), g1 ∈ L∞(R2), g2 ∈ L∞(R2),

|g(x)| =
√

|g1|2 + |g2|2(x)
}

(1.5)

The justification of the introduction of the space G
to model patterns with strong oscillations comes from
the next result (see [8]):

Lemma 1.1. let fn, n ≥ 1 a sequence of functions in
L2 (D) with the three following properties (D is a disc
centered at 0 with radius R):
1. There exists a compact set K such that the supports

of the fn, n ≥ 1 are embedded in K.
2. There exists q >2 and C > 0 such that || fn||Lq (R2) ≤

C
3. The sequence fn converges to 0 in the distributional

sense.

Then ‖ fn‖G converges to 0 when n tends towards
infinity.

A function belonging to G may have large oscillations
and nevertheless have a small norm.

1.2.3. Vese-Osher’s Model. Vese and Osher have first
proposed an approach for the resolution of Meyer’s
program. They have studied the problem (see [12])
( f ∈ L2(�)):

inf
(u,v)∈BV (�)×G(�)

( ∫
|Du| + λ‖ f − u − v‖2

2

+ µ‖v‖G(�)

)
(1.6)

where � is a bounded open set. To compute their so-

lution, they replace the term ‖v‖G(�) by ||
√

g2
1 + g2

2 ||p
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(where v = div(g1, g2)), which approximates the L∞-
norm when p goes to +∞. For numerical reasons,
the authors use the value p = 1, and they claim
they did not see any visual difference when they used
larger values for p. Then they formally derive the
Euler-Lagrange equations. They report good numerical
results.

These two authors, together with Solé, have pro-
posed another approach to this problem in [9], where
they propose a more direct algorithm in the case λ =
+∞ and p = 2.

2. Our Approach

In this section we introduce our model. We first for-
mulate it in the continuous-setting. Then we propose
a discretization, and provide a mathematical study and
an algorithm for the discretized model.

2.1. Presentation

We propose to solve the following variant of Osher and
Vese’s functional [12]:

inf
(u,v)∈BV (�)×Gµ(�)

(
J (u) + 1

2λ
|| f − u − v||2L2(�)

)

(2.7)

where

Gµ(�) = {v ∈ G(�)/‖v‖G ≤ µ} (2.8)

We remind that ||v||G is defined by (1.5) (where we
replace R

2 by �). The parameter µ plays the same
role as the one in problem (1.6). We will precise the
link of our model with Meyer’s one later (we will get
it by letting λ → 0). Let us introduce the following
functional defined on BV (�) × G(�):

Fλ,µ(u, v) =




J (u) + 1

2λ
|| f − u − v||2L2(�)

if v ∈ Gµ(�)

+∞ if v ∈ G(�)\Gµ(�)

(2.9)

Fλ,µ(u, v), is finite if and only if (u, v) belongs to
BV (�) × Gµ(�). Problem (2.7) can thus be written:

inf
(u,v)∈BV (�)×G(�)

Fλ,µ(u, v) (2.10)

2.2. Discretization

We are now going to study (2.10) in the discrete case.
We take here the same notations as in [3]. The image
is a two dimension vector of size N × N . We denote
by X the Euclidean space R

N×N , and Y = X × X .
The space X will be endowed with the scalar prod-
uct (u, v)x = ∑

1≤i, j≤N ui, jvi, j and the norm ||u||X =√
(u, u)X .To define a discrete total variation, we in-

troduce a discrete version of the gradient operator. If
u ∈ X , the gradient ∇u is a vector in Y given by:
(∇u)i, j = ((∇u)1

i, j ′ , (∇u)2
i, j ), with

(∇u)1
i, j =

{
ui+1, j − ui, j if i < N and

0 if i = N

(∇u)2
i, j =

{
ui, j+1 − ui, j if j < N

0 if j = N

The discrete total variation of u is then defined by:

Jd (u) =
∑

1≤i, j≤N

|(∇u)i, j | (2.11)

We also introduce a discrete version of the diver-
gence operator. We define it by analogy with the con-
tinuous setting by div = −∇* where ∇* is the ad-
joint of ∇: that is, for every p ∈ Y and u ∈ X , (−div
p, u)x = (p, ∇u)y. It is easy to check that:

(div (p))i, j =




p1
i, j − p1

i−1, j if 1 < i < N

p1
i, j if i = 1

−p1
i−1, j if i = N

+




p2
i, j − p2

i, j−1 if 1 < j < N

p2
i, j if j = 1

−p2
i, j−1 if j = N

(2.12)

From now on, we will use these discrete operators.
We are now in position to introduce the discrete ver-

sion of the space G.

Definition 2.3.

Gd = {v ∈ X/∃g ∈ Y such that v = div (g)} (2.13)

and if v ∈ Gd :

‖v‖Gd = inf
{‖g‖∞/v = div (g), g = (g1, g2) ∈ Y,

|gi, j | =
√(

g1
i, j

)2 + (
g2

i, j

)2
}

(2.14)

where ‖g‖∞ = maxi, j |gi, j |.
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Moreover, we will denote:

Gd
µ = {v ∈ Gd/||v||Gd ≤ µ} (2.15)

‖ · ‖Gd is closely linked with Jd , as stated by the fol-
lowing proposition.

Proposition 2.1.

Jd (u) = sup
v∈Gd

1

(u, v)X (2.16)

and

||v||Gd = sup
Jd (u)≤1

(u, v)X (2.17)

We already know (2.16). To prove (2.17), we need
the following lemma (which is stated in [8]).

Lemma 2.2. Let u ∈ X and v ∈ Gd. Then:

(u, v)X ≤ Jd (u)||v||Gd (2.18)

Proof: Let g ∈ Y such that v = div (g).

(u, v)x = (u, div(g))X

= −(∇u, g)Y ≤ Jd (u)||v||Gd (2.19)

And we deduce (2.18) from it.

We also need the next result:

Lemma 2.3. The functions u �→ Jd (u)2

2 and v �→ ||v||2
Gd

2
are dual in the sense of the Legendre-Fenchel duality.

Proof: We recall here (see [5, 6, 10]) the definition
of the Legendre-Fenchel transform of H :

H∗(v) = sup
u∈X

((u, v)X − H (u)) (2.20)

We want to show that u �→ Jd (u)2

2 and v �→ ||v||2
Gd

2 are
dual with respect to this definition. Let us denote by φ

the function φ(t) = t2

2 . It is well known that φ∗ = φ.

(‖ · ‖2
Gd

2

)∗
(u) = sup

v∈X
((u, v)X − φ(||v||Gd )))

= sup
t≥0

sup
||v||

Gd=t

((u, v)X − φ(||v||Gd ))

= sup
t≥0

sup
||v||

Gd=1

((u, tv)X − φ(t ||v||Gd ))

= sup
||v||

Gd=t

sup
t≥0

(t(u, v)X − φ(t))

And since φ is even we get:

(‖ · ‖2
Gd

2

)∗
(u) = sup

||v||Gd=t

φ∗((u, v)X )

= 1

2

(
sup

||v||Gd=t

(u, v)X

)2

(2.21)

But sup||v||Gd=1
(u, v)X = sup||v||Gd≤1

(u, v)X , and we
conclude with (2.16).

Proof of Proposition 2.1: We want to prove (2.17).
Lemma 2.2 gives an inequality. Let us show the re-
verse inequality. We denote by ∂ H the subdifferential
of H (see [6, 10]), and we recall that

w ∈ ∂ H (u) ⇐⇒ H (v) ≥ H (u) + (w, v − u)X ,

for all v in X (2.22)

Let v ∈ Gd . We recall that (see [5]), if H is convex:
H (u) + H∗(v) = (u, v)X if and only if u ∈ ∂ H∗(v).
We apply this result with H∗(v) = ( Jd (·)2

2

)∗
(v). Since( Jd (·)2

2

)∗
is convex continuous, we know that ∂ H∗(v) is

not empty. Let u ∈ ∂ H∗(v). From Lemma 2.3, we get:
Jd (u)2

2 + ||v||2
Gd

2 = (u, v)X , i.e:

(Jd (u) − ‖v‖Gd )2︸ ︷︷ ︸
≥0

= 2((u, v)X − Jd (u)||v||Gd ) (2.23)

Hence (u, v)X ≥ Jd (u)‖v‖Gd . And this concludes the
proof thanks to Lemma 2.2.

Proposition 2.2. The space Gd identifies with the fol-
lowing subspace:

X0 =
{
v ∈ X

/ ∑
i, j

vi, j = 0

}
(2.24)

Proof: We split our proof into two steps.

Step 1: Let us assume that v ∈ Gd . Therefore,
there exists g ∈ Y such that: v = div(g). But∑

i, j (div g)i, j = (−∇∗g, 1)Y = (g, ∇1)X = 0
i.e. v ∈ X0. Hence Gd ⊂ X0.
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Step 2: Conversely, let v ∈ X0. Since the kernel of ∇
is the constant images, i.e. the vectors x ∈ X
such that xi, j = xi ′, j ′ for all i, j, i ′, j ′, it is
clear that a discrete Poincaré inequality holds:
||x − 1

N 2

∑
i, j xi, j ||X ≤ c||∇x ||Y . Hence one

shows easily that the problem minx∈X A(x),
with A(x) = ‖∇x‖2 + 2(x, v), has a solution.
This solution satisfies A′(x) = 0, that is, −2div
(∇x) + 2v = 0. Hence v =div (∇x) ∈ Gd , and
we conclude that X0 ⊂ Gd .

The discretized functional associated to (2.9), de-
fined on X × X , is given by:

Fλ,µ(u, v) =




Jd (u) + 1

2λ
|| f − u − v||2X

if v ∈ Gd
µ

+∞ if v ∈ X
∖

Gd
µ

(2.25)

The problem we want to solve is:

inf
(u,v)∈X×X

Fλ,µ(u, v) (2.26)

2.3. Total Variation Minimization as a Projection

Introduction: Since Jd defined by (2.11) is homo-
geneous of degree one (i.e. Jd (λu) = λJd (u)∀u and
λ > 0), it is then standard (see [5]) that J ∗

d (see (2.20))
is the indicator function of some closed convex set,
which turns out to be the set Gd

1 defined by (2.15):

J ∗
d (v) = χGd

1
(v) =

{
0 if v ∈ Gd

1

+∞ otherwise
(2.27)

This can be checked out easily (see [3] for details).
In [3], Chambolle proposes a nonlinear projection al-
gorithm to minimize the ROF model. The problem is:

inf
u∈X

(
Jd (u) + 1

2λ
|| f − u||2X

)
(2.28)

The following result is shown:

Proposition 2.3. The solution of (2.28) is given by:

u = f − PGd
λ
( f ) (2.29)

where P is the orthogonal projector on Gd
λ (defined by

(2.15)).

Algorithm. [3] gives an algorithm to compute
PGd

λ
( f ). It indeed amounts to finding:

min
{||λ div (p) − f ||2X : p/|pi, j | ≤ 1∀i, j = 1, . . . , N

}
(2.30)

This problem can be solved by a fixed point method:

p0 = 0 (2.31)

and

pn+1
i, j = pn

i, j + τ (∇(div(pn) − f/λ))i, j

1 + τ |(∇(div(pn) − f/λ))i, j | (2.32)

In [3] is given a sufficient condition ensuring the con-
vergence of the algorithm:

Theorem 2.1. Assume that the parameter τ in (2.32)
verifies τ ≤ 1/8. Then λdiv(pn) converges to PGd

λ
( f )

as n → +∞.

2.4. Application to Problem (2.26)

Since J ∗
d is the indicator function of Gd

1 (see (2.16,
2.27)), we can rewrite (2.25) as

F(u, v) = 1

2λ
|| f − u − v||2X + Jd (u) + J ∗

d

(
v

µ

)

(2.33)

With this formulation, we see the symmetric roles
played by u and v. And the problem we want to solve
is:

inf
(u,v)∈X×X

F(u, v) (2.34)

To solve (2.34), we consider the two following prob-
lems:

• v being fixed, we search for u as a solution of:

inf
v∈X

(
Jd (u) + 1

2λ
|| f − u − v||2X

)
(2.35)

• u being fixed, we search for v as a solution of:

inf
v∈Gd

µ

|| f − u − v||2X (2.36)
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From Proposition 2.3, we know that the solution of
(2.35) is given by: û = f − v − PGd

λ
( f − v). And the

solution of (2.36) is simply given by: v̂ = PGd
µ
( f − u).

2.5. Algorithm

1. Initialization:

u0 = v0 = 0 (2.37)

2. Iterations:

vn+1 = PGd
µ
( f − un) (2.38)

un+1 = f − vn+1 − PGd
λ
( f − vn+1) (2.39)

3. Stopping test: we stop if

max(|un+1 − un|, |vn+1 − vn|) ≤ ε (2.40)

3. Mathematical Results

In this section we carry out the mathematical study of
the algorithm (2.37)–(2.40). We first show its conver-
gence when λ is fixed. We then precise the link of the
limit of our model (when λ goes to 0) with Meyer’s
one.

3.1. Existence and Uniqueness
of a Solution for (2.26)

Lemma 3.4. There exists a unique couple (û, v̂) ∈
X × Gd

µ minimizing Fλ,µ on X × X.

Proof: We split the proof into two steps.

Step 1. Existence

1. We first remark that the set X × Gd
µ is convex,

and then that Fλ,µ is convex on X ×Gd
µ. We thus

deduce that Fλ,µ is convex on X × X .
2. It is immediate to see that Fλ,µ is continuous

on X × Gd
µ . We then deduce that Fλ,µ is lower

semi-continuous on X × X .
3. Let (u, v) ∈ X × Gd

µ. We have ‖v‖Gd ≤ µ.
Moreover, since X is of finite dimension, there
exists g ∈ X such that u = div(g) and ‖g‖L∞ =

‖v‖Gd ≤ µ. We deduce from (2.12) that (N 2 is
the size of the image):

‖v‖X = ≤4 µN 2 (3.41)

We recall that X × X is endowed with the Eu-
clidean norm.

‖(u, v)‖X×X =
√

‖u‖2
X + ‖v‖2

X (3.42)

Thus, if ‖(u, v)‖X × X −→ +∞, then we get
from (3.41) that ‖u‖x −→ +∞ . We there-
fore deduce, since f is fixed, and since (3.41)
holds, that ‖ f − u − v‖2

X −→ +∞. And
since Fλ,µ(u, v) ≥ 1

2λ
‖ f − u − v‖2

2, we get
Fλ,µ(u, v) → +∞. Hence we deduce that Fλ,µ

is coercive on X × Gd
µ. We therefore conclude

that Fλ,µ is coercive on X × X .

We deduce the existence of a minimizer (û, v̂).
Step 2. Uniqueness

To get the uniqueness, we first remark that Fλ,µ is
strictly convex on X × Gd

u , as the sum of a convex
function and of a strictly convex function, except
in the direction (u, −u). Hence it suffices to check
that if (û, v̂) is a minimizer of Fλ,µ. Then for t �=
0, (û + t û, v̂ − t û) is not a minimizer of Fλ,µ. The
result is obvious if v̂− t û ∈ X\Gd

µ. Let us show that
if v̂ − t û ∈ Gd

µ then the result is still true. Indeed, if
v̂ − t û ∈ Gd

µ, we have:

Fλ,µ(û + t û, v̂ − t û)

= Fλ,µ(û, v̂) + (|1 + t | − 1)Jd (û) (3.43)

By contradiction, let us assume that there exists t̂ �=
{−2, 0} such that v̂ − t̂ û ∈ Gd

µ and

Fλ,µ(û + t̂ û, v̂ − t̂ û) ≤ Fλ,µ(û, v̂) (3.44)

As (û, v̂) minimizes Fλ,µ, (3.44) is an equality. From
(3.43), we deduce that (|1 + t̂ | − 1)Jd (û) = 0. And
as t̂ �= {−2, 0}, we get that Jd (û) = 0. There exists
therefore γ ∈ R such that for all (i, j), ûi, j = γ .

1. If γ = 0, then û = 0. Thus (û + t̂ û, v̂ − t̂ û) =
(û, v̂).

2. If γ �= 0, then v̂ − t̂ û cannot belong to Gd
µ

since its mean is not 0 (see Proposition 2.2).
This contradicts our assumption.
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There remains to check what happens in the case
when t̂ = −2. In this case, by convexity, we get that
if t ∈ (−2, 0), then v̂ − t û ∈ Gd

µ and

Fλ,µ(û + t û, v̂ − t û) ≤ Fλ,µ(û, v̂) (3.45)
Thus we get (3.44), and we can conclude.

3.2. Convergence of the Algorithm

We show here that our algorithm gives asymptoti-
cally the solution of the discrete problem associated
to (2.34).

Proposition 3.4. The sequence Fλ,µ(un, vn) built in
Section 2.5 converges to the minimum of Fλ,µ on X×X.

Proof: We first remark that, as we solve successive
minimization problems, we have:

Fλ,µ(un, vn) ≥ Fλ,µ(un, vn+1) ≥ Fλ,µ(un+1, vn+1)

(3.46)

In particular, the sequence Fλ,µ(un, vn) is nonin-
creasing. As it is bounded from below by 0, it thus
converges in R. We denote by m its limit. We want to
show that

m = inf
(u,v)∈X×X

Fλ,µ(u, v) (3.47)

Without any restriction, we can assume that,
∀n, (un, vn) ∈ X × Gd

µ. As Fλ,µ is coercive and as
the sequence Fλ,µ(un, vn) converges, we deduce that
the sequence (un, vn) is bounded in X × Gd

µ. We can
thus extract a subsequence (unk , vnk ) which converges
to (û, v̂) as nk → +∞ with (û, v̂) ∈ X × Gd

µ . More-
over, we have, for all nk ∈ N and all v in X :

Fλ,µ

(
unk , vnk+1

) ≤ Fλ,µ

(
unk , v

)
(3.48)

and for all nk ∈ N and all u in X :

Fλ,µ

(
unk , vnk

) ≤ Fλ,µ

(
u, vnk

)
(3.49)

Let us denote by v a cluster point of
(vnk+1).Considering (3.46), we get (since Fλ,µ is
continuous on X × Gd

µ):

m = Fλ,µ(û, v̂) = Fλ,µ(û, v̂) (3.50)

By passing to the limit in (2.38), we get: ṽ =
PGd

µ
( f − û). But from (3.50), we know that: ‖ f − û −

v̂‖ = ‖ f − û − ṽ‖. By uniqueness of the projection,
we conclude that ṽ = v̂. Hence vnk+1 → v̂. By passing
to the limit in (3.48) (Fλ,µ is continuous on X × Gd

µ),
we therefore have for all v:

Fλ,µ(û, v̂) ≤ Fλ,µ(û, v) (3.51)

And by passing to the limit in (3.49), for all u :

Fλ,µ(û, v̂) ≤ Fλ,µ(u, v̂) (3.52)

(3.51) and (3.52) can respectively be rewritten:

Fλ,µ(û, v̂) = inf
v∈X

Fλ,µ(û, v) (3.53)

Fλ,µ(û, v̂) = inf
u∈X

Fλ,µ(u, v̂) (3.54)

But, from the definition of Fλ,µ(u, v) (see (2.33)),
(3.54) is equivalent to (see [5]):

0 ∈ − f + û + v̂ + λ∂ Jd (û) (3.55)

and (3.53) to:

0 ∈ − f + û + v̂ + λ∂ J ∗
d

(
v̂

µ

)
(3.56)

The subdifferential of Fλ,µ at (û, v̂) is given by:

∂ Fλ,µ(û, v̂) = 1

λ

( − f + û + v̂ + λ∂ Jd (û)

− f + û + v̂ + λ∂ J ∗
d

(
v̂
µ

)
)

(3.57)

And thus, according to (3.55) and (3.56), we have:
(

0

0

)
∈ ∂ Fλ,µ(û, v̂) (3.58)

which is equivalent to: Fλ,µ(û, v̂) = inf(u,v)∈X2

Fλ,µ(u, v) = m. Hence the whole sequence Fλ,µ

(un, vn) converges towards m the unique minimum of
Fλ,µ on X × Gd

µ. We deduce that the sequence (un, vn)
converges to (û, v̂), the minimizer of Fλ,µ, when n
tends to +∞.

3.3. Link with Meyer’s Model

We examine here the link between the discrete model
(2.34) and Meyer’s problem. We first recall the discrete
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version of Meyer’s problem:

inf
(u,v)∈X×Gd/ f =u+v

Hα(u, v) (3.59)

with

Hα(u, v) = (Jd (u) + α‖v‖Gd ) (3.60)

The following result is straightforward:

Lemma 3.5. There exists a solution (û, v̂) ∈ X × Gd

of problem (3.59).

Proof: (3.59) is equivalent to infv∈Gd Hα( f −v, v). It
is immediate to verify that Hα is convex, coercive and
continuous on Gd . Hence there exists v̂ ∈ Gd such that

Hα( f − v̂, v̂) = inf
v∈Gd

Hα( f − v, v) (3.61)

Let us denote û = f − v̂. Then (û, v̂) is a solution of
(3.59).

Remark. We do not know if a uniqueness result holds
for problem (3.59). We then recall problem (2.34):

inf
(u,v)∈X×X

Fλ,µ(u, v) (3.62)

with

Fλ,µ(u, v) = 1

2λ
‖ f − u − v‖2 + Jd (u) + J ∗

d

(
v

µ

)

(3.63)

Let us consider the problem

inf
(u,v)∈X×X/ f =u+v

Jd (u) + J ∗
d

(
v

µ

)
(3.64)

One easily shows the next result:

Lemma 3.6. There exists (ũ, ṽ) ∈ X × X solution of
(3.64).

Proof: (3.64) is equivalent to

inf
v∈X

Jd ( f − v) + J ∗
d

(
v

µ

)
(3.65)

It is immediate to see that the function to minimize in
(3.65) is convex, coercive and lower semi-continuous
on X . Hence there exists ṽ ∈ X such that

Jd ( f − ṽ) + J ∗
d

(
ṽ

µ

)
= inf

v∈X
Jd ( f − v) + J ∗

d

(
v

µ

)

(3.66)

Denoting ũ = f − ṽ. Then (ũ, ṽ) is a solution of (3.64).

Proposition 3.5. Let us fix α > 0 in problem (3.59).
Let (û, v̂) a solution of problem (3.59). We fix µ =
‖v̂‖Gd in (3.64). Then:
• (û, v̂) is also a solution of problem (3.64).
• Conversely, any solution (ũ, ṽ) of (3.64) (with µ =

‖v̂‖Gd ) is a solution of (3.59).

Proof: We split the proof into two steps.

Step 1. We first want to show that (û, v̂) is a solution of
(3.64) (with µ = ‖v̂‖Gd ). As (û, v̂) is a solution of
(3.59) (the existence of (û, v̂) is given by Lemma 3.5)
and as ‖v̂‖Gd = µ, then û is solution of

inf
u∈X/u= f −v,‖v‖Gd =µ

Jd (u) + αµ, (3.67)

i.e. û is solution of

inf
u∈X/u= f −v,‖v‖Gd =µ

Jd (u) (3.68)

Since the set {u ∈ X/u = f − v, ‖v‖Gd = µ} is
contained in {u ∈ X/u = f − v, ‖v‖Gd ≤ µ}, we
have:

inf
u∈X/u= f −v,‖v‖Gd =µ

Jd (u) ≥ inf
u∈X/u= f −v,‖v‖Gd ≤µ

Jd (u)

(3.69)

By contradiction, let us assume that

inf
u∈X/u= f −v,‖v‖Gd =µ

Jd (u) > inf
u∈X/u= f −v,‖v‖Gd ≤µ

Jd (u)

(3.70)

Thus, there exists v′ ∈ X such that ‖v′‖Gd < µ and

Jd ( f − v′) < inf
u∈X/u= f −v,‖v‖Gd =µ

Jd (u) (3.71)
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Denoting by u′ = f − v′, we have: Jd (u′) +
α‖v′‖Gd < Jd (u′) + αµ. But since (û, v̂) is a so-
lution of (3.59):

Jd (û) + α‖v̂‖Gd < Jd (u′) + α‖v′‖Gd < Jd (u′) + αµ

(3.72)

Hence (we recall that ‖v̂‖Gd = µ), we get from
(3.72) that Jd (û) < Jd (u′). This contradicts (3.71).
We conclude that (3.70) cannot hold. Hence:

inf
u∈X/u= f −v,‖v‖Gd =µ

Jd (u) = inf
u∈X/u= f −v,‖v‖Gd ≤µ

Jd (u)

(3.73)

From (3.68), we see that û is a solution of
infu∈X/u= f −v,‖v‖Gd ≤µ Jd (u), i.e. û is a solution of

inf
u∈X/u= f −v

Jd (u) + J ∗
d

(
v

µ

)
(3.74)

Hence (û, v̂) is also a solution of (3.64).
Step 2. Let us now consider (ũ, ṽ) a solution of (3.64)

(the existence of (ũ, ṽ) is given by Lemma 3.6). We
can repeat the computations we made in Step 1. We
get that ũ is a solution of:

inf
u∈X/u= f −v,‖v‖Gd =µ

Jd (u) + αµ (3.75)

We therefore have: Jd (ũ) − αµ = Jd (û) + α‖v̂‖Gd .
But as (ũ, ṽ) is a solution of (3.64), we have ‖ṽ‖Gd ≤
µ. Hence Jd (ũ) + α‖ṽ‖Gd ≤ Jd (û) + α‖v̂‖Gd . And
since (û, v̂) is a solution of (3.59), we get that:

Jd (ũ) + α‖ṽ‖Gd = Jd (û) + α‖v̂‖Gd (3.76)

We thus conclude that (ũ, ṽ) is a solution of (3.59).

In fact, we can say more about the link between
Meyer’s problem (3.59) and our limit problem (3.64).
α being fixed, let us denote by

Zα =
{
vα, vα is a solution of the problem

inf
v∈Gd

Hα( f − v, v) (see (3.59))
}

(3.77)

Sα =
{
vα‖Gd , vα is a solution of the problem

inf
v∈Gd

Hα( f − v, v) (see (3.59))
}

(3.78)

We know that Zα and Sα are not empty thanks to
Lemma 3.5. We consider the two multi-applications:

Y : R+ → P(Gd )

α �→ Zα

and

T : R+ → P(R+)

α �→ Sα

where P(Gd ) (resp. P(R+)) stands for the set of subsets
of Gd (resp. R+).

We want to show a kind of reciprocal result to Propo-
sition 3.5, i.e. that, for a certain range of µ, there exists
α such that µεT (α).

The following result holds:

Proposition 3.6.

1. T is a nonincreasing multi- application.
2. Y (0) = { f − f̄ } and T (0) = ‖ f − f̄ ‖Gd (where f̄

stands for the mean value of f over �).
3. If α goes to +∞, then Y (vα) (resp. T (vα)) goes

to {0} (resp. {0}) (with respect to the Hausdorff
metric).

Proof: We successively show the three points of the
proposition. If we pick vα in Zα , we denote by uα =
f − vα .

1. Let α2 > α1 > 0. Let us pick vα1 in Zα1 and vα2

in Zα2 . Let us denote by uα1 = f − vα1 and uα2 =
f − vα2 . Then, as vα1 in Zα1 , we have in particular:

Jd
(
uα1

) + α1

∥∥vα1

∥∥
Gd ≤ Jd

(
uα2

) + α1

∥∥vα2

∥∥
Gd

(3.79)

And as vα2 in Zα2 , we also have:

Jd
(
uα2

) + α2

∥∥vα2

∥∥
Gd ≤ Jd

(
uα1

) + α2

∥∥vα1

∥∥
Gd

(3.80)

Adding the two last inequalities, we get:

α1

∥∥vα1

∥∥
Gd + α2

∥∥vα2

∥∥
Gd ≤ α1

∥∥vα2

∥∥
Gd + α2

∥∥vα1

∥∥
Gd

(3.81)
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And then

(α2 − α1)︸ ︷︷ ︸
>0 by hypothesis

(∥∥vα2

∥∥
Gd − ∥∥vα1

∥∥
Gd

) ≥ 0 (3.82)

Hence ‖vα2‖Gd ≥ ‖vα1‖Gd , which proves the first
point of the proposition.

2. Let us now prove the second point of the proposition.
We have (see (3.60)) H0( f −v, v) = J ( f −v) ≥

0 for all v ∈ Gd . Choosing v0 = f − f̄ (v0 ∈ Gd

since v̄0 = 0), we get H0( f − v0, v0) = J ( f −
v0) = J ( f̄ ) = 0. Hence 0 = minv∈Gd H0( f −
v, v). We deduce that v0 ∈ Z0. Moreover, J (u) =
0 if and only if u = ū. Let v1 be a solution of
minv∈Gd H0( f −v, v). We thus have f − v1 = f −
v1. And as v1 ∈ Gd , we also have v̄1 = 0. Then
f − v1 = f − v1 = f̄ − v̄1 = f̄ , i.e. v1 = v0.
We conclude that {v0} = Z0. This shows the second
point of the proposition.

3. Let us now prove the third point of the proposition.
Let us pick vα in Zα , and let us denote by uα =
f −vα . By definition of Zα , we have for all (u, v) ∈
X × Gd such that f = u + v:

Jd (uα) + α‖vα‖Gd ≤ Jd (u) + α‖v‖Gd (3.83)

We choose u = f , and v = 0. We get:

Jd (uα) + α‖vα‖Gd ≤ Jd ( f ) (3.84)

• First case: if f is constant (i.e f = f̄ ), then
Jd ( f ) = 0. Hence (3.84) implies that Jd (uα) =
‖vα‖Gd = 0. We conclude that vα = 0, and uα =
f̄ = f .

• Second case: if now f is not constant (i.e f �=
f̄ ), then Jd ( f ) > 0 Hence (3.84) implies that
‖vα‖Gd ≤ Jd ( f )

α
. Thus Y (α) → {0} as α goes to

+∞ (with respect to the Hausdorff metric).

Remark. In fact, we have shown that T : R+ →
[0, ‖ f − f̄ ‖Gd ]. In particular, T has uniformly bounded
values:

1. T (0) = { f − f̄ }
2. If α > 0, then if vα ∈ T (α), we have

‖vα‖Gd ≤ ‖ f − f̄ ‖Gd (3.85)

Proposition 3.7. T is u.s.c. (upper semi continuous)
(i.e. T has a closed graph and convex compact values).

Proof: We split the proof into two steps:

Step 1. Let us set α ∈ R+. By definition of Sα , one
easily checks that T (α) is convex and closed in R.
Moreover we have shown that T (α) is uniformly
bounded (see (3.85)). Therefore, T (α) is compact in
R.

Step 2. Let us now consider a sequence (αn, vαn ) where
αn ∈ R+ and vαn ∈ Zαn . Assume that there exists
(α0, v0) in R+ × Gd such that (αn, vαn ) → (α0, v0)
as n goes to +∞. As vαn in Zαn , we have for all
(u, v) ∈ X × Gd such that f = u + v:

Jd
(

f − vαn

) + αn

∥∥vαn

∥∥
Gd ≤ Jd (u) + α0‖v‖Gd

(3.86)

By passing to the limit as n goes to +∞, we get:

Jd ( f − v0) + α0‖v0‖Gd ≤ Jd (u) + α0‖v‖Gd

(3.87)

Hence v0 belongs to Zα0 , and therefore ‖v0‖Gd is in
Sα0 . This shows that T has a closed graph.

Corollary 3.1. For all µ in (0, ‖ f − f̄ ‖Gd ), there
exists α in R+ such that there exists (u, v) in X × Gd

with ‖v‖Gd = µ and solving Meyer’s problem (3.59).

Proof: This a consequence of Proposition 3.6,
Proposition 3.7 and the next theorem (applied to the
multi-application Tµ = T −µ) which we state without
proof.

Theorem 3.2. Let us consider a multi- application L:

R → P(R)

α �→ [Lmin(α), Lmax(α)]

Let us assume that L is such that:

1. L is u.s.c (upper semi-continuous).
2. There exists a ∈ R (resp. b ∈ R) such that

Lmin(a) ≤ 0 (resp. Lmax(b) > 0).

Then there exists c ∈ [a, b] such that 0 ∈ L(c).
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Figure 1. Original synthetic image.

Figure 2. Comparison for σ = 50 (SNR = 8.36).

Remark. This corollary completes the result of
Proposition 3.5. It completely closes the link between
Meyer’s problem (3.59) and our limit problem (3.64).

3.4. Role of λ

We show here that problem (3.64) is obtained by pass-
ing to the limit λ → 0+ in (3.62).

Proposition 3.8. Let us fix α > 0 in (3.59). Let us as-
sume that problem (3.59) has a unique solution (û, v̂).
Set µ = ‖v̂‖Gd in (3.62) and (3.64). Let us denote
(uλ, vλ) the solution of problem (3.62). Then (uλ, vλ)
converges to (u0, v0) ∈ X×X as λ goes to 0. Moreover,
(u0, v0) = (û, v̂) is the solution of problem (3.64).
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Remark. In the case when the solution of problem
(3.59) is not unique, the result of Proposition 3.8 does
not hold. We can just show that any cluster point of
(uλn , vλn ) is a solution of problem (3.64) and thus of
(3.59).

Proof of Proposition 3.8: The existence of (û, v̂) is
given by Lemma 3.6. The existence and uniqueness of
(uλ, vλ) is given by Lemma 3.4.

Since (uλ, vλ) is the solution of problem (3.62), we
have vλ ∈ Gd

µ, i.e. ‖vλ‖Gd ≤ µ. As we saw in the proof
of Lemma 3.4, this inequality implies:

‖vλ‖X ≤ 4 µN 2 (3.88)

Since (uλ, vλ) is the solution of problem (3.62), we
have:

Fλ,µ(uλ, vλ) ≤ Fλ,µ( f, 0) (3.89)

which means

Fλ,µ(uλ, vλ) ≤ Jd ( f ) (3.90)

And the left hand-side of (3.90) is given by:

Fλ,µ, (uλ, vλ)

= Jd (uλ) + 1

2λ
‖ f − uλ − vλ‖2

X + J ∗
d

(
vλ

µ

)

= Jd (uλ) + 1

2λ
‖ f − uλ − vλ‖2

X (3.91)

Hence Jd (uλ) + 1
2λ

‖ f − uλ − vλ‖2
X ≤ Jd ( f ), and

‖ f − uλ − vλ‖2 ≤ 2λJd ( f ) (3.92)

As ‖vλ‖X is bounded (from (3.88)), we conclude that
if λ ∈ [0; 1], uλ is bounded by a constant C > 0 which
does not depend on λ.

Consider a sequence (λn) which goes to 0 as n →
+∞. Then, up to an extraction (since (uλn , vλn ) is
bounded in X × X ), there exists (u0, v0) ∈ X × X
such that (uλn , vλn ) converges to (u0, v0). By passing to
the limit in (3.92), we get: ‖ f − u0 − v0‖X = 0, i.e.
f = u0 + v0.

To conclude the proof of the proposition, there re-
mains to show that (u0, v0) is a solution of prob-
lem (3.64). We first notice that as ∀λ > 0, and since

‖vλ‖Gd ≤ µ, we get: ‖v0‖Gd ≤ µ. Let (u, v) ∈ X × X
such that f = u + v. We have:

Jd (u) + J ∗
d

(
v

µ

)
+ 1

2λ
‖ f − u − v‖2︸ ︷︷ ︸

=0

≥ Jd
(
uλn

) + J ∗
d

(
vλn

µ

)
+ 1

2λn

∥∥ f − uλn − vλn

∥∥2

≥ Jd
(
uλn

) + J ∗
d

(
vλn

µ

)
︸ ︷︷ ︸

→Jd (u0)+J ∗
d ( v0

µ
)

Figure 3. Barbara image.
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Figure 4. Decomposition with our model for λ = 1.0 and µ = 100.
‖vA2 BC‖L2 here is equivalent to ‖vROF‖L2 in Fig. 5.

Hence (u0, v0) is a solution of problem (3.64). And
as we have assumed that problem (3.64) has a unique
solution, we deduce that (u0, v0) = (û, v̂), i.e. (u0, v0)
is the solution of problem (3.64). �

4. A Comparison

4.1. Introduction

In this section, we intend to compare Rudin-Osher-
Fatemi (ROF) problem (1.2) with Meyer’s one (1.3).
We put some noise (a gaussian noise of variance σ 2 ) on

Figure 5. Decomposition with the ROF model for λ = 43.
‖vROF‖L2 here is equivalent to ‖vA2 BC‖L2 in Fig. 4.

an image provided by the GdR-PRC ISIS (http://www-
isis.enst.fr/) (see Fig. 1), and we perform both a total
variation algorithm and our algorithm (2.37)–(2.40).
We have chosen to use Chambolle’s algorithm to min-
imize the total variation (Section 2.3).

We display the results on Fig. 2. The “difference
image” is obtained from the v components of both al-
gorithms. We denote by VA2 BC the v component given
by our algorithm, and vROF the one given by the total
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Figure 6. Simple synthetic image (λ = 0.01 and µ = 80).

variation minimization algorithm. The value of a pixel
in position (i, j) is 255.0 (i.e. white) if vA2 BC (i, j) >

vROF(i, j), 127.0 (i.e. gray) if vA2 BC (i, j) = vROF(i, j)
and 0.0 (i.e. black) if vA2 BC (i, j) < vROF(i, j).

4.2. Commentaries

We compare the v component given by our algorithm
with the one given by the ROF model. Their mean val-
ues are both very close to zero. For instance, in the
case of Fig. 2 (σ = 50), vA2 BC and vROF have al-
most the same mean value: −0.7. In the case of the
ROF problem, the parameter λ corresponds to the one
in (1.2), and in the case of Meyer’s problem, the pa-
rameters λ and µ correspond to the ones in (2.7). For

a given noisy image, we tune these parameters so that
‖vA2 BC‖L2 � ‖vROF‖L2 : the v components both contain
the same quantity of information. We want to compare
the information they contain.

One sees on the “difference image” that
vA2 BC (i, j) > vROF(i, j) in the darkest regions of
the original image (Fig. 1), and that vA2 BC (i, j)
< vROF(i, j) in the lightest regions. This means that
the v component in the ROF model depends more on
the mean gray level value of the original image than
in the case of Meyer’s one. For instance, let us have
a look at the dark circle on top left of Fig. 1. In the
case of Fig. 2 (a = 50), the mean value of the pixels
corresponding to this circle is −1.0 in vA2 BC and −4.2
in vROF. Both components v tend to have a negative
mean because in Fig. 1 the circle is a dark component.
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Figure 7. Image of Bourges’ area (1).

In homogeneous regions (such as the dark circle
we considered just before), we would expect the v

component of both models to have a zero mean (the
mean of the white gaussian noise we add to the orig-
inal image). According to the remarks we made be-
fore, Meyer’s model appears to loose less information
than the ROF model. This confirms the assertions by
Meyer in [8]. The decomposition he proposes seems
to be more adapted to image restoration. Nevertheless,
the difference between both methods appears not to be
visually very important.

4.3. Barbara Image

We have also performed our algorithm on the Barbara
image (Fig. 3).

On Figs. 4 and 5, one sees that vA2 BC corresponds
more to the texture part of the Barabara image than
vROF. One can also see that Barbara’s face appears much
more in vROF than in vA2 BC . This confirms the analysis

of Meyer [8]. Moreover, the leg of the table appears
much more in vROF than in vA2 BC , and this is not a
textured component of the Barbara image.

For all this reasons, our model (inspired by Meyer’s
model) gives a better decomposition of an image into a
BV component and an oscillatory component than the
ROF model.

5. SAR Images Restoration

5.1. Introduction

Synthetic Aperture Radar (SAR) images are strongly
corrupted by a noise called speckle. A radar sends a co-
herent wave which is reflected on the ground, and then
registered by the radar sensor [7]. When one cares with
the reflection of a coherent wave on a coarse surface,
then one can see that the observed image is degraded
by a noise of large amplitude. This gives a speckled
aspect to the image. That is why such a noise is called
speckle.
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Figure 8. Image of Bourges’ area (2).

Link With Our Approach. Contrary to the usual
modelization in SAR, the noise in our model is con-
sidered to be additive: the image f is decomposed into
a component u belonging to BV, and a component v

in G. But it is to be noticed that our model is com-
pletely different from the classical additive models: in
these ones, v is often considered to be a Gaussian white
noise, and therefore has a constant variance all over the
image. Here, v belongs to G, a space in which signals
can have large oscillations but small norm. Moreover
the variance of the oscillations of v may not be uniform
on the whole image. Remark that by considering u as
the restored image (without speckle) we assume that
there is no texture in the SAR image.

5.2. Results on a Synthetic Image

Figure 6 show why for a SAR image the decomposi-
tion proposed by Meyer is very interesting. Indeed, one

checks that the v component contains the speckle, and
the u component can be regarded as a restoration of the
original image (if it does not contain textures). It is dif-
ficult to make comparisons with other methods, since
the main criterion remains the visual interpretation.
Nevertheless, the results we get appear good with re-
spect to existing methods. And above all, our approach
being a variational one, computation time are very
short. With a processor at 800 MHz and 128 kilo of
RAM, it takes less than one minute to deal with an
image of size 256 ∗ 256.

5.3. Results on a Real Image

We use a SAR image of Bourges’ area pro-
vided by the CNES (French Space Agency:
http://www.cnes.fr/index v3.htm). The reference im-
age (also furnished by the CNES) has been obtained
by amplitude summation. Figures 7 and 8 show the
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effect of parameter µ on the restoration process. The
larger µ is, the more v contains information, and there-
fore the more u is averaged. According to the value of
µ, we can thus get a more or less restored image, and
also more or less smooth.

6. Conclusion

In this article, we present a new algorithm to decompose
a given image f into a component u belonging to BV
and a component v containing the noise and the textures
of the initial image. Our algorithm performs Meyer’s
program [8]. We use the space G and its norm, and
not an approximation as done in [9, 12]. Moreover, we
carry out the mathematical study of our model.

We present some numerical results to show the rele-
vance of our algorithm. We also show how the u com-
ponent can be used for SAR images restoration. More
experimental results can be found in [2]: in particular,
we show how the v component can be used in textured
images classification.
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the J.A. Dieudonné Laboratory at Nice, and also a member of the
Ariana research group (CNRS/INRIA/UNSA) at Sophia-Antipolis
(France). His research interests are calculus of variations, nonlinear
partial differential equations, numerical analysis and mathematical
image processing (and in particular classification, texture, decom-
position model, restoration). He is Assistant Researcher at UCLA
(Math Department).

Gilles Aubert received the These d’Etat es-sciences Mathematiques
from the University of Paris 6, France, in 1986. He is currently pro-
fessor of mathematics at the University of Nice-Sophia Antipolis and



88 Aujol et al.

member of the J.A. Dieudonne Laboratory at Nice, France. His re-
search interests are calculus of variations, nonlinear partial differen-
tial equations and numerical analysis; fields of applications including
image processing and, in particular, restoration, segmentation, opti-
cal flow and reconstruction in medical imaging.
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