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Abstract: We present two haze removal algorithms for single image based on haziness analysis. One algorithm regards haze as
the veil layer, and the other takes haze as the transmission. The former uses the illumination component image obtained by retinex

algorithm and the depth information of the original image to remove the veil layer. The latter employs guided filter to obtain the
refined haze transmission and separates it from the original image. The main advantages of the proposed methods are that no user
interaction is needed and the computing speed is relatively fast. A comparative study and quantitative evaluation with some main
existing algorithms demonstrate that similar even better quality results can be obtained by the proposed methods. On the top of haze

removal, several applications of the haze transmission including image refocusing, haze simulation, relighting and 2-dimensional (2D)
to 3-dimensional (3D) stereoscopic conversion are also implemented.
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1 Introduction

The quality of photograph in our daily life is easily un-
dermined by the aerosols suspended in the medium, such as
dust, mist, or fumes. This has an effect on the image, e.g.,
contrasts are reduced and the surface color becomes fait.
Such degraded photographs often lack visual vividness and
offer a poor visibility of the scene contents. The goal of haze
removal algorithms is to enhance and recover the detail of
the scene from haze image. There are many circumstances
that accurate haze removal algorithms are needed. In com-
puter vision, most automatic systems for surveillance, in-
telligent vehicles, object recognition, etc., assume that the
input images have clear visibility. However, this is not al-
ways true in bad weather. In consumer photography, the
presence of fog will be an annoyance to the images for it re-
duces the contrast significantly. In aerial photography and
satellite remote sensing, the photos are much more easily
plagued by aerosols[1] .

Because of the importance of the haze removal algorithm,
much work has been done. These methods can be classified
into two main categories: 1) image enhancement based on
image processing, and 2) image restoration based on phys-
ical model. The classical methods for image enhancement
are histogram equalization, homomorphic filter[2], curvelet
transform[3], retinex algorithm[4, 5], luminance and contrast
transform, etc. The image restoration methods focus on
the degradation process of the hazed image, aim at estab-
lishing the degradation model, deducing the degradation
process and compensating the distortion during the degra-
dation to get the undisturbed original image or its best
estimation. Compared with the image enhancement meth-
ods, restoration methods usually get much natural results,
while maintaining detailed information as much as possible
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to obtain the ideal haze removal performance. The algo-
rithms belonging to this kind are mostly based on polar-
izing filter[6, 7], user interaction[8, 9], known 3-dimensional
(3D) models[10] or multiple images[11, 12]. Although these
methods can significantly enhance the visibility, the user-
interaction or strict requirement on the inputs limits their
applications. Recently, haze removal from a single image
has made great progress. Many dehazing algorithms[13, 14]

based on single image have been developed since Fattal[15].
All these works are based on one or more reasonable as-
sumptions, physically or empirically.

Fattal′s work[15] was based on the assumption that the
transmission and the surface shading are locally uncorre-
lated. Under this assumption, Fattal estimated the albedo
of the scene and then inferred the medium transmission.
This approach is physically sound and can produce im-
pressive results. However, the method fails when handling
heavy haze images.

Tan′s work[13] was based on the observations that the
clear-day images have higher contrast compared with the
input haze image and he removed the haze by maximizing
the local contrast of the restored image. The visual results
are visually compelling but may not physical valid.

He et al.[14] proposed the dark channel prior to solve the
single image defogging problem. The prior is based on the
observation that most local patches in haze-free outdoor
images contain some pixels which have very low intensities
in at least one color channel. Using this prior, estimated
transmission map and the value of atmospheric light can
be obtained. For a better purpose, soft matting is used for
the estimated transmission map. Combined with the haze
image model, a good haze-free image can be recovered by
this approach.

In this paper, we propose two image dehazing methods
based on haziness analysis. One algorithm regards haze as
the veil layer, and the other takes haze as the transmission.
The former uses the illumination image obtained by retinex
algorithm and the depth information of the original image
to remove the veil layer. The latter employs guided filter to
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obtain the refined haze transmission and separate it from
the original image. These new algorithms may enhance or
restore images from the perspective of haziness with low
computation cost and without reference image.

The remaining of this paper is organized as follows. Sec-
tion 2 describes the haze veil and haze transmission we use
in this paper. In Sections 3 and 4, the details of our im-
age dehazing algorithm with haze veil or haze transmis-
sion are explained. In Section 5, we extend our algorithms
to processing haze video, and some additional applications
based on our transmission are also included. A comparative
study and quantitative evaluation with other algorithms are
shown in Section 6. Finally, we discuss our limitations and
conclude the paper in Section 7.

2 Haziness analysis

2.1 Haze veil

The original idea of image dehazing with haze veil lies
in the retinex theory, which deals with compensation for
illumination effects in images. The primary work is to de-
compose a given image S into two different images, the
reflectance image R, and the illumination image L, such
that at each point (x, y) in the image domain, S(x, y) =
R(x, y) ·L(x, y). The goal of the retinex theory is to obtain
the reflectance image R(x, y) from the input image S(x, y)
by removing effects of the illumination image L(x, y). Based
on the retinex theory, the illumination component is esti-
mated by applying smoothing to the haze image, and then
the uniform haze veil can be gained by computing the mean
of the illumination component. However, according to the
Koschmieder model[16], the apparent luminance of the scene
object at a different distance is different, so a different haze
veil should be assigned to a different position. Thus, the
uniform veil is multiplied by the original image to obtain
the depth-like map. Considering that the intensity of an im-
age reflects the amounts of photons received by every posi-
tion of an image, the further the distance between the scene
points and camera, the smaller the intensity. Thus, the haze
veil reflected by the depth-like map can be measured by in-
tensity, so the intensity component of the depth-like map
is extracted to produce the final haze veil associated with
different positions.

2.2 Haze transmission

The haze image model (also called image degradation
model), proposed by McCartney[17] in 1975, consists of a
direct attenuation model and an air light model. The di-
rect attenuation model describes the scene radiance and its
decay in the medium, while the air light results from previ-
ously scattered light. The formation of a haze image model
is as follows:

I(x) = Aρ(x)t(x) + A(1 − t(x)) (1)

where I is the observed intensity and also the input haze
image, J is the scene radiance and also the restored haze-
free image, A is the global atmospheric light, and t is the
transmission map. Theoretically, the goal of haze removal
is to recover A, ρ(x), and t(x) from I(x). Transforming (1),

we get

1 − I(x)

A
= t(x)(1− ρ(x)) (2)

where 1−ρ(x) is called inverse-albedo. Let C(x) = 1−ρ(x),
which changes correspondingly to albedo. We further define
B(x) = 1 − I(x)/A; equation (2) is transformed as follows:

B(x) = t(x)C(x). (3)

After obtaining the atmospheric light A, B(x) can be cal-
culated from I(x). Thus, the dehazing issue becomes sepa-
rating the transmission t(x) and inverse-albedo C(x) from
B(x). Here, B(x) describes the ratio of light that human
eye does not capture, as shown in Fig. 1 (a). Fig. 1 (b) is the
transmission t(x), which describes the portion of the light
that is not scattered but reaches the camera. Fig. 1 (c) is the
inverse-albedo, which describes the ratio of light that is ab-
sorbed by the scene objects. Therefore, B(x) can be seen as
the product of transmission and inverse-albedo. This pro-
cess is similar to the retinex algorithm mentioned above,
and we can regard transmission as illuminance and inverse-
albedo as reflectance of a scene. The transmission is a con-
tinuous function of depth. Although there are discontinu-
ities in the depth map, most of the time the variations of
the depth are smooth[1, 13], the same for the variations of
transmission. Thus, the variations of transmission are large-
scale. Since the haziness is the main reason for the large-
scale intensity variation of haze-free image, the following
assumption is reasonable: large-scale intensity variations in
B(x) are due to the transmission that reflects the density
of haziness.

Fig. 1 Image decomposition

3 Image dehazing with haze veil

3.1 Algorithm flow

Specifically, the proposed veil algorithm has two steps to
remove haze from a single image: the first one is to sep-
arate the illumination image from the original image and
obtains its haze veil together with its own depth informa-
tion. The second step is to compute the reflectance image
by subtracting the haze veil from the original image in the
logarithmic domain. The goal of our algorithm is to elim-
inate the effect of haze veil from the original image then
increase the visibility, and finally, enhance contrast by ap-
plying adaptive contrast stretching. The flowchart of our
method is depicted in Fig. 2.

3.2 Veil estimation and scene enhance-
ment

The key of the proposed algorithm is how to estimate the
haze veil. This process is carried out from red (R), green
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(G), blue (B) three color channels of the original image,
separately. Define F (x, y) to be Gaussian with the stan-
dard derivation σ, which is a typical low-pass smoothing
function. Firstly, the degraded image is convoluted with
the smoothing function. The process can be expressed as
follows

L̂(x, y) = I(x, y) ∗ F (x, y) (4)

F (x, y) = Ke
− (x2+y2)

σ2 (5)

where “∗” denotes the convolution operation, K is the nor-
malized factor, σ is the standard deviation and controls
the degree of blurring. Assuming that the function uses a
w × w window, we determine K satisfying the constraint
that makes the sum of F (x, y) equals one. For all (x, y),
in order to obtain the haze veil Ṽ (x, y) associated with dif-
ferent positions, we first generate the uniform haze veil by
computing the mean of the illumination image L̂(x, y), that
is, L̄(x, y).

L̄(x, y) =
1

HW

H∑

x=1

W∑

y=1

L̂(x, y). (6)

Fig. 2 Flowchart of the algorithm

Note that we can only regard L̄(x, y) as our haze veil
when the haze is uniform. If not so, the color of the haze
removed image will be distorted seriously. Thus, our algo-
rithm multiplies the uniform veil by the original image to
obtain the depth-like map, and the process can be written
as

L′(x, y) = 255 − I(x, y) · L̄(x, y). (7)

Finally, we transform image L′(x, y) from the RGB to
the YCbCr color space, and extract the intensity compo-
nent of image L′(x, y), that is, L̃(x, y), which is our final
haze veil. And then, we subtract L̃(x, y) from the origi-
nal image I(x, y) in the logarithmic domain, and then we
obtain the reflectance image R̃(x, y) by using exponential
transformation.

Fig. 3 illustrate the process described above. Fig. 3 (a)
shows the original haze image. Figs. 3 (b) and (c) illustrate
the haze veil and the reflectance image, respectively. From
Fig. 3 (c), we can see that reflectance image seems too dark,
so the post-processing of image enhancement is needed,
such as dynamic range compression or histogram equaliza-
tion. Our algorithm uses adaptive contrast stretching[18]

to enhance contrast. Fig. 3 (d) shows our final enhanced
results.

Fig. 3 Illustration of our method

4 Image dehazing with transmission

4.1 Algorithm flow

Given a haze image, we first estimate the atmospheric
light value A according to the distinctive features of sky re-
gion, and also calculate B(x). Next, we estimate the initial
haze transmission by using the dark channel prior proposed
by He et al.[14]. Then we use guided filter[19] to obtain the
refined haze transmission t(x), and also calculate C(x) by
using (3). As a consequence, the albedo ρ(x) = 1 − C(x)
can be obtained. Finally, the output haze-free image can
be gained by multiplying albedo ρ(x) by atmospheric light
A according to the haze image model. This process is also
depicted in Fig. 4.

Fig. 4 Haze removal process for video

4.2 Atmospheric light estimation

Estimating atmospheric light A should be the first step
to restore the haze image. The disturbing factors of white
objects lead to an incorrect A. Thus, we obtain the value of
A by using the distinctive features of sky region: 1) bright
minimal dark channel, 2) flat intensity, and 3) upper po-
sition. For the first feature, the pixels that belong to the
sky region should satisfy Imin(x) > Tv, where Imin(x) is
the dark channel and Tv is 95 % of the maximum value of
Imin(x). For the second feature, the pixels should satisfy
the constraint Nedge(x) < Tp, where Nedge(x) is the edge
ratio map and Tp is the flatness threshold. Due to the third
feature, the sky region can be determined by searching for
the first connected component from top to bottom. Thus,
the atmospheric light A is estimated as the maximum value
of the corresponding region in the haze image I(x).
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4.3 Haze transmission estimation and
scene restoration

The transmission map is calculated based on the dark
channel prior proposed by He et al.[14]. For the haze image,
we first estimate the initial haze transmission t̃(x):

t̃(x) = 1 − ω min
c∈r,g,b

(
min

y∈Ω(x)

(
Ic(y)

Ac

))
(8)

where ω is a constant parameter for adjusting the amount of
haze for distant objects. The value of ω is application-based
and suggested to be 0.95[14].

Then, we use the guided filter[19] algorithm to refine the
initial haze transmission t̃(x). For the haze image, it is as-
sumed that refined haze transmission is a linear transform
of the haze (guidance) image I(x) in a window ωx centered
at pixel x,

t̂(y) = aT
x I(y) + bx, ∀y ∈ ωx (9)

where ax and bx are linear coefficients assumed to be con-
stant in ωx. To make the difference between the output
t̂(x) and the input t̃(x) as small as possible, we minimize
the following cost function in the local window ωx centered
at pixel x,

E(ax, bx) =
∑

y∈ωx

((aT
x I(y) + bx − t̃(x))

2
+ εa2

k). (10)

The small variable ε is a regulation parameter to prevent
ax from being too large. The solution to (10) is given by

ax = (
∑

x

+εU)−1

(
1

|ω|
∑

y∈ωx

I(x)t̃(x) − ux t̄(x)

)

bx = t̄(x) − aT
x uk (11)

where
∑

x is a 3 × 3 covariance matrix of I(x) in ωx, U is
a 3 × 3 identity matrix, t̄(x) is the mean value of the in-
put t̃(x) in window ωx, and uk is the mean vector of I(x)
in window ωx. By substituting (11) into (9), we get the
refined haze transmission t̂(x) for the image. The result is
shown in Fig. 5.

Fig. 5 Haze transmission refinement

After obtaining the atmospheric light A, we can calculate
B(x) combined with input image I(x). Then, C(x) can be

also calculated with the haze transmission obtained by our
method. The image of C(x) corresponds to the result that
eliminates the haziness t(x) from the B(x) image. Thus,
the final scene radiance J(x) is recovered by

J(x) = A(1 − C(x)). (12)

Since we already know the inverse-albedo C(x) and the
atmospheric light A, we can take these values into (12) to
obtain the final restored haze-free image J(x). Fig. 5 (c) is
the refined haze transmission estimated from color image
Fig. 5 (a) using our approach. Fig. 5 (d) is our recovered
scene radiance.

5 Extension to video and application

5.1 Video dehazing

The transportation industry would benefit from auto-
matic dehazing technology, especially the video surveillance
system. For this application, the primary interest is en-
hancing video — not single images. For this purpose, our
methods should enhance full-resolution video in real-time
with a single haze veil or haze transmission.

For the surveillance camera system, the camera is fixed
and often positioned high in the air, so the background of
each frame is unchangeable and the difference in veil or
transmission between a foreground object and the back-
ground behind it is usually small. Thus, our method ap-
plies the single haze veil or transmission to a series of video
frames. During this time, haze veil or transmission is only
calculated for the background of the video, in order to ap-
ply a universal veil or transmission to more frames with a
tolerable error. For simplicity, we define the static part of
the scene as the background part and the moving objects
in the scene as the foreground part. The background im-
age can be obtained by using the frame differential method.
Then, our method estimates the haze veil or transmission of
the background image by using the algorithms mentioned
above, and applies the same veil or transmission to a series
of video frames to obtain the restored images, as shown in
Fig. 6. Generally, no significant errors will be induced into
the restored image. However, there still exist some esti-
mation errors caused by various background appearances.
Therefore, we have to make a trade off between performance
and quality.

5.2 Applications

After having the refined haze transmission t̂(x), we can
add more visual effect on the haze-free image, such as re-
focusing, haze simulation, relighting and 2D to 3D stereo-
scopic conversion. Fig. 7 shows the additional effects on the
haze-free results.

6 Experimental results

6.1 Qualitative comparison

Our proposed haze veil and haze transmission algorithms
can work well for a wide variety of haze images. In the ex-
periments, we performed the algorithms by executing Mat-
lab on a PC with 3.00 GHz Intel Pentium Dual-Core Pro-
cessor.
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Fig. 6 Our video result. First row: estimated background image and three original frames from video. Second row: universal haze veil

and the enhanced frames obtained by using the same veil. Third row: universal haze transmission and the restored frames obtained

by using the same transmission

Fig. 7 Additional application based on the haze transmission

Fig. 8 shows a comparison between results obtained by
Fattal[15] and our haze veil algorithm. As can be seen in
Fig. 8, the Fattal′s method can produce a visually pleas-
ing result. However, the method is based on statistics and
requires sufficient color information and variance. When
the haze is dense, the color information that needed in
Fattal′s method is not enough for the method to reliably
estimate the transmission. Next, we compared our method
with Tan′s work[13] in Fig. 9. The colors of Tan′s result may
sometimes be over saturated or distorted, such as the color

of traffic sign in Fig. 9 has changed to orange after haze re-
moval. The reason for that is his algorithm is not physically
based and may underestimate the transmission. We also
compared our method with He′s work[14] in Fig. 10. The
overall result of our algorithm is approximately the same as
He′s algorithm. However, He′s method can achieve a better
enhancement effect in the distance for Fig. 10 with a higher
time complexity. Fig. 11 shows the dehazing results of our
proposed algorithms, where we can see that the contrast
and clarity are all enhanced significantly compared with the
original input image. Figs. 12 and 13 allow the comparison
of our results with three state of the art visibility restora-
tion algorithms: Fattal[15], Tan[13] and He[14]. Notice that
the results obtained with our algorithm seems visually close
to the result obtained by He, with better color fidelity and
less halo artifacts compared with Tan. However, we find,
depending on the image, each algorithm is a trade-off be-
tween color fidelity and contrast enhancement. Results on a
variety of haze or fog images show that the veil method can
achieve a better enhancement effect when the fog is dense,
while the haze transmission method can remove haze from
a video much faster by using the universal strategy.

Fig. 8 Comparison with Fattal′s work. Left: input image. Mid-

dle: Fattal′s result. Right: veil method result

Fig. 9 Comparison with Tan′s work. Left: input image. Mid-

dle: Tan′s result. Right: transmission method result
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Fig. 10 Comparison with He′s work. Left: input image. Mid-

dle: He′s result. Right: veil method result

Fig. 11 Our results for comparison. Left: input image. Middle:

veil method result. Right: transmission method result

Fig. 12 Experimental results of various dehazing methods. First

row: the input image and the results obtained by Fattal and Tan,

respectively. Second row: the results obtained by He, our veil

method and our transmission method, respectively

Fig. 13 Experimental results of various dehazing methods. First

row: the input image and the results obtained by Fattal and Tan,

respectively. Second row: the results obtained by He, our veil

method and our transmission method, respectively

6.2 Quantitative evaluation

An assessment method dedicated to visibility restoration
proposed in [20] is used here to measure the dehazing effect.
We first transform the color level image to the gray level im-
age, and use three indicators to compare the two gray level
images: the input image and the haze removal image. The
visible edges in the image before and after restoration are
selected by a 5% contrast threshold according to the mete-
orological visibility distance proposed by the international
commission of illumination (CIE). To implement this defi-
nition of contrast between two adjacent regions, the method
of visible edges segmentation proposed in [21] has been used.
The computation results of visible edges for our haze veil

and haze transmission algorithms on Fig. 12 are given in
Fig. 14.

Once the map of visible edges is obtained, we can com-
pute the rate e of edges newly visible after restoration.
Then, the mean r̄ over these edges of the ratio of the gra-
dient norms after and before restoration is computed. This
indicator r̄ estimates the average visibility enhancement ob-
tained by the restoration algorithm. At last, the percentage
of pixels σ which becomes completely black or completely
white after restoration is computed. Since the assessment
method is based on the definition of visibility distance, the
evaluation conclusion which complies with human vision
characteristic can be drawn.

These indicators e, r̄ and σ are evaluated for Fattal[15],
Tan[13], He[14] and our method on six images; see Table 1.
For each method, the aim is to increase the contrast with-
out losing some visual information. Hence, good results are
described by high values of e and r̄ and low value of σ. From
Table 1, we deduce that depending on the image, Tan′s al-
gorithm generally has more visible edges than our veil, He,
our transmission and Fattal algorithms. Besides, we can
order the five algorithms in a decreasing order with respect
to average increase of contrast on visible edges: Tan, our
veil, He, Fattal and our transmission algorithms. This con-
firms our observations on Figs. 8–13. Table 1 also gives the
percentages of pixels becoming completely black or white
after restoration. Compared to others, our haze transmis-
sion algorithm generally gives the smallest percentage.

Table 1 Comparison with the state of art haze removal

algorithms using the three indicators

Indicator e r̄ σ e r̄ σ

Method Fig. 8 (512 × 384) Fig. 9 (600 × 400)

Fattal[15] 0.209 1.274 0.078 0.416 1.149 0.490

Tan[13] 0.346 3.418 0.274 0.679 3.127 0.849

He[14] 0.287 2.399 0.008 0.532 1.607 0.073

Haze veil 0.327 2.618 0.052 0.577 2.474 0.093

Transmission 0.214 0.984 0 0.439 1.647 0

Method Fig. 10 (300 × 216) Fig. 11 (800 × 600)

Fattal[15] 0.888 3.136 0.257 0.613 2.128 0.036

Tan[13] 1.374 4.715 0.539 0.716 2.537 0.092

He[14] 1.195 2.162 0.035 0.630 2.194 0.445

Haze veil 1.284 2.243 0.072 0.675 2.397 0.008

Transmission 1.124 1.478 0 0.625 2.127 0.004

Method Fig. 12 (576 × 768) Fig. 13 (1024 × 768)

Fattal[15] 0.058 1.203 0.149 0.106 1.535 1.699

Tan[13] 0.161 2.060 0.447 0.146 2.190 0.765

He[14] 0.141 1.329 0.160 0.123 1.629 0.014

Haze veil 0.153 1.496 0.036 0.136 1.901 0.086

Transmission 0.113 1.186 0.009 0.150 1.281 0.012

We also carried out a statistical analysis using Analysis
of Variance (ANOVA). ANOVA is a collection of statisti-
cal models used to analyze the differences between group
means and their associated procedures. Here, we use the
statistical method to determine weather the different de-
hazing algorithms have significant influence on the three
indicators. The indicator value of each dehazing algorithm
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Fig. 14 From left to right: the original image, the map of ratio of the gradients at visible edges for our haze veil and transmission

algorithms, the map of visible edge in haze removal image for the two proposed algorithms. The corresponding restored images are

shown in Fig. 12

for the six different images were compared by applying one
way ANOVA with a 0.05 significance level.

Table 2 shows one way ANOVA results of the indicator
data obtained by a software called “OriginPro”. When the
“P” value in Table 2 is less than 0.05, there is a signifi-
cant difference between the groups with a confidence level
of 95 %. According to this rule, the values of indicator e
of different dehazing algorithms were not significantly dif-
ferent, while r̄ and σ values of different algorithms were
significantly different from each other.

Table 2 One way ANOVA results

Index Source DF Sum of Mean F P

squares square

Model 4 0.1271 0.03177 0.19428 0.93908

e Error 25 4.08867 0.16355

Total 29 4.21577

Model 4 8.5211 2.13028 5.09233 0.00385

r̄ Error 25 10.45825 0.41833

Total 29 18.97935

Model 4 1.26633 0.31658 3.09322

σ Error 25 2.55868 0.10235 0.03374

Total 29 3.82502

This conclusion illustrates that for indicator e, different
algorithms have no significant influence on it, so the dehaz-
ing effect can not be well evaluated by using it. The reason
why that some algorithms may increase contrast so strong
is that the corresponding haze removal images will have
halos near some edges, which make the e value unreliable.
Whereas for r̄ and σ, different dehazing algorithms have

significant influence on the two indicators. Thus, they can
effectively measure the dehazing effect for each algorithm.
From Table 1, we can see that compared with other existing
algorithms, the proposed algorithms, as the whole, can get
a better trade-off between r̄ and σ, which demonstrates that
similar or better quality results can be obtained by using
our proposed algorithms. This confirms our observations
on Figs. 8–13.

6.3 Computation times

For an image of size sx × sy, the complexity of the our
haze veil algorithm is O(sxsy), which implies the complex-
ity of the veil method is a linear function of the number
of input image pixels. For the our haze transmission algo-
rithm, the haze removal image can be obtained in O(N).
Next, computational time is considered by testing the state
of the art methods in the Matlab environment.

For He′s method, its time complexity is relatively high
since the matting Laplacian matrix L in the method is
so huge that for an image of size sx × sy , the size of L
is sxsy × sxsy, so 20 s is needed to process a 600-by-400
pixels image. The computational times of Fattal′s and
Tan′s methods are even longer than He′s method. They
take about 40 and five to seven minutes to process an im-
age which is of size 600× 400, respectively. Our proposed
methods have a relatively faster speed, 2 s is needed to ob-
tain a haze removal image of the same size by using haze
veil method, and 4 s is needed by using haze transmission
method. Fig. 15 shows the computing speeds of the four
methods with different image sizes (128× 96, 256× 192,
512× 384, and 1024× 768).
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Fig. 15 Comparison of computing speeds

7 Conclusions

Image dehazing is an important issue in computer vision.
This paper proposes two image dehazing algorithms based
on the haziness analysis, which regards haze as the veil
layer or take haze as the transmission. Our algorithms pro-
duce visually pleasing dehazing results and tend to preserve
the main details better than previous techniques. Com-
pared with the state-of-the-art algorithms, our algorithms
have two main advantages: 1) no other reference image is
needed, and 2) its speed is relatively faster while main-
taining comparable performance. A comparative study and
quantitative evaluation demonstrate the efficiency of our
algorithms. Our algorithms could be further improved by
employing some advanced haze image models.

We have shown that we can generate real-time and good
haze removal results by regarding haze as the veil layer to
be subtracted or as the transmission to be separated from
the original haze image. However, for the haze transmission
method, it shows a tendency to have halos near some edges.
This indicates that although the method can generate a re-
fined haze transmission very fast by using guided filter, it
is not an accurate transmission map. This disqualifies our
algorithm from dealing effectively with an object without a
clear shape, and the haze removal result is sometimes high-
colored. Nevertheless, we can improve the overall quality
of a haze image by enhancing the main details.
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