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Abstract. Area openings and closings are morphological filters which efficiently suppress impulse noise from an

image, by removing small connected components of level sets. The problem of an objective choice of threshold

for the area remains open. Here, a mathematical model for random images will be considered. Under this model,

a Poisson approximation for the probability of appearance of any local pattern can be computed. In particular, the

probability of observing a component with size larger than k in pure impulse noise has an explicit form. This permits

the definition of a statistical test on the significance of connected components, thus providing an explicit formula

for the area threshold of the denoising filter, as a function of the impulse noise probability parameter. Finally, using

threshold decomposition, a denoising algorithm for grey level images is proposed.
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1. Introduction

The general problem of image denoising consists of

deciding what is the “signal” and should be kept, and

what is the noise, and must be removed. Many dif-

ferent criteria can be used to detect the noise-induced

structures. For example, the oscillations due to an ad-

ditive gaussian noise can be measured in terms of the

wavelet coefficients. The noise may then be removed

by a thresholding in the wavelet domain. Donoho and

Johnstone [6] gave an explicit way to choose the thresh-

old as a function of the variance of the noise. Their

claim is that “denoising, with high probability, rejects

pure noise completely”. The underlying idea is that in

pure noise, all the structures that actually belong to the

image could not appear; or else, the structures coming

from the image itself can be defined as those “objects”

which would have a very small probability of appearing

in a pure noise. This idea was implemented in [4, 5]
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for the detection of alignments and meaningful level

lines in an image.

Here, we shall focus on the size of connected com-

ponents of the level sets of the image. Removing small

components is a classical and efficient way of removing

impulse noise from an image. This method, known as

“the grain filter”, was first introduced in the framework

of Mathematical Morphology [16] by Vincent in [20]

as morphological area openings and closings (see also

[8, 21]). This filter is sometimes called the “extrema

killer”. It was then generalized by Masnou and Morel

in [12], and by Monasse and Guichard in [14]. In [15]

a similar filter was used, in the framework of gradient

percolation, for recovering fuzzy images.

But the main question remains: how should the

threshold for the area of the components that have

to be kept, be chosen? A natural idea, imported from

statistical inference, consists of fixing an a priori risk

level ε (e.g. ε = 0.001), and deciding that anything that

has probability lower than ε of occurring under a pure

noise hypothesis cannot come from the noise and hence

should be kept in the image. Thus for the threshold
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area, one will choose the integer s(n, p, ε), such that a

connected component of size k ≥ s(n, p, ε) has a prob-

ability less than ε of appearing in a pure noise image

with probability parameter p and size n × n. Apply-

ing a grain filter with area threshold s(n, p, ε) will en-

sure that, with probability larger than 1 − ε, pure noise

is eliminated. To implement this, one must be able to

compute the probability of any connected component

of size k appearing in a pure noise image. An exact com-

putation is not feasible. However an approximation can

be given if the image is large: our main theoretical re-

sult (Theorem 2.4) gives a Poisson approximation for

the probability of occurrence for any image property

which is local in the sense that its definition involves

only a fixed number of connected pixels.

Our plan is as follows. Section 2 is devoted to the

probabilistic model of noise in binary images: all pix-

els are independent, black with probability p or white

with probability 1 − p. The Poisson approximation re-

sult will be stated (Theorem 2.4) and an outline of its

proof will be given (technical details will be postponed

to the Appendix). Section 3 is devoted to applications.

We will first explain how Theorem 2.4, together with

numerical combinatorial results on square lattice an-

imals1, can be used to obtain an explicit formula for

the size threshold s(n, p, ε). An example of denoising

for a binary image will be given. Then we shall extend

the method to grey level images through threshold de-

composition: the binary image corresponding to each

grey level is treated separately, then all denoised bi-

nary images are recombined. Some experiments and a

discussion of the obtained results come last.

2. Probability of a Local Property

Our probabilistic model for random images is the fol-

lowing. Let n be a positive integer. Consider the pixel

set �n = {1, . . . , n}2. A binary image of size n is a

mapping from �n to {0, 1} (black/white). Their set is

denoted by En . It is endowed with the probability dis-

tribution µn,p defined by: each pixel is black with prob-

ability p or white with probability 1 − p, and all the

pixel colors are independent. A random image of size n

and probability parameter p, denoted by In,p, is a ran-

dom element of En with probability distribution µn,p.

The pixel set �n is embedded in Z
2 and naturally

endowed with a graph structure. We consider in this

paper the case of 4-connectivity (2 horizontal and 2 ver-

tical neighbors). For purely technical reasons, it will be

convenient that all pixels have the same neighborhood:

this is why we impose periodic boundary conditions,

deciding that (1, j) is a neighbor of (n, j) and ( j, 1)

of ( j, n). Thus the graph is a 2-dimensional torus. As

usual, the graph distance d is defined as the minimal

length of a path between two pixels. We shall denote

by B(x, r ) the ball of center x and radius r with respect

to the distance d . It is defined by

B(x, r ) = {y ∈ �n; d(x, y) ≤ r}.

Notice that this ball B(x, r ) is diamond-shaped (it is a

rhombus) and that for r < n/2, it contains 2r2 + 2r + 1

pixels (see Fig. 1). For the rest of this section, the radius

r is a fixed integer, and the image size n is larger than

2r + 1.

The image properties we are interested in are all

local, in the sense that they can be described inside

balls of a fixed radius. All balls are translations of each

other. We shall choose a ball of radius r , say B(0, r ),

and fix a translation τx , from B(0, r ) to B(x, r ) for all x .

We call pattern, and denote by D, an image defined

on B(0, r ), and determined by its set of black pixels,

denoted by β(D) (see Fig. 1 for an example of pattern).

Of course, B(0, r )\β(D) is the set of white pixels. We

shall denote by b(D) the cardinality of β(D) (number of

black pixels in the pattern). We shall deal with rather

small levels of noise, seen as relatively sparse black

pixels on a white background. This is of course a mere

convention: swapping black and white, together with

p and 1 − p does not change the model. Thus, in what

follows, we will always assume that p ≤ 1
2
.

If D is a pattern on B(0, r ) and τ is a transla-

tion of pixels, we shall denote by τ (D) the pattern

on B(τ (0), r ), whose set of black pixels is τ (β(D)).

If τ (0) = x , we denote by D(x) the property: “the re-

striction of the image to B(x, r ) is τ (D)”. The property

Figure 1. Example of an image on the ball B(0, r ) with r = 3. This

small image is also called a pattern. The number of black pixels of

this pattern D is b(D) = 2.
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we are actually interested in is

D̃ = (∃x ∈ �n, D(x)).

In other words D̃ means: “a copy of pattern D can be

found somewhere in the image”.

The patterns D are the building blocks of all local

properties. Indeed, there exists only a finite number of

such patterns (precisely 22r2+2r+1): let us denote their

set by D. Any assertion relative to the pixels in B(0, r )

will be called “local”: it can be expressed in a unique

way as a disjunction (logical “or”, denoted by ∨) of

distinct patterns.

The following definitions will be used in the counting

of occurrences of a local property in an image.

Definition 2.1. Let ψ be a local assertion, relative to

the pixels in B(0, r ).

1. The definition set of ψ , denoted by D(ψ), is the

subset of D such that

ψ =
∨

D∈D(ψ)

D.

2. The black index b(ψ) of ψ is the integer b(ψ) de-

fined by

b(ψ) = min
D∈D(ψ)

{b(D)}.

3. A meaningful definition set of ψ , denoted byD0(ψ),

is a subset of D(ψ) such that

(a) ∀D ∈ D0(ψ), b(D) = b(ψ),

(b) If τ is a translation, then D, D′ ∈ D0(ψ) and

τ (β(D)) = β(D′) imply D = D′ ,

(c) D ∈ D(ψ) and b(D) = b(ψ) imply ∃τ , ∃D′ ∈
D0(ψ) , s. t. τ (β(D)) = β(D′) .

All meaningful definition sets have the same cardi-

nality, which will be called the meaningful index of

ψ , and denoted by e(ψ).

The black index b(ψ) is the minimal number of black

pixels, in a pattern that satisfies ψ . One can see the

meaningful index e(ψ) as the maximal number of pat-

terns with exactly b(ψ) black pixels that satisfy ψ , up

to possible translations. Both will be used to count oc-

currences of the local property based on ψ .

Example. Let us illustrate all these definitions by con-

sidering a simple example: the property “there exist two

connected black pixels”. On the ball of radius r = 1, the

definition set of this local assertion ψ is composed of

all those patterns on B(0, 1) whose center is black, and

at least one of the 4 neighbors is also black (15 pat-

terns). The black index b(ψ) of ψ equals 2, and its

meaningful index is e(ψ) = 2 (a possible meaningful

definition set is made of the two patterns on B(0, 1)

such that the center and its right horizontal neighbor,

resp. its top vertical neighbor, are the only black pixels

in the ball B(0, 1)).

Definition 2.2. Let ψ be a local assertion, and ψ(x)

its localization on the ball centered at x :

ψ(x) =
∨

D∈D(ψ)

D(x) .

We call local property based on ψ , and denote by ψ̃

the property

ψ̃ = (∃x, ψ(x)).

Our basic example of a local property ψ̃ is: “there exists

a connected component of k black pixels”. A connected

component of size k is always included in a ball of ra-

dius r ≥ k/2. The local assertion ψ is “there exists a

connected component of size k in B(0, r )”. The defi-

nition set is the set of all patterns on B(0, r ) having at

least k connected black pixels. The black index is the

minimal number of black pixels necessary for ψ to be

satisfied (obviously k in our example). The meaningful

index is the number of connected components of size

k, up to translations (see Section 3).

For a fixed level p with 0 < p < 1, if we let n tend

to infinity, by the independence of pixels, it is easy to

see that asymptotically any pattern will be present in

a random image with a probability tending to 1 (see

[3] for more precise results). Therefore the asymptotic

probability for the random image In,p to satisfy ψ̃ is

1, whatever ψ . That asymptotic probability can be dif-

ferent from 1 only if p = p(n) tends to 0 as n tends to

infinity. Thus our images will have a relatively small

proportion of black pixels.

A classical object of the theory of random graphs (see

[1, 19] as general references), is the notion of thresh-

old function. It describes the appearance of a given

subgraph in a random graph. The notion of threshold

function easily adapts to random images. Let A be an

image property. The function θ (n) is called a threshold
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function of A if for p(n) ≤ 1/2 then

lim
n→∞

p(n)

θ (n)
= 0 =⇒ lim

n→∞
µn,p(n)(A) = 0 ,

and

lim
n→∞

p(n)

θ (n)
= ∞ =⇒ lim

n→∞
µn,p(n)(A) = 1 .

Notice that a threshold function is not unique. For in-

stance if θ (n) is a threshold function for A, then so is

cθ (n) for any positive constant c. It is customary to ig-

nore this and talk about “the” threshold function of A.

We then have the following lemma.

Lemma 2.3. The threshold function of the local prop-

erty ψ̃ is n
− 2

b(ψ) .

Proof: We shall just give here the main steps, since

the detailed proof will appear in [3]. Let D be a pattern

and let Xn denote the number of copies of D in the

image. Then

µn,p(n)(D̃)

= µn,p(n)(Xn > 0) ≤ E(Xn)

= n2 p(n)b(D)(1 − p(n))2r2+2r+1−b(D) ≤ n2 p(n)b(D).

On the other hand, let Yn denote the number of copies

of D occurring in balls B(x, r ) where both coordinates

of x are multiples of 2r + 1 (which implies that two

such balls cannot meet). The number of such balls is

n2
r where nr = ⌊ n

2r+1
⌋. Then

µn,p(n)(Xn > 0)

≥ µn,p(n)(Yn > 0)

= 1 − µn,p(n)(Yn = 0)

= 1 −
(

1 − p(n)b(D)(1 − p(n))2r2+2r+1−b(D)
)n2

r

≥ 1 − exp(−nr
2 p(n)b(D)

(

1 − p(n))2r2+2r+1−b(D)
)

Using these inequalities and the definition of a thresh-

old function, we conclude that θ (n) = n−2/b(D) is the

threshold function of the property D̃ . To conclude, one

has to check that the threshold function of a disjunction

of patterns is the smallest threshold function of these

patterns.

Lemma 2.3 means that the appearance of a local

property mainly depends on its black index: if p(n)

is small compared to n− 2
b , then the probability of any

local property that needs b black pixels to be satis-

fied is small. If p(n) is large compared to n− 2
b , then the

probability is large. The particular case b(ψ) = 0 corre-

sponds to the appearance of a white ball. If there exists

α, with 0 ≤ α < 1, such that for all n, we have p(n) ≤ α,

then the probability for a white ball of being present

in the random image always tends to 1 as n tends to

infinity: there is no threshold function. From now on,

we will always assume that the black index of ψ is

positive.

Lemma 2.3 suggests that the correct scaling for p(n)

when one studies a local property ψ̃ is p(n) = cn− 2
b(ψ) .

Our main result shows that with this scaling, the proba-

bility of ψ̃ in a random image converges to a non trivial

limit.

Theorem 2.4. Let ψ be an assertion on B(0, r ),

with black index b(ψ) and meaningful index e(ψ).

Let p(n) = cn
− 2

b(ψ) , where c is a positive constant.

Then

lim
n→∞

µn,p(n)(ψ̃) = 1 − exp(−e(ψ)cb(ψ)) . (1)

The reason why such a result is called a Poisson approx-

imation becomes clear if one considers the property

“there exists a black pixel”. Let Xn be the total number

of black pixels. Since all pixels are independent, the

random variable Xn follows the binomial distribution

with parameters n2 and p(n). In particular the proba-

bility that there exists a black pixel is

P[Xn > 0] = 1 − (1 − p(n))n2

.

Here the black index is 1 and the threshold function is

n−2. Take p(n) = cn−2. Then the binomial distribution

of Xn converges to the Poisson distribution with pa-

rameter c, and the probability that there exists a black

pixel (Xn > 0) tends to 1 − exp(−c).

The situation is not so simple as soon as the black

index is larger than 1. Consider for instance again the

local property ψ̃ : “there exist two connected black pix-

els”. We already saw that on the ball of radius r = 1,

the definition set is composed of all those patterns on

B(0, 1) whose center is black, and at least one of the

4 neighbors is also black (15 patterns). Consider the

number of occurrences of any of those patterns, some-

where in the random image. It is a sum of Bernoulli

random variables. However they are not independent:
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patterns on balls centered at two adjacent pixels have

one pixel in common. The same can be said of any lo-

cal property ψ̃ : the number of occurrences of ψ(x) can

be viewed as a sum of (dependent) Bernoulli random

variables. The sum of a large number of Bernoulli r.v.’s

converges in distribution to a Poisson distribution, pro-

vided the dependencies between the variables are not

too large. In the theory of random graphs, similar results

are frequent (see e.g. [19] Lecture 1 p. 296, Lecture 2

p. 303 or Lecture 5 p. 314).

Proof of Theorem 2.4: There are several ways to

prove a Poisson approximation result. We chose the fa-

mous “moment method” based on the following result

([1], Chapter 1, p. 25).

Lemma 2.5. Let (Xn)n∈N∗ be a sequence of inte-

ger valued, nonnegative random variables and λ be

a strictly positive real. For all n, l ∈ N
∗ define the

quantity

El(Xn) =
∑

k≥l

P(Xn = k)
k!

(k − l)!
.

If, for all l ∈ N
∗, limn→∞ El(Xn) = λl then (Xn) con-

verges in distribution to the Poisson distribution with

parameter λ.

In our case, Xn counts the number of occurrences in

the random image of some patterns, to be precised later.

The “moment” El(Xn) is the expected number of or-

dered l-tuples of occurrences of those patterns.

Firstly, one should observe that patterns in the def-

inition set of ψ cannot be all treated equally: since

p(n) = cn
− 2

b(ψ) , by Lemma 2.3 any pattern with more

than b(ψ) black pixels has a vanishing probability of

being observed. Hence we can reduce the set of pat-

terns to those having exactly b(ψ) black pixels. In the

example of two connected pixels with r = 1, D(ψ) has

15 different patterns, but only 4 of them have exactly

2 black pixels.

Now, one has to take care of multiple counts. Among

the 4 patterns on B(0, 1) that have 2 black pixels, 2

patterns have two horizontal black neighbors, and the

2 other patterns have two vertical black neighbors. As-

sume the image has only one occurrence of two hori-

zontal black neighbors. If we examine all possible pix-

els x , we will find two adjacent centers for which ψ(x)

is satisfied. In order to obviate this problem, we need

to count patterns up to possible translations. We say

that two patterns with black index b(ψ) are equiva-

lent if their sets of black pixels are translations of each

other. The number of equivalence classes is the mean-

ingful index e(ψ) of Definition 2.1. (In the example of

two connected black pixels, there are two equivalence

classes: horizontal or vertical neighbors).

We choose a meaningful set, i.e. we fix a pattern for

each equivalence class:

D0(ψ) = {D̄1, . . . , D̄e(ψ)} .

The counting variable Xn to which Lemma 2.5 will be

applied is the total number of occurrences of one of the

patterns D̄1, . . . , D̄e(ψ), in the random image In,p(n):

Xn =
∑

x∈�n

e(ψ)
∑

i=1

ID̄i (x)

(

In,p(n)

)

,

where I denotes the indicator function of an event. The

expectation of Xn is

E(Xn) = n2 e(ψ) (p(n))b(ψ)(1 − p(n))2r2+2r+1−b(ψ) .

As n tends to infinity, it tends to e(ψ) cb(ψ), which is the

parameter of the Poisson approximation in formula (1).

In order to apply Lemma 2.5 to Xn , one has to check

that the hypothesis holds.

Lemma 2.6.

∀l ∈ N
∗, lim

n→∞
El(Xn) =

(

e(ψ)cb(ψ)
)l

.

The proof of Lemma 2.6 is rather technical and will be

given in the Appendix.

Now Lemma 2.5 implies that Xn converges in

distribution to the Poisson distribution with param-

eter e(ψ)cb(ψ). Therefore µn,p(n)(Xn > 0) tends to

1 − exp(−e(ψ)cb(ψ)). It is clear that Xn > 0 im-

plies that In,p(n) satisfies ψ̃ . Hence µn,p(n)(Xn >

0) ≤ µn,p(n)(ψ̃). Moreover, the event (ψ̃ \ (Xn >

0)) = (ψ̃ ∩ (Xn = 0)) implies the appearance of a pat-

tern with at least b(ψ) + 1 black pixels in a ball of

radius r , and by Lemma 2.3, its probability tends to 0

as n tends to infinity. Therefore,

lim
n→∞

µn,p(n)(Xn > 0) = lim
n→∞

µn,p(n)(ψ̃)

= 1 − exp
(

− e(ψ)cb(ψ)
)

.
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It should be noticed that the asymptotics of Xn does not

depend on the choice of the meaningful definition set

{D̄1, . . . , D̄e(ψ)}. It does not depend either on the radius

r of the ball. Consider for instance the property ψ̃ “the

image contains two horizontally connected black pix-

els”. Its definition set for the ball B(0, r ) has r222r2+2r

elements. Among these, only 2r2 have exactly 2 black

pixels, and there is only one equivalence class up to

translations, whatever r . Therefore r is a phantom pa-

rameter, as should be expected. It serves only to ensure

that properties remain local.

3. Application to Image Denoising

In the previous section, we computed the asymptotic

probability of appearance of any local property in a

random binary image. This provides the basis of a sta-

tistical test to decide whether an observed pattern in

an image may be due to noise or not, and this test

can be applied for image denoising. In this section,

all the considered images will be corrupted by the

same kind of noise, namely impulse noise. This type

of noise models for example the fact that some (un-

known) part of the data is lost. We will assume that

the probability parameter of the noise is known. We

will first start with the denoising of binary images, and

then extend it to grey level images using their threshold

decomposition.

3.1. Binary Images

Let I0 be the original (non degraded) binary image of

size n × n. This original image I0 is then corrupted by

impulse noise, which has a probability parameter p in

the white components and a probability parameter q in

the black ones (see Fig. 3 for an example). We shall

see in the next section why it is important to allow

black and white pixels to be destroyed with a different

probability. Thus the noisy image I is given by

∀x, I (x) = I0(x) · (1 − ζp(x))

+ (1 − I0(x)) · ζq (x), (2)

where the ζp(x)’s (resp. ζq (x)’s) are independent

Bernoulli random variables with parameter p (resp. q).

In other words, we have the following conditional prob-

abilities

P(I (x) = 0 | I0(x) = 1) = p and

P(I (x) = 1 | I0(x) = 0) = q.

As can be seen in Fig. 3, the impulse noise creates

small black and white connected components. These

small components will be removed using a statisti-

cal decision based on their size (“size”, in this pa-

per, always means “area”). We are first interested in

the black connected components (with respect to 4-

connectivity). The results of the previous section give

us the threshold function and also the probability of

appearance of such components. More precisely, the

threshold function for a given (fixed) black component

of size k is θ (n) = n−2/k and its asymptotic appearance

probability in a n × n image of noise with probability

parameter p(n) = cθ (n), as n goes to infinity, is equal

to

1 − e−ck

.

Now, if we are interested in the appearance of a com-

ponent of size k (i.e. any of them, not only a given one),

Theorem 2.4 claims that the asymptotic (for large n)

probability of appearance is

1 − e−ak ck

,

where ak is the number of 4-connected components

one can make with exactly k pixels (up to translations).

Writing ck = n2 pk , we thus have an approximation for

the probability of appearance of a component of size k

in the n ×n image, with a proportion p of black pixels.

We denote by PA(n, k, p) this approximation :

PA(n, k, p) = 1 − e−n2ak pk

.

The 4-connected components are known in the combi-

natorics literature as “square lattice animals” or “poly-

ominoes”. Counting these objects is a difficult com-

binatorial problem and there is no general expression

for ak . However, some asymptotic results are known: a

concatenation argument [10] shows that there exists a

constant a, called growth constant, such that:

lim
k→∞

(ak)
1
k = supk≥1(ak)

1
k = a.

The exact value of a is unknown. Numerical estimates

give a ≃ 4.06 and the best published rigorous bounds

for it are 3.9 < a < 4.65 (see [2, 9, 11]). But thanks to

some numerical studies2, the values of the sequence

(ak)k≥1 are known up to k = 47, which will be enough

in practice for denoising applications. The first terms

are: a1 = 1, a2 = 2, a3 = 6, a4 = 19, etc. Furthermore,
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Figure 2. The size threshold s(n, p, ε) as a function of the noise probability parameter p ∈ [0, 0.18], for n = 256 and ε = 10−1, 10−2 and

10−3.

numerical computations show that for p ≤ pmax ≃ 0.2,

one has ak+1 p ≤ ak for k ∈ [1, 47], which ensures that

PA(n, k + 1, p) ≤ PA(n, k, p). This means that the

probability of appearance of an animal is a decreasing

function of its size. This is rather reasonable: for fixed

values of p and n, it would not make much sense to

keep a connected component of size k and to remove

one of size k ′ > k.

Let us fix a (small) positive real ε which will be

our risk probability, in the sense of statistical testing.

If the size k of a connected component observed in

a noisy image I is such that PA(n, k, p) ≤ ε, then

we will consider that it comes from the original image

I0, and keep it. If PA(n, k, p) > ε, it will be regarded

as noise and removed. Thus the size threshold for the

components we keep is defined by:

s(n, p, ε) = inf
{

k ; PA(n, k, p) = 1 − e−n2ak pk ≤ ε
}

.

(3)

A component with size k ≥ s(n, p, ε) has a very low

probability (less than ε) of appearing in a pure noise

image. In Fig. 2(b), we plot the size threshold s(n, p, ε)

as a function of the noise probability parameter p, for

a fixed value of n = 256 and three different values of

ε: 10−1, 10−2 and 10−3.

The algorithm for the binary image denoising can be

decomposed in four steps:

1. Extract all the 4-connected black components of the

noisy image I .

2. Remove the ones which have a size less than

s(n, p, ε) (i.e. change their pixels into white). Ob-

tain a new binary image.

3. Extract all the white 4-connected components of this

new image.

4. Remove the ones which have a size less than

s(n, q, ε) (i.e. change their pixels into black), to ob-

tain the final denoised image denoted by Ĩ = TI.

To summarize, this denoising filter T can be written as:

T = T +
s(n,q,ε) ◦ T −

s(n,p,ε),

where T +
s (resp. T −

s ) is the morphological area opening

(resp. closing) of size s defined by L. Vincent in [20].

See Fig. 3 for an example of the obtained result and

for a comparison with the results obtained with a more

standard binary filter (namely the median filter).

Before explaining how this method will be extended

to grey level images, let us make a few general com-

ments.

• The method is valid when p is not too large, since

we need ak pk to be small. In practice, we are limited

to p ≤ pmax ≃ 0.2.

• The dependence on ε is low since it is in fact a log(ε)-

dependence. Indeed, 1 − e−n2ak pk

is approximately
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Figure 3. First row: on the left, the original binary image I0 of size 256 × 256; on the right, the corrupted image I . White pixels have been

changed with probability p = 0.1 and black ones with probability q = 0.2. Second row: on the left, the result of the denoising algorithm with

ε = 10−2 when removing first black components and then white ones (i.e. applying T +
s(n,q,ε) ◦ T −

s(n,p,ε)); on the right, denoising by first removing

white components and then black ones (i.e. applying T −
s(n,p,ε) ◦ T +

s(n,q,ε)). The two images are not the same, illustrating the fact that the two

operators T −
s and T +

s do not commute. However in both cases, small black and white components due to noise have been removed. Only the

boundaries of the remaining ones are different. Third row: results obtained when applying median filtering with a disk of radius r = 2 (on the

left) and a disk of radius r = 5 (on the right). The value of the parameter r = 2 seems too small since some noise is still present in the black

components. Now, for the value r = 5, one can notice that the black corners have been eroded. The reason for this is that, in the noisy image,

the probability parameters p and q (used to corrupt respectively the white and black pixels) were such that q > p.

equal to n2ak pk when the value of this expression is

small. If we replace ak by ak , the threshold for the

minimal size of the components we keep is approx-

imately given by

s(n, p, ε) ≃
log ε − 2 log n

log a + log p
.

• The boundaries of the remaining components are not

smoothed. This comes from the fact that when some

noise is at the boundary of a component, it becomes

part of it. In order to remove it, one would need other

a priori knowledge of the original image (such as

smooth or straight boundaries as in the case of Fig. 3).

It is actually a general problem of image denoising:
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one has to define some a priori model for the image.

Here the underlying model is that the original binary

image is made of “large” (as compared to the noise)

black and white connected components.

• The two filters T −
s and T +

s do not commute (see

Fig. 3). This was already noted by Vincent in [20].

One solution he proposed is to use them in alter-

nating sequential filters [17, 18] with increasing

sizes of area. This may not be a real issue, since

he also noticed that T −
s ◦ T +

s and T +
s ◦ T −

s are vi-

sually extremely close (this will be even more true

for grey level images). Another solution, proposed

by Masnou and Morel in [12], and then formalized

by Monasse [13], is to process simultaneously up-

per and lower level sets. This grain filter denoted G t

(where t is the area threshold) is done by a pruning of

the tree of all level sets, built thanks to the inclusion

principle (this algorithm which is very fast is called

the Fast Level Set Transform [14]).

The fact that the foreground and the background

of a binary image are treated in a complementary

way is a general problem in Mathematical Morphol-

ogy. Many operators are not self-dual, and they of-

ten occur pairwise: like dilation/erosion and open-

ing/closing for example. It is worth mentioning that

in [7], H. Heijmans describes a general method to

construct morphological operators which are self-

dual.

• It is generally considered that, for consistency rea-

sons, using the 4-connectivity on the black (or white)

pixels should be followed by using the 8-connectivity

for the complementary set. From a theoretical point

of view, the method we proposed can be extended

to 8-connectivity in a straightforward way. In order

to apply the method, one would have to count the

number of 8-connected components of size k, which

are not available in the literature, whereas the (ak)’s

are known up to k = 47. Consequently, for our ap-

plication to image denoising, we decided to treat the

foreground and the background in the same way, with

4-connectivity.

• If the original image I0 is all white (I0 ≡ 0), and if it

is corrupted by some noise with probability param-

eter p as described by Eq. (2), we obtain an image

I which is “pure noise”. The probability that it con-

tains a connected component with size larger than

s(n, p, ε) is (by definition of s(n, p, ε) and thanks to

Theorem 2.4) less than ε. Thus,

P
(

T −
s(n,p,ε) I = I0

)

≥ 1 − ε,

which means that, with probability larger than 1−ε,

pure noise is completely removed.

Thus ε represents the “significance level” of our

statistical method for denoising: the probability of

not removing a component coming from the noise is

less than ε. In practice, we generally take ε = 10−3

or 10−2 (the results are visually the same). This pa-

rameter ε is completely independent of the image

(which is not the case of the size n of the image, or

the probability parameter p of the impulse noise): ε

has to be fixed by the user in the same way as the

risk level in statistical hypothesis testing.

• For reasons of simplicity, the denoising filter T was

described in the framework of an image of size n×n.

The method extends straightforwardly to an image

of size m ×n, where m �= n, by simply changing the

size threshold s(n, p, ε) into s̃(m, n, p, ε) defined

by

s̃(m, n, p, ε) = inf
{

k ; PA(
√

nm, k, p)

= 1 − e−mnakpk ≤ ε
}

.

3.2. Grey Level Images

Let u be a grey level image, of size n ×n and grey level

values in the range [0, 255]. Assume that this image is

corrupted by impulse noise with probability parameter

p. This means that the observed noisy image v may be

written in the form:

∀x, v(x) = (1 − ζp(x)) · u(x) + ζp(x) · ν(x), (4)

where the ζp(x)’s are independent Bernoulli random

variables with parameter p and the ν(x)’s are i.i.d.r.v.’s,

uniformly distributed on [0, 255].

For each level λ ∈ [0, 255], we can consider

the thresholded images uλ = Iu≥λ and vλ = Iv≥λ. The

grey level images may then simply be recovered by

u =
∑

λ uλ and v =
∑

λ vλ. The binary noisy image vλ

is a corrupted version of the binary image uλ; they are

related by

P(vλ(x) = 0 | uλ(x) = 1) = p ×
λ

256
and

P(vλ(x) = 1 | uλ(x) = 0) = p ×
(

1 −
λ

256

)

.

We are thus back in the framework described for binary

images with parameters pλ = pλ/256 and qλ = p(1 −
λ/256). The image vλ can be denoised following the
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Figure 4. Left: image v obtained with impulse noise with probability parameter p = 0.15 on the Lena image. Middle: thresholded image vλ

for the grey level λ = 150. Right: denoised image ṽ obtained by the noise-adapted grain filter T with ε = 10−3.

method described in the previous subsection. Finally,

we reconstruct a grey level image by simply adding the

binary ones: ṽ =
∑

λ ṽλ. This can be summarized by

the formula

ṽ = T v =
255
∑

λ=0

T +
s(n,qλ,ε) ◦ T −

s(n,pλ,ε)(vλ), where

pλ = p
λ

256
and qλ = p

(

1 −
λ

256

)

. (5)

Figures 4 and 5 give two examples of results obtained

by this filtering.

One natural question that can be asked is whether

the filter T defined by formula (5) is a morphologi-

cal filter (see [16, 18] and references therein for the

definition and properties of morphological filters). Un-

fortunately, the answer is negative. For two grey levels

λ ≥ λ′, one has vλ ≤ vλ′ , and for a fixed area threshold t

one would have T −
t (vλ) ≤ T −

t (vλ′ ) (because area open-

ings and closings are morphological operators). Now,

the two thresholds s(n, pλ, ε) and s(n, pλ′ , ε) can be

different, i.e. s(n, pλ, ε) > s(n, pλ′ , ε) and thus it is

not necessarily true that T −
s(n,pλ,ε)(vλ) ≤ T −

s(n,pλ′ ,ε)(vλ′ ).

This happens when vλ and vλ′ both contain the same

small black connected component of size k such that

s(n, pλ, ε) > k > s(n, pλ′ , ε). However, in the experi-

mental results, we noticed that this rarely happens: for

most values of λ, one has ṽλ ≤ ṽλ−1.

In order to illustrate the interest of adapting the area

threshold to each grey level, we treated the same image

using our method, then using a fixed area threshold (for

this we used the algorithm developed by Monasse in

[13]). The results are those of Figs. 5 and 6. Figure 6

shows the result of the usual grain filter, denoted by G t ,

for two different values of the area threshold: t = 10

and t = 20. One can notice that the parameter value

t = 10 seems too low since there is still some remaining

noise (for example on the coat of the cameraman). On

the other hand the value t = 20 seems too large, since

some of the original structures have disappeared (for

instance the white parabola at the top of the building)

and still too low (there is some remaining noise on

the coat). These results have to be compared with the

one of Fig. 5(c). This last figure shows that thanks to

the adapted area threshold s(n, pλ, ε) a small white

component can be kept and at the same time, a larger

grey component removed. These results also illustrate

what we have proposed in this paper, namely an adapted

and automatic way to choose the right parameter for the

area openings and closings.

3.3. Extension to Other Noise Models

In the previous subsection, we have explained how the

theoretical results of Section 2 can be used to denoise an

image degraded by impulse noise. Now, even if the pro-

posed denoising procedure corresponds to an impulse

noise model, it is interesting to see how it works in the

presence of white noise. An example of the obtained

results is shown on Fig. 7: we used again the camera-

man image, which is here degraded by white noise with

standard deviation σ = 15. It is then denoised using the

filter defined by Eq. (5) with parameter value p = 0.2

and ε = 10−2 (on the middle image) and p = 0.1 and

ε = 10−2 (on the right image). The main question is

here: how to choose the value of the parameter p used
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Figure 5. From left to right, top to bottom: (a) the original cameraman image u (size 256 × 256); (b) degraded image v, with impulse noise

probability parameter p = 0.2; (c) filtered image ṽ, obtained with ε = 10−3; (d) image of the difference u − ṽ. It shows that most of the noise

has been removed, except at the boundaries of the objects and also in the grass texture.

Figure 6. Result of the filtering of the noisy image v with the usual grain filter G t with area threshold t = 10 on the left and t = 20 on the

right.

in the filter, in relation to the standard deviation σ of

the white noise ?

In the case of impulse noise, we were able to relate

the size threshold s of the area openings and closings

to the impulse noise probability parameter p and to

the grey level λ. The main result was then: if we take

u = 0 in Eq. (4), then the degraded image v is pure

impulse noise, and after filtering (Eq. (5)), we have, by

definition of the threshold s(n, p, ε), that T v = u with

probability larger than 1 − ε.
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Figure 7. From left to right: (a) the cameraman image degraded by white noise with standard deviation σ = 15; (b) denoising of the previous

image by the filter defined by Eq. (5) with parameter values p = 0.2 and ε = 10−2; (c) denoising by the same filter with parameter values

p = 0.1 and ε = 10−2.

Now, if we want to obtain in the same way a denois-

ing filter for white noise, we have first to be able to

relate the size threshold s used for the area openings

and closings to the standard deviation σ of the white

noise and to the grey level λ of the thresholded image.

In order to do this, let us consider a pure white noise

image w: all the w(x)’s are independent identically dis-

tributed random variables with distribution N (0, σ 2)

(gaussian with mean 0 and variance σ 2). For λ ∈ R,

let us consider the thresholded image wλ = Iw≥λ. We

then have

P(wλ(x) = 1) =
∫ +∞

λ

1

σ
√

2π
e−x2/2σ 2

dx.

This last term, denoted by p̃λ,σ should be the analogue

of the probability parameter pλ defined in the case of

impulse noise (Eq. (5) in the previous subsection). Now

the main difference here is that p̃λ,σ is not necessarily

small (it goes to 1 asλgoes to−∞), and the thresholded

image wλ may contain arbitrarily large connected com-

ponents. Thus a filter like the area opening or closing

will never be able to remove all the noise. The problem

here is that the type of filter we have considered is not

adapted to white noise.

Generally, when using a probabilistic approach for

filtering, one needs a model for the image and one for

the noise. Here, we do not need a model for the im-

age, since we only use an “a contrario” hypothesis. It

means that we only need to know that “the image is

not noise” in the sense that large connected compo-

nents, which have a very small probability of appear-

ing in impulse noise, necessarily belong to the image.

This approach does not work in the case of white noise

since the size of the connected components of level

sets is not a good way to discriminate white noise from

the image (both contain large components). Neverthe-

less, if we are able to find some characteristic geo-

metric features (as the size of connected components

in the case of impulse noise), the proposed approach

could be extended to white noise or to other models of

noise.

4. Conclusion

We have introduced a mathematical model for random

images, in which we were able to compute the probabil-

ity of appearance of any “local pattern” (Theorem 2.4).

This was then used to give an explicit formula for the

size threshold s(n, p, ε), such that the probability of

appearance of a component of size k ≥ s(n, p, ε) in a

n × n image of pure noise with probability parameter

p is less than ε. Using this value of s(n, p, ε) for the

area openings and closings defined by Vincent will en-

sure that, with probability larger than 1 − ε, pure noise

is completely removed. This denoising process was

then extended to grey level images using their thresh-

old decomposition. There, the proposed area thresh-

old depends on both the probability parameter p of

the impulse noise and the grey level λ of the level

set.

Now, some questions remain, that have not been ad-

dressed in this paper: if the probability parameter p of

the impulse noise is unknown, what is the best way to

estimate it ? For a binary pure noise image, the best

estimate of p is simply the ratio of the number of black

pixels to the area of the image. Then, by analogy, a

first answer for binary images (like the chessboard for

example) is to compute the relative number of black
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pixels outside a dilation of the “large” black compo-

nents. Thus, for a grey level image, it is possible to use

the threshold decomposition to obtain initial estimates

of pλ = p × λ/256 and then to estimate p using, for ex-

ample, a linear regression. Now, it is not clear that this

estimate will be a good one since natural grey level im-

ages often contain textures creating small components

which over-estimate p. In order to obtain a reliable esti-

mate of p, it would be necessary to use also some infor-

mation extracted from the statistical moments (like the

covariance, three-point probability, etc. . . ) measured

on the image.

Appendix A

Proof of Lemma 2.6: Fix l ∈ N
∗. Recall that

Xn counts the number of occurrences of the mean-

ingful patterns D̄1, . . . , D̄e(ψ) in the random im-

age In,p(n) where p(n) = cn
− 2

b(ψ) . We are interested

in:

El(Xn) =
∑

k≥l

P(Xn = k)
k!

(k − l)!
.

We need to prove that El(Xn) tends to (e(ψ)cb(ψ))l as

n tends to infinity.

One can see El(Xn) as the average number of or-

dered l-tuples of copies of the patterns D̄1, . . . , D̄e(ψ)

in In,p(n). Thus, we can write:

El(Xn)

= E







∑

x1 ,...,xl
xi �=x j

∑

1≤ j1,..., jl≤e(ψ)

ID̄ j1
(x1)∧···∧D̄ jl

(xl )

(

In,p(n)

)







=
l

∑

s=1

∑

(x1 ,...,xl )

∈C(s)

∑

1≤ j1 ,..., jl

≤e(ψ)

µn,p(n)

(

D̄ j1 (x1) ∧ · · · ∧ D̄ jl (xl)
)

,

where, for s = 1, . . . , l, C(s) represents the set of l-

tuples (x1, . . . , xl) of pixels in �n such that the set

{B(x1, r ), . . . , B(xl , r )} is composed of s equivalence

classes for the 4-connectivity relation.

The term corresponding to s = l in the last sum

will be denoted by E ′
l (Xn) and the rest by E ′′

l (Xn).

The quantity E ′
l (Xn) can be seen as the average num-

ber of ordered l-tuples of copies of D̄1, . . . , D̄e(ψ),

on non-overlapping balls. We will first show

that:

lim
n→∞

E ′
l (Xn) =

(

e(ψ)cb(ψ)
)l

. (6)

Then we will prove that E ′′
l (Xn) tends to 0 as n tends

to infinity.

We want to choose l pixels x1, . . . , xl such that the

balls of radius r centered on those pixels are two by two

disjoint. For the first pixel x1, there are n2 possibilities.

Let 2 ≤ j ≤ l and suppose pixels x1, . . . , x j−1 have

been chosen. For the j-th choice, the set of all pixels

x such that d(x, xk) ≤ 2r for some 1 ≤ k ≤ j − 1,

must be avoided. The cardinality of this set is bounded

by ( j − 1) × (8r2 + 4r + 1) whatever x1, . . . , x j−1.

This bound does not depend on n. So, asymptotically

the number of choices for the j-th element is n2, and

consequently the cardinality of C(l) is equivalent to n2l .

On the other hand, if two balls B(x, r ) and B(x ′, r ) are

disjoint, then for all 1 ≤ j, j ′ ≤ e(ψ), the random

variables ID̄ j (x) and ID̄ j ′ (x
′) are independent. Therefore,

we obtain the first limit (relation (6)):

E ′
l (Xn) ∼ n2l

(

e(ψ)p(n)b(ψ)(1 − p(n))2r2+2r+1−b(ψ)
)l

∼
(

e(ψ)cb(ψ)
)l

.

The factor e(ψ)l comes from the choice of the e(ψ)

patterns D̄1, . . . , D̄e(ψ) for the l chosen balls.

There remains to prove that E ′′
l (Xn) tends to 0 as

n tends to infinity. The intuition is that if two patterns

occur in overlapping balls, then locally more than b(ψ)

black pixels are present in a ball of radius 2r . This has

vanishing probability, by Lemma 2.3.

Let 1 ≤ s ≤ l−1 and (x1, . . . , xl) be an element ofC(s).

Let C1, . . . , Cs represent the connected components of

the set ∪l
k=1 B(xk, r ). Then by independence between

them (they concern disjoint pixel sets):

µn,p(n)

(

D̄ j1 (x1) ∧ · · · ∧ D̄ jl (xl)
)

=
s

∏

m=1

µn,p(n)

(

∧

k;B(xk ,r )∈Cm

D̄ jk (xk)

)

.

As a consequence of s ≤ l − 1, there exists at least

one connected component, say C1, having at least two

elements. Since the black pixel sets of two different

patterns of D0(ψ) cannot be translated of each other,

there must be at least b(ψ)+1 black pixels in C1. Thus
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we have

µn,p(n)

(

∧

k;B(xk ,)∈C1

D̄ jk (xk)

)

≤ p(n)b(ψ)+1.

For the other connected components, we simply

bound

µn,p(n)

(

∧

k;B(xk ,r )∈Cm

D̄ jk (xk)

)

≤ µn,p(n)

(

D̄ jkm
(xkm

)
)

≤ p(n)b(ψ),

for any index km such that B(xkm
, r ) ∈ Cm . Therefore,

we obtain the following result:

µn,p(n)

(

D̄i1
(x1) ∧ · · · ∧ D̄il

(xl)
)

≤ p(n)sb(ψ)+1.

Finally, the set C(s) only has O(n2s) elements and

the number of ways to choose l elements among

D̄1, . . . , D̄e(ψ) does not depend on n. Consequently,

the desired result follows:

E ′′
l (Xn) ≤

l−1
∑

s=1

O
(

n2s × n
− 2(sb(ψ)+1)

b(ψ)

)

=
l−1
∑

s=1

O
(

n
− 2

b(ψ)

)

= o(1) .
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Notes

1. Square lattice animals or “polyominoes” are simply defined as

connected clusters of squares in the plane (for example, the

“Tetris” game uses all lattice animals of size 4).

2. for up-to-date information on the topic, see the web-site

of the “On-line Encyclopedia of Integer Sequences”, http:

//www.research.att.com/∼njas/sequences/ and

references therein.
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