
Image Denoising in the Deep Learning Era
Saeed Izadi 

Simon Fraser University
Darren Sutton 

Simon Fraser University
Ghassan Hamarneh  (  hamarneh@sfu.ca )

Simon Fraser University

Research Article

Keywords: Image Denoising, Deep Learning, convolution Neural Networks, Recurrent Neural Networks

Posted Date: July 1st, 2022

DOI: https://doi.org/10.21203/rs.3.rs-1806416/v1

License:   This work is licensed under a Creative Commons Attribution 4.0 International License.  
Read Full License

https://doi.org/10.21203/rs.3.rs-1806416/v1
mailto:hamarneh@sfu.ca
https://doi.org/10.21203/rs.3.rs-1806416/v1
https://creativecommons.org/licenses/by/4.0/


Springer Nature 2022 LATEX template

Image Denoising in the Deep Learning Era

Saeed Izadi, Darren Sutton and Ghassan Hamarneh

School of Computing Science, Simon Fraser University, Burnaby,
BC, Canada.

*Corresponding author(s). E-mail(s): hamarneh@sfu.ca;
Contributing authors: saeedi@sfu.ca; darrens@sfu.ca;

Abstract

Over the last decade, the number of digital images captured per
day witnessed a massive explosion. Nevertheless, the visual quality of
photographs is often degraded by noise during image acquisition or trans-
mission. With the re-emergence of deep neural networks, the performance
of image denoising techniques has been substantially improved in recent
years. The objective of this paper is to provide a comprehensive survey of
recent advances in image denoising techniques based on deep neural net-
works. In doing so, we commence with a thorough description of the fun-
damental preliminaries of the image denoising problem followed by high-
lighting the benchmark datasets and the widely used metrics for objective
assessments. Subsequently, we study the existing deep denoisers in the
supervised and unsupervised categories and review the technical specifics
of some representative methods within each category. Last but not least,
we conclude the analysis by remarking on trends and challenges in the
development of better state-of-the-art algorithms and future research.

Keywords: Image Denoising, Deep Learning, convolution Neural Networks,
Recurrent Neural Networks

1 Introduction

The role of digital cameras is to approximate an image of the real world by
sampling from a discrete grid while maintaining image quality as judged by
human perception. The visual quality of images collected by handheld con-
sumer cameras [1, 2], medical imaging equipment [3], or industrial cameras,
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2 Image Denoising in the Deep Learning Era

Fig. 1: Statistics of (a) peer-reviewed and (b) arXiv papers on image denoising over
the past few years. (c) indicates the evolution history of image denoising algorithms
in deep learning era.

may be impaired by several intrinsic or extrinsic factors related to the acquisi-
tion environment such as the pixel pitch of the sensor or the scene light level.
Noise corruption caused by light interference, dark current leakage, shot noise
and lens aberration can deteriorate the perceptual quality of images. Image
noise can also impact subsequent higher-level computer vision tasks [4, 4],
therefore it is often crucial to denoise images prior to any further higher-level
image interpretations tasks.

Image denoising refers to the process of inspecting a noisy image and recov-
ering an estimate of the underlying clean counterpart through discarding the
noise artifacts. Traditionally, image denoising is framed as an optimization pro-
cedure searching for the most likely clean image and, given that more than one
image-noise combinations can produce the noisy image, it falls into the fam-
ily of ill-posed inverse problems [5, 6]. Traditional denoising techniques tackle
this issue by imposing explicit regularization to constrain the search space.
Some examples of such classic denoising methods leveraging a priori knowledge
about the clean image include non-local self-similarity models [7, 8], sparse
models [9], gradient models [10–12] and, Markov random field models [13, 14].
However, these methods typically suffer from two major deficiencies: 1) dis-
covering clean images often involves a set of tuned hyper-parameters that do
not generalize well to unseen data and, 2) all the computational steps are
performed at the inference phase requiring a considerable amount of resources.

Driven by the availability of large datasets, rapid increases in computa-
tional power and, advances in algorithmic development for optimization of
neural networks, deep learning has made impressive improvements in tack-
ling many computer vision tasks [15–18]. In the context of image denoising,
deep learning has attracted significant research interest and raised many new
questions during the past recent years [2, 19–21] (Fig. 1). Employing neural



Springer Nature 2022 LATEX template

Image Denoising in the Deep Learning Era 3

Fig. 2: Figure indicates the highly cited supervised and self-supervised works in
recent years.

networks in image denoising can be traced back to the seminal works explor-
ing the advantages of lightweight networks over classical human-engineered
denoisers [22, 23]. The research question initially asked was whether neural net-
works could compete with engineered classical denoisers. As our understanding
of neural networks has improved, deep denoising networks have become the
de-facto choice for state-of-the-art denoising applications. The extensive use
of neural networks for denoising has created a diverse set of approaches to
choose from, ranging from convolutional networks [24] to generative adversarial
frameworks [25].

The field of deep image denoising has developed rapidly but in a disparate
manner. As depicted in Fig. 2, different denoising paradigms have been pro-
posed during the past years, however, most of these methods are tailored to
specific contexts and are based on benchmark datasets that are not directly
comparable. Additionally, some new benchmark datasets have been proposed
which are not included in the existing reviews [2, 19–21]. This motivates us
to examine the recent advances in this active area to deliver an overview as
well as new perspectives for interesting research directions. We provide a new
taxonomy of the existing deep denoising techniques by grouping methods into
two major categories: supervised and unsupervised approaches. In each cate-
gory, we further organize the representative methods in accordance with their
network design, adopted priors and training strategies. We present the meth-
ods in chronological order to show the advancement timeline for each training
paradigm category.

To summarize, the main contributions of the survey are as follows:

1. We provide a thorough description of the preliminaries for image denois-
ing as well as a comprehensive summary of the benchmark datasets and
evaluation metrics.

2. We deliver an extensive overview of deep denoisers. We introduce a novel
taxonomy of the existing methods in an effort to present a complete picture
of the state of the art in deep denoising.
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Table 1: Notations and abbreviations used in this report.

Notations Descriptions

R 1-dimensional Euclidean space
a,a,A Scalar, vector, matrix
{} Set of scalars
Φ Degradation function
θη Parameters of degradation function
Φ−1 Restoration function
∀ For all elements
θζ Parameters of restoration function

Â, â Estimate of A, a
a∗ Optimal value for a

L Generic Loss function
ρ Regularization term
λ Regularization coefficient
N(·) Normal distribution
µ Mean
σ Standard deviation (Noise strength)
P (·) Poisson distribution
α Sensor-specific scaling factor
∼ Random draw from a distribution
⊥ Statistical independence

3. By compiling the results of previous work, we discuss research challenges
and open issues to identify new trends and future research directions for
the denoising community.

This survey is organized as follows: Sec. 2 and Sec. 3 cover the problem def-
inition and review the mainstream datasets and evaluation metrics. In Sec. 3,
we investigate the representative works in the supervised denoising area. Sec. 5
delivers a summary of recent unsupervised denoising methods and, Sec. 6 pro-
vides a summary of denoising applications in other domains. We conclude this
survey in Sec. 7 and Sec. 8 with a discussion on a number of open problems
and future research directions. For better readability, we list the notations that
will be used in this survey in Table 1.

2 Background

2.1 Problem Definition and Terminology

Formally, let X = {xi ∈ R}ni=1 be a noisy image with n pixels that is corrupted
by a degradation function Φ, and let Y = {yi ∈ R}ni=1 be the corresponding
clean counterpart. The degradation function Φ for the i-th pixel is written as:

xi = Φ(yi; θη); ∀i ∈ {1, 2, ..., n} (1)

where θη indicates the set of parameters associated with the degradation func-
tion and noise model. Degradation by noise is often modelled as noise addition
followed by pixel-wise clipping to account for sensor saturation. Suppose that
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ηi denotes the noise component for i-th pixel physically caused by light or
camera. Therefore, the additive noise model can be written as:

xi = Φ(yi, θη) = clip (yi + ηi) ; ∀i ∈ {1, 2, ..., n} , (2)

without loss of generality assuming the pixel intensities to lie in the range
[0, 1], we have that clip (yi) = min (max (yi, 0) , 1). The task of image denoising
is to recover Y from the observed noisy data X. Typically, the degradation
function and the noise parameters are unknown. Thus, an approximation of
the inverse function is learned such that:

ŷi = Φ−1(xi; θζ); ∀i ∈ {1, 2, ..., n} (3)

where Φ−1 and θζ denote the denoising function and its parameters, respec-
tively. The learning-based denoiser is implemented as a regression function
that maps the noisy X inputs to the clean Y ground truth; i.e. Φ−1 : X 7→ Y.
When training a neural network as a denoiser, the loss is typically composed of
a fidelity term L(yi, ŷi) measured between the clean estimate and the ground
truth and, a regularization term ρ(ŷi) to constraint the solution space adjusted
with and a trade-off parameter λ. The denoising network is trained to learn
an optimal parameter configuration:

θ∗ = argmin
θ

L(yi, ŷi) + λρ(ŷi); ∀i ∈ {1, 2, ..., n} . (4)

When choosing a fidelity term, the prior knowledge of the clean input may
be an important consideration. A mean squared error (MSE) or L2 distance
fidelity term tends to produce over-smoothed outputs, which may lack high-
frequency details due to enforcing a Gaussian prior on the restored output.
Some works have demonstrated the benefits of mean absolute error (MAE)
or L1 distance to produce higher quality restored images with perceptually
sharper edges and textures [26].

2.2 Noise Formation Model

Noise in digital images comes from many sources, such as variation in sensor
sensitivity (ISO factor), thermal fluctuations, signal transmission errors, pho-
ton shot noise and, quantization noise. Noise models are approximations of
the real noise created during signal conversion in the sensor and readout by
an analog-to-digital converter. In this section, we elaborate on three types of
most commonly studied noise models in digital imaging.

Shot Noise or Signal-dependent Noise. Photons are elementary particles
travelling from the world to the camera during the exposure and arrive at the
pixel sites in whole numbers, or packets. Scene irradiance is measured by the
conversion of incident photons into charge at each pixel in a sensor array [27].
The packet-count varies proportionally to the square root of the count and
therefore the photon count at the sensor array has an uncertainty that comes
from random fluctuations in the arrival time of the photos. Such uncertainty
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Fig. 3: Figure indicates the evolution history of image denoising algorithms in deep
learning era.

is known as the shot or photon noise and is theoretically described by the
Poisson distribution P (yi),

xi = yi + η
p
i ; ∀i ∈ {1, 2, ..., n} (5)

subject to η
p
i ∼ αP (yi)− yi

where the mean and variance of the noise at pixel location i equals the pixel
intensity in the clean image yi. The scalar coefficient α indicates the sensor-
specific scaling factor of the signal.

Read Noise or Signal-independent Noise Photons accumulated at each
cell during the exposure are readout as a charge or voltage that is eventually
stored as a scalar pixel value. Read noise is the summation of the noise from
random events during the photon to photo-electron accumulation and readout
process, including lower-level noises such as thermal fluctuations, analogue-
to-digital quantization noise, reset noise, and source follower noise [28, 29].
Different sensor types have different read noise characteristics. A CCD sensor
typically has one read action for all pixels, thus the read noise is consistent
among pixels but varies from image to image. A CMOS sensor has a read action
for each pixel or column of pixels, thus there is variability in the read noise from
pixel to pixel within a single image. Read noise is conservatively approximated
using a Gaussian distribution N (µ, σ2) with mean µ and variance σ2,

xi = yi + η
g
i ; ∀i ∈ {1, 2, ..., n} (6)

subject to η
g
i ∼ N (µ, σ2)

with µ and σ being fixed everywhere within the spatial dimensions of the
image. The read noise is often considered as white Gaussian noise when it is
sampled from a zero-mean distribution. Read noise alone underestimates the
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actual real noise corruption occurring in real images as it only models the
errors from reading the charge accumulated at each pixel and not noise from
charge accumulation itself.

Poisson-Gaussian Noise. Digital imaging induces both signal-independent
and signal-dependent errors and, a Gaussian or Poisson distribution alone may
not be sufficient for precise noise modelling. To address such a limitation, real
noise is often modelled using a combination of both Poisson and Gaussian
components,

xi = yi + η
p
i + η

g
i ; ∀i ∈ {1, 2, ..., n} . (7)

In practice, Poisson-Gaussian noise is modelled using a heteroscedastic Gaus-
sian model. The parameters of a heteroscedastic Gaussian noise model change
with respect to some quality of the signal. In image denoising, noise is often
represented by a Gaussian distribution whose variance is proportional to the
signal intensity, i.e.,

xi = yi + η
hg
i ; ; ∀i ∈ {1, 2, ..., n} (8)

subject to η
hg
i ∼ N(0, αyi + σ2)

The heteroscedastic Gaussian model is commonly referred to as the noise level
function [30, 31].

3 Benchmarks

The recent use of deep neural networks has led to a consensus that datasets are
of critical importance for a variety of computer vision and image processing
applications. For image denoising, numerous publicly available datasets have
emerged that greatly differ in image amounts, quality, resolution, diversity
and, most importantly noise characteristics. In this section, we review some of
the most widely used image denoising datasets. We group these datasets into
synthetic noise and real noise categories and highlight their remarkable prop-
erties, such as image amounts, resolution, and acquisition settings. Table. 2
lists a summary of studied datasets.

3.1 Synthetic Noisy Datasets

A common strategy to train neural networks for image denoising is to consider
the image datasets used for other computer vision tasks [32, 33] as a collection
of clean images and simulate the noisy equivalents by imposing i.i.d1 Gaussian,
Poisson or Poisson-Gaussian random samples. Despite the popularity of syn-
thetic noisy datasets, insufficient proofs are indicating that images borrowed
from other datasets are genuinely clean. More importantly, the noise charac-
teristics in the real noisy image do not always conform to those of the synthetic
ones [30, 31] resulting in a significant performance discrepancy when networks

1independent and identically distributed
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Table 2: Summary of datasets.

Dataset # Images Avg. Resolution Content/Camera Info.

S
y
n
th

e
ti
c

BSD500 [32] 500 (481× 321) images of natural scenes with at least
one discernible object

DIV2K [33] 1000 (1972×1437) covers a large diversity of contents including
people, cities and natural scenes

BSD68 [34] 68 (435×364) part of BSD dataset largely used for
image denoising

Urban100 [35] 100 (984×797) collected from Flicker containing urban,
architectural and structured scenes

Kodak24 [36] 24 (768×512) uncompressed images published by Kodak
Corporation including indoor, outdoor images

Manga109 [37] 109 (826×1169) includes images of Japanese comic books
publicly available for academic research

Set14 [38] 14 (492×446) classic dataset introduced for low-level
image processing tasks

Set5 [39] 5 (313×336) classic dataset introduced for low-level
image processing tasks

R
e
a
l

RNI15 [40] 15 (514×465) covers variety of indoor and outdoor scenes,
especially scans of some old photos

RENOIR [41] 120 (4364×3115) low-light noise, Canon PowerShot S90, Canon
EOS Rebel T3i, and mobile Xiaomi Mi 3

NAM [42] 11 (7360×4912) Canon EOS-5D Mark III, Nikon D800,
Nikon D600

DND [2] 1000 (512×512) 50 scenes, Sony A7R, Olympus E-M10,
Sony RX100 IV, Huawei Nexus 6P

SIDD [1] 30,000 (4586×3035) Apple iPhone 7, Google Pixel, Samsung
Galaxy S6 Edge, Motorola Nexus 6, LG G4

PolyU [43] 4000 (512×512) Canon (Mark 5D, 80D, 600D), Nikon D800,
Sony A7 II

SID [44] 5094 (5078 × 3388) Sony A7S II, Fujifilm X-T2

NIND [45] 616 (3083 × 3864) Canon C500D, FujifilmX-T

trained on synthetic are evaluated on real noisy images. Table. 2 summarizes
the most widely synthetic datasets for training and evaluation of DL-based
denoising models. Among them, we describe BSD and DIV2K in more detail
below:

BSD. Berkeley Segmentation Dataset [32] is the most widely used dataset to
render noisy and clean pairs via noise synthesis strategy. BSD is a collection of
natural images with human-labelled segmentation ground truths consisting of
500 natural RGB images of size 481× 321 with at least one discernible object.
With today’s standards, BSD however contains fairly low-resolution images
which makes it less useful for real-world applications.

DIV2K. Recently, Luc Van Gool et al. [33] introduced a larger dataset pri-
marily used as a benchmark for image super-resolution. In contrast to the BSD
dataset, DIV2K contains images of higher resolution (2K) and larger content
diversity. To fairly benchmark competing methods, 1000 images in DIV2K
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dataset have been partitioned into the subsets of size 800, 100 and, 100 for
training, validation and test, respectively,

3.2 Real Noisy Datasets

There have been efforts to pair clean images with their real noisy equiva-
lents to assist the denoising development in real-world applications. These
pairs can be captured by constraining the extrinsic variables in the imaging
environment or adjusting the intrinsic parameters of the imaging aperture. A
prevalent strategy to approximate the clean ground truth is to offset the inher-
ent noise by collecting a rapid sequence of shots from the fixed scene followed
by temporal averaging. Another strategy is to consider the image taken with
lower ISO factors and slower shutter as clean ground truths. In either setting,
precise post-processing steps and image manipulations might be exploited to
marginalize the noise in the clean ground truths even more.

RNI15. Lebrun et al [40] provided the first collection of real noisy images
containing 15 images without clean counterparts. The images in RNI15 cover
a variety of noise types including low-light images from smartphones, old pho-
tographs, aerial images, etc. Due to the absence of clean ground truths, RNI15
is merely used for qualitative evaluation purposes.

RENOIR. Anaya et al. [41] presented the first dataset containing both noisy
and clean images. In RENOIR, images of 120 scenes are captured with low and
high ISO settings. For each scene, two clean images are taken interleaved with
one or two noisy ones in between. Multiple clean shots are used to secure the
spatial alignment of images within the entire acquisition process. Finally, the
low ISO images are averaged and paired with either or both of the noisy images.
Two consumer cameras (Canon Rebel T3i, Canon S90) and a smartphone
(Xiaomi T3i) are used to collect images at various ISO levels ranging from 100
to 6400. The RENOIR does not model heteroscedastic noise and, low-frequency
bias is not removed.

NAM. Nam et al. [42] collected a laboratory-controlled dataset from 11 static
scenes with printed pictures and few real objects. For each scene, 500 succes-
sive JPEG images were captured and used to approximate the (nearly) clean
ground truth. Images are taken by three consumer cameras (Nikon D800, Nikon
D600 and, Canon 5D Mark III) across three ISO factors (1600, 3200 and,
6400). A major drawback of the NAM is its use of printed pictures that devi-
ate from the scenes in the real world. Additionally, NAM lacks modelling the
heteroscedastic noise and low-frequency bias repair. Lastly, the images with
misalignment or different illumination are not discarded in NAM.

DND. The Darmstadt noise dataset [2] consists of 50 scenes taken by 4 con-
sumer cameras (Sony A7R, Olympus E-M10, Sony RX100 IV and, Huawei
Nexus 6P) across different ISO ranges and shutter speeds. Image with high ISO
(short exposure time) and low ISO (long exposure time) are taken as real noisy
and clean images, respectively. Additional post-processing including correction
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of spatial misalignment and removing low-frequency bias are further adopted
to derive more accurate clean ground truths for low ISO images. Moreover, the
employed intensity transform is based on a heteroscedastic Tobit regression
model.

SID. Chen et al. [44] introduced See-in–Dark (SID) dataset consisting of 5094
raw pairs captured with fast shutter (low exposure) and slow shutter (long
exposure) using two cameras (Sony α7S II and Fujifilm X-T2). The dataset
contains both indoor and outdoor images where the latter are captured at
night under moonlight or street lighting.

SSID. This dataset [1] is collected from 10 scenes using five smartphones
(Apple iPhone 7, Google Pixel, Samsung Galaxy S6 Edge, Motorola Nexus
6 and, LG G4) with fifteen ISO levels (50-10,000) under three illumination
temperatures (3200K for tungsten or halogen, 4400K for fluorescent lamps and,
5500K for daylight) and three light brightness levels (low, normal and, high).
Each scene is captured multiple times with different cameras settings and/or
different lighting conditions rendering more than 30,000 images. The collected
noisy images are then processed by a systematic procedure to obtain the clean
ground truth. The main focus of SSID is to address the problem of noticeable
noise caused by small sensor sizes in small apertures.

PolyU. Xu et al. [43] introduced a more comprehensive dataset taken from 40
versatile scenes in different lighting conditions using five cameras (Canon 5D
Mark II, Canon 80D, Canon 600D, Nikon D800 and, Sony A7 II). To include
more camera settings, each image is captured with 6 difference ISO factors
(800, 1,600, 3,200, 6,400, 12,800 and, 25,600). Moreover, other intrinsic camera
parameters such as shutter speed, aperture and, luminance are re-adjusted for
each ISO to render all images normally exposed. Each scene is captured 500 ∼
1000 times and the ones with spatial misalignment and luminance discrepancy
are removed. Next, multiple samples of the same scene are averaged and taken
as the clean ground truth. Since the image pairs are subjectively monitored,
spatial misalignment is almost avoided. PolyU contains both raw s-RGB and
JPEG images.

NIND. Most recently, NIND [45] was rendered from 101 scenes using two
cameras (FujifilmX-T1, Canon C500D). Each scene is captured with a set of
different ISO factors starting from 100 up to the highest possible value. The
image with the lowest ISO is taken as the clean ground truth. Also, images
with the highest ISO tend to be quite dark and therefore are correctly exposed
using the software. As the ISO increases, the shutter speed decreases to match
the original exposure value. On average, six images are captured for each scene
rendering a dataset of a total size of 616 paired images.

3.3 Evaluation Metrics

In this section, we provide a summary of two of the well-known metrics used
in evaluating the performance of denoising methods. Although the majority of
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the existing works use quantitative metrics for comparisons, the visual quality
of denoised images is also important in deciding the best models as a human
is often the end consumer of denoised images.

Peak-Signal-To-Noise Ratio. Peak-signal-to-noise ratio (PSNR), measured
in decibels (dB), is the most prevailing criterion to quantify the degradation
derived from losses in image transformations (e.g. compression, transmission,
or reconstruction). Due to its low complexity and high simplicity, it is widely
used and compared with. Given two images X = {xi ∈ R}n

i=1 and, Y = {yi ∈
R}n

i=1, PSNR is calculated as follows:

PSNR = 10 log10

(

MAX2
X

MSE

)

(9)

MSE =
1

n

n
∑

i=1

∥xi − yi∥
2
2

where MAXX is the maximum value in the dynamic range of the images. In the
case of image reconstruction, higher PSNR values indicate the reconstruction
of better quality, however, in some cases, it may not since it poorly correlates
with the perceived quality by human eyes [46, 47].

Structural Similarity. Wang et al. [46, 48–50] proposed structural similar-
ity (SSIM) as a more intelligent image quality assessment metric that is better
linked to how human perceive the visual quality of images. SSIM measures the
visual impact of changes in the image luminance, contrasts, spatial dependen-
cies and, collectively structural information in the viewing field [49]. Given two
images X = {xi ∈ R}n

i=1 and, Y = {yi ∈ R}n
i=1, SSIM is computed as follows:

SSIM = [lX,Y]
a
[sX,Y]

b
[sX,Y]

c
(10)

where a > 0, b > 0, c > 0 control the relative significance of each terms.
The luminance, contrast and, structural components are computed defined as
follows:

lX,Y =
2µXµY + ϵ1

µ2
X
+ µ2

Y
+ ϵ1

(11)

cX,Y =
2σXσY + ϵ2

σ2
X
+ σ2

Y
+ ϵ2

(12)

sX,Y =
σX,Y + ϵ3

σXσY + ϵ3
(13)

where µX and µY denotes the mean, σY and σY represent the standard devi-
ation and, σX,Y refers to the covariance of X and Y. Also, ϵ1, ϵ2, and ϵ3 are
constants introduced to avoid instabilities when denominators are close to zero.
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4 Supervised Denoising

Supervised image denoising implies using both the noisy and the clean images
while training neural networks. On the other hand, optimizing the param-
eters in neural networks inevitably grows the need for accessing massive
datasets with accurate clean ground truths for supervision. Owing to the
prevalence of synthetic noisy datasets in recent years, many deep denois-
ers based on supervised training schemes have been dominantly presented in
the literature [24, 51–53]. Apart from the synthetic datasets, the advent of
large denoising datasets with real noisy and clean image pairs has contributed
significantly to the success of supervised denoisers for real-world denoising
problems [1, 2, 44]. In this section, we summarize the existing methods for
supervised image denoising. We study the literature in two major directions,
i.e. discriminative and generative approaches.

4.1 Discriminative Models

Discriminative methods have recently become increasingly prevailing for image
denoising, thanks to their trade-off between denoising quality and speed at
test time. In the scope of deep denoisers, the discriminative models exploit the
capacity of neural networks to learn a direct mapping from noisy images to
clean counterparts. In particular, these methods attempt to find the optimal
parameters of a feed-forward network that maximize the conditional probabil-
ity P (yi | xi) directly from the training set Dtrain. Mathematically, it can be
written as:

θ∗ = argmax
θ

P (yi | xi); ∀i ∈ {1, 2, ...,n} (14)

The success of discriminative deep denoisers in fast inference is attributed to
fact that the learned parameters are kept fixed during the testing implying
fixed computational cost for each image. However, this comes at the expense
of less flexibility and the necessity of training distinct networks for different
noise levels. The differences between the approaches in this line of work are
mainly related to the network design, learning strategies and, modelling prior
information. In the remaining parts of this section, we collect and summarize
some representative works in this specific category.

4.1.1 Plain Networks

Plain feed-forward neural networks are known as the simplest DL-based models
for image denoising, yet they have achieved superior performance against clas-
sic approaches such as BM3D [8] and WNNM [54]. In a nutshell, these networks
are formed by assembling alternating sequences of convolutional or fully-
connected layers, potentially interleaved with non-linear activations [55, 56],
normalization [57, 58] and, dropout operations [59, 60]. Leveraging neural net-
works for image denoising arguably began gathering momentum in 2008 when
Jain et al. [23] proposed to exploit the convolutional layers as a way to relax
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the computational expenses associated with the parameter estimation and
inference popular probabilistic denoising methods. With the achievements of
sparse coding models in image processing, Xie et al. [61] proposed a stacked
sparse denoising auto-encoder (SSDA) framework by sequentially stacking
multiple instances of the denoising auto-encoders connecting the noisy input
to the network output. In addition to the reconstruction term, an auxiliary
KL-divergence term was employed to ensure the sparsity of the mean of inter-
mediate activations. Later, Agostinelli et al. agostinelli2013adaptive extended
the previous SSDA framework by introducing adaptive multi-column SSDA
to improve its robustness against various noise types. Coming next, Burger
et al. [22] showed that a well-trained multi-layer perceptron (MLP) network
over a massive collection of noisy and clean patches could outperform the
well-known BM3D [8] method.

Some of the proposed methods for image denoising are based on unrolling
the inference procedure in model-based techniques where the computational
steps are modelled by neural layers. In this group, Schmidt et al. [62] bor-
rowed the notion of shrinkage functions from wavelet restoration domain [63]
and proposed a cascaded set of shrinkage fields (CSF) to model stage-wise
predictions in an unrolled half-quadratic optimization procedure. Shrinkage
functions in CSF were learned in a data-driven manner reducing the optimiza-
tion procedure in each stage into a single quadratic minimization. The run-time
speed was improved by leveraging convolution operation and discrete Fourier
transform. Another example in this group is TNRD by Chen et al. [64, 65]
which exploited advances in partial differential equations for image restora-
tion. TRND designed a flexible denoising framework in which each stage was
modelled by a convolutional layer with large trainable kernels optimized over
a large dataset. Kim et al. [66] proposed to learn data-driven plain feedfor-
ward networks as the implicit regularizer in the widely adopted alternating
minimization algorithms [67] for image restoration.

The major body of previous denoisers based on plain deep networks focused
on noise phenomenon with spatially-fixed statistics. The work proposed by
Zhang et al. [68] was among the earliest attempts to take into account the
spatially-varying noise by adapting the performance of a plain deep CNN for
different regions. Particularly, they proposed to augment the noisy image with
a noise level map prior to feeding it to the network. Noise level maps were
generated by stretching either the actual or estimated noise variance across
the spatial dimensions to match the input size.

4.1.2 Residual Networks

Plain networks with deep architectures suffer from the potential risk of strug-
gling with vanishing or exploding gradients. Therefore, assisting techniques,
such as skip connections [69–71] are often utilized to facilitate unhindered infor-
mation flow within the layers of the network. The image denoising literature
has witnessed a significant use of residual learning in recent years [24, 51, 52,
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72–79]. An early attempt to leverage the residual connections for image denois-
ing was described in REDNet, by Mao et al. [80], where skip connections were
used between corresponding layers in a mirrored encode-decoder architecture.
Residue Learning. Instead of the absolute clean images. some denoising
methods leverage long skip connections in their design to learn the residue
between the noisy and clean images. Notably, DnCNN by Zhang [51] intro-
duced the earliest attempt in this avenue and exhibited superior performance
with simpler architectures. The residue image produced in the output of the
DnCNN is subsequently subtracted from the input noisy image to acquire
the clean estimate. In other words, instead of learning a sophisticated map-
ping from a complete image to another, DnCNN learns the residue image that
discards the noise part of the image and recovers the high-frequency details.
Mathematically, residue learning based models can be written as:

ri = Φ−1(xi; θζ); ∀i ∈ {1, 2, ..., n} (15)

where ri denotes the output residue. The clean estimate is computed as:

ŷi = ri + xi; ∀i ∈ {1, 2, ..., n} (16)

DnCNN has been successfully employed in many model-based denoising algo-
rithms serving as an implicit natural image prior [81, 82]. To complement
DnCNN, Remez et al. [83] proposed CADN that reflected the direct impact of
all intermediate layers in estimating the residue image.
Other Improvements. Some researchers have adopted more sophisticated
patterns for skip connections [84] to improve the representation power of the
networks. Tai et al. [24] designed MemNet by incorporating densely connected
memory blocks between a low-level feature extractor and a reconstruction
block. The memory blocks encompass end in 1 × 1 gating convolutions that
adaptively control how much of the information received from the previous lay-
ers need to be preserved or discarded before delivering them to the subsequent
module. Zhang et al [52] proposed a residual dense network intending to make
full use of the hierarchical features with densely connected global memory
blocks, which are themselves formed by a sequence of densely-connected con-
volutions. Most recently, Liu et al. [74] proposed dual residual building blocks
to enhance the interaction between paired operations, e.g. down-sampling and
up-sampling, occurring within the network.

4.1.3 Attention Mechanism

Attention mechanism has become an integral part of the neural networks in
recent years [85, 86]. In neural networks equipped with attention mechanisms,
the relationships among learned features are explicitly analyzed and exploited
to help more efficient representation learning [87, 88]. In image denoising tasks,
many works have tried to exploit the principal merits of attention mechanisms
to achieve better denoising performance with faster training and smaller model
size [77, 89–97]. Anwar et al.[89] proposed the first work that benefited from
the emerging popularity of channel-wise attention mechanism. [87] for image



Springer Nature 2022 LATEX template

Image Denoising in the Deep Learning Era 15

denoising to improve the learning efficiency of the network by re-scaling the
feature channels in accordance to their mutual dependencies. Later, Cheng et
al. [93] proposed a novel subspace attention module in which the noisy images
are projected into a learned clean subspace such that the reconstructed image
can keep most of the original content and remove the noise, i.e. the irrelevant
information to the generated basis vectors. Hu et al. [94] designed an efficient
3D auto-correlation that can extract vertical, horizontal and channel-wise axes
simultaneously. In contrast to regular auto-correlation attention modules, this
lightweight pseudo 3D module can avoid dense connection and high dimension
operations.

A different class of attention mechanisms relate the features from different
scales or operations. Specifically, Gu et al.[90] described a technique that con-
nects the contextual features extracted at different resolutions to each other in
a top-down processing architecture. The input image is initially down-sampled
into multiple scales using the shuffling operation. Then, a hierarchical coarse-
to-fine structure gradually receives and manipulates individual resolutions of
the inputs. After several convolutions, the features from the coarser scale are
delivered into the subsequent first-level coarser scale as a way to transfer the
cross-scale contextual information within the entire multi-scale framework.
Different from the previous work that aggregates multi-scale contents in a
top-down manner, Zamir et al. [95] proposed a model that aggregates the con-
textual information among multi-scales through exchanging the information
across all scales at each resolution level. Moreover, the delivered informa-
tion from other resolution levels is adaptively gated and fused to the current
information by a self-attention mechanism. Similar to [95], Zamir et al. [97]
proposed to incorporate a supervised attention module between every two
stages in a multi-stage architecture. Further, they introduced a cross-stage
information exchange module to improve the feature fusion between early
stages and later ones.

Most recently, Suganuma et al. [96] presented a more versatile layer archi-
tecture that embodies multiple operations such as convolutions with different
kernel sizes applied on the input. In such a setting, the attention mechanism
intends to produce a weight vector to determine the impact of each operation
within the layer. The weight vector is then multiplied with the outputs of the
operations to re-scale them in accordance with their significance.

4.1.4 Nonlinear Activation Functions

Increasing the depth of the network architecture for better learning capac-
ity is not always doable due to the limited computational resources in many
practical applications. To address this, more focus has been put on the role of
activation functions in constructing efficient yet powerful networks [98–100].
Toward efficient image denoising, there have been various recent improvements
that focus on ameliorating the activation functions [101, 102].



Springer Nature 2022 LATEX template

16 Image Denoising in the Deep Learning Era

As opposed to the ubiquitous RELU [55] activation that operates per pixel,
Kligvasser et al. [101] incorporated the notion of learnable activations with spa-
tial connections into deep denoisers. RELU [55] activation can be explained as
a hard-gating mechanism where irrelevant activations are discarded by binary
weight map. Conversely, xUnit offers a soft-gating scheme through adopting
internal convolutions and Gaussian gating modules to provide spatially-
dependent continuous-valued weight maps for activations. Seemingly, this
method requires more computational demands however the expanded represen-
tational power of the layers allows achieving the performance of deep networks
with a smaller number of layers.

In the same vein, Gu et al. [102] crafted another learnable activation func-
tion (MTLU) that assists in boosting the learning capacity of small networks.
As depicted in Eq. 17, the core methodology of MTLU has two highlights: a)
dividing the activation space into several equidistant bins and, b) learning the
coefficients for different linear functions per bin using the back-propagation
strategy during the training.

f(x) =















a0x+ b0, if x ≤ c0
akx+ bk, if ck−1 < x ≤ ck
. . .

aKx+ bK , if cK−1 < x

(17)

where the set {ck}
K
k=1 is K hyper-parameters for MTLU and, {ak}

K
k=1 and

{bk}
K
k=1 are the coefficient for linear functions.

4.1.5 Non-Local Similarity

Many classic image denoising methods have demonstrated the merits of
self-similarity (NSS) prior on natural images for image restoration [7, 8]. Con-
cretely, the NSS prior states that similar image patches tend to re-occur within
the image in non-local regions. While the NSS has been broadly explored in
the classic denoisers, a few works have attempted to incorporate this internal
image property into deep networks for image denoising [53, 103–111]. Among
them, we distinguish two major categories depending on the way the non-local
information come to the play, i.e. non-local retrieval and implicit non-local
attention.

Non-Local Retrieval. Motivated by BM3D [8] and non-local means [7], the
intent of the works in this category is to explicitly find and retrieve the most
similar patches to a query patch and, utilize them in subsequent stages to
discard the noise component. The earliest deep denoiser exploiting non-local
prior was the NLNet proposed by Lefkimmiatis et al. [103]. NLNet is a patch-
based proximal gradient method unrolled into multiple stages. Each stage is
efficiently modelled by a sequence of convolutions to linearly transform every
patch, a block-matching to collect similar patches and, ultimately a collabo-
rative filtering that projects all patches into a single patch representing the
clean estimate. Later Xia et al. [104] proposed a patch denoising framework in
which the network takes in an individual noisy patch and a set of most similar



Springer Nature 2022 LATEX template

Image Denoising in the Deep Learning Era 17

Table 3: Summary of some representative methods in supervised denoising. The
“S”, “R” denotes synthetic and real noise respectively. Also, ”D”, ”F”, ”LSC”, and
”SSC” represent effective depth, max filter size, long skip connection, and short skip
connection, respectively.

Ref Publication Data Architecture Loss keywords

S. R. D. F. LSC SSC

[65] 2015, CVPR ✓ ✕ 8 48 ✕ ✕ L2 Plain CNN

[23] 2008, NeurIPS ✓ ✕ 4 24 ✕ ✕ L2 Plain CNN

[62] 2014, CVPR ✓ ✕ 5 48 ✕ ✕ L2 Plain CNN

[66] 2017, CVPR ✓ ✕ 10 64 ✕ ✕ L1 Plain CNN

[68] 2018, TIP ✓ ✕ 15 64 ✕ ✕ L2 Plain CNN

[82] 2017, CVPR ✓ ✕ 17 64 ✓ ✕ L2 Residual Learning

[83] 2018, TIP ✓ ✓. 20 63 ✓ ✕ L2 Residual Learning

[80] 2016, NeurIPS ✓ ✕ 30 64 ✓ ✕ L2 Residual Learning

[52] 2021, PAMI ✓ ✕ 120 64 ✓ ✓ L1 Dense Residual

[74] 2019, CVPR ✓ ✕ 24 32 ✓ ✓ L2 Dual Residual

[51] 2017, TIP ✓ ✕ 17 64 ✓ ✕ L2 Residual Learning

[24] 2017, ICCV ✓ ✕ 80 64 ✓ ✓ L2 Recursive Learning

[89] 2019, ICCV ✓ ✓ 40 64 ✓ ✓ L1 Attention, Residual

[90] 2019, CVPR ✓ ✓ 16 32 ✕ ✓ L1 Attention

[93] 2021, CVPR ✓ ✓ 16 128 ✓ ✓ L1 Non-Local Attention

[95] 2020, ECCV ✓ ✓ 58 256 ✓ ✓ Ch. Residual, Attention

[96] 2019, CVPR ✓ ✕ 89 16 ✕ ✓ L1 Multi-scale Attention

[101] 2018, CVPR ✓ ✕ 17 64 ✓ ✕ L2 Activation, Attention

[102] 2018, CVPR ✓ ✕ 10 64 ✓ ✕ L2 Activation

[104] 2020, WACV ✓ ✕ 14 96 ✓ ✕ L2 Non-Local

[105] 2018, NeurIPS ✓ ✓ 30 64 ✕ ✕ L2 Non-Local

[106] 2019, ICLR ✓ ✕ 120 64 ✕ ✕ L2 Non-Local

[53] 2018, NeurIPS ✓ ✕ 38 128 ✕ ✕ L2 Non-Local

[108] 2020, TIP ✓ ✕ 30 512 ✓ ✕ L1 Dynamic Conv

[110] 2020, ECCV ✓ ✕ 30 512 ✓ ✕ L1 Dynamic Conv

[113] 2020, TIP ✓ ✕ 18 132 ✕ ✕ L2 graph-convolutional

[114] 2019, CVPR ✕ ✓ 32 512 ✓ ✕ L1 RAW

[115] 2019, CVPR ✕ ✓ 16 256 ✓ ✓ L2, A., TV RAW

[116] 2020, CVPR ✕ ✓ 16 512 ✕ ✓ L1 RAW

[117] 2020, ECCV ✕ ✓ 28 512 ✓ ✓ L1 RAW

[118] 2020, CVPR ✕ ✓ 23 256 ✓ ✓ L1 RAW

[119] 2021, CVPR ✕ ✓ 32 N/A ✕ ✓ L1, L2 Invertible

[120] 2020, CVPR ✓ ✓ 110 256 ✓ ✓ L1, A. Transfer Learning

[121] 2020, CVPR ✕ ✓ 40 N/A ✓ ✓ L1 RAW, Attention, Residual

[122] 2020, ECCV ✕ ✓ 27 512 ✓ ✓ L1 Joint Distribution

[123] 2018, PAMI ✓ ✓ 35 32 ✓ ✓ L2 Boosting, Residual

[124] 2019, TIP ✓ ✕ 67 64 ✓ ✓ L1 Boosting, Residual

[125] 2019, NeurIPS ✓ ✓ 17 512 ✓ ✓ L2 Variational

[25] 2018, CVPR ✕ ✓ 17 64 ✓ ✕ L2 Noise Modeling, GAN

[126] 2020, ECCV ✕ ✓ 17 64 ✓ ✕ L2, , Adv., FM., Tri. Noise Modeling

[94] 2021, CVPR ✓ ✓ 40 64 ✓ ✓ L1 Attention, Residual, Non-Local

[97] 2021, CVPR ✕ ✓ 140 80 ✓ ✓ L1 Multi-scale Attention

[127] 2021, ICCV ✕ ✓ 65 256 ✓ ✓ L2, NLF Non-Local, Graph Network

patches and, outputs a vector of matching scores. The denoised patch is then
obtained by averaging across candidates using the matching scores. In contrast
to the normal convolutions which have rigid sampling grid and kernel weights,
Xu et al. [108] proposed to explicitly learn the sampling locations along with
the kernel weights in a data-driven manner. Thus, the network is able to adap-
tively sample from the 2D input space to freely expand the respective field.
Chang et al. [110] not also adopted deformable convolutions [112], but also
inserted the modulated deformable convolution in their proposed network to
sample the spatially relevant features for weighting.
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Non-Local Attention. Most existing denoising methods suffer from having
a small receptive field due to local convolutions. However, long-range simi-
larities may be used for denoising the patches. Wang et al. [128] embedded
the concept of non-local mean in the neural networks and proposed a non-
local neural network leading to a considerable boost in many computer vision
applications. Zhang et al.[106] adopted this work and proposed a residual
trunk-and-mask [129] architecture for the task of image denoising. The trunk
branch provides the intermediate features whereas the mask branch calibrates
the feature based on the non-local correspondences in the spatial domain.
Another novel technique is N3Net [105], which proposed a continuous deter-
ministic relaxation for the non-differentiability of KNN selection rule. It is
then used within the internal layers of the network to concatenate every fea-
ture vector with a weighted average of the most similar feature in the 2D space
of the intermediate representations. Liu et al. [53] integrated the non-local
mean operation into the recurrent neural networks and, proposed to perform
non-local matching in a confined region centered at query position rather than
considering the entire spatial scope for matching.

Graph Neural Networks. Valsesia et al. [113, 130] proposed to exploit
graph convolutions to cope with the limited receptive field in traditional con-
volutional layers. To be concrete, they generalized the traditional convolution
layers by creating adaptive receptive fields based on nearest-neighbour graphs.
During the training, distant but similar features are aggregated to leverage
the non-local similarities. An additional module estimates the aggregation
weights to further increase learning adaptability. Li et al. [127] designed a
cross-patch graph convolutional network to explicitly cross-patch long-range
contextual dependency. For every patch, their proposed network aggregates
similar patches to the primary input patch, and ensembles the extracted fea-
tures toward a more accurate clean patch estimate. Mou et al. [131] extended
the patch-based graph convolutional networks and proposed a dynamic atten-
tive graph in which the query patch can have a dynamic and adaptive number
of neighbors.

4.1.6 Raw Denoising

Until recently, most of the deep denoisers have been leveraging pairs of simu-
lated noisy and clean datasets for training and, this ended up with dramatic
performance discrepancy once assessed on real noisy images. To narrow down
this gap, recent works in image denoising attempt to perform training and
validation on raw real noisy datasets in explicit [115–122, 132–136].

RAW Noise Synthesis As described in section 2.2, in-camera processing
pipeline, a.k.a image signal processor (ISP) affects the nature of the noise
and therefore noise can come from different sources in the real camera sys-
tem. Guo et al. [115] proposed a noise model that takes into account both
heteroscedastic Gaussian noise as well as demosaicing, Gamma correction and
JPEG compression. The new noise model is used to simulate a large set of
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noisy images that resembles real-world noise. Brooks et al. [114] incorporated
more ISP components in the noise modelling. Particularly, they showed that
a generic clean image can be unprocessed into real RAW data by successively
applying inverse tone mapping, gamma decompression, sRGB-to-RGB correc-
tion and, inverse white balance & digital gain. The heteroscedastic noise is then
added to the RAW data to stimulate real noisy and clean pairs for Raw-to-Raw
training. Similarly, Zamir et al. [121] proposed a cycle framework for learn-
ing RGB-to-Raw and Raw-to-RGB mappings through two distinct network
branches.

Other Improvements Motivated by the instance normalization module [58],
Kim et al. [120] adopted an adaptive instance normalization and a transfer
learning scheme to reduce the domain discrepancy between the synthetic and
real noise data. After training the network on synthetic noisy datasets, only
the adaptive instance normalization layers are fine-tuned on the real noisy data
to bridge the distribution gap. Wang et al. [117] also proposed a lightweight
model for on-device denoising of real images. The core of their methodology
is adopting a novel K-Sigma transform that projects noisy images captured
across different ISO settings into an ISO-invariant space. This way, a single
network is capable of processing images with different noise characteristics.
Liu et al. [119] leveraged å invertible network for image denoising. To mitigate
the issue with different distribution for input and output pairs, Liu et al. [119]
proposed to transform the noisy input into a low-resolution clean image and
a latent encoding for the noise. The noise component can be discarded by
replacing its corresponding encoding with a sampled representation from a
prior distribution.

4.1.7 Boosting

Boosting algorithms is one of the widely used techniques for improving the
performance of machine learning algorithms [137, 138]. In the image denois-
ing field, Chen et al. [123, 139] incorporated data-driven DL-based denoising
networks as the base units in a cascaded boosting framework. Inspired by the
Strengthen-Operate-Subtract (SOS) [138], in each boosting unit, the summa-
tion of the denoised image and the noisy input is fed into the subsequent
denoising module. Next, the identical denoised image is subtracted in each
step to ensure the iterability of SOS. A cascaded boosting configuration leads
to a very deep architecture. To cope with this challenge, they leveraged a set
of lightweight structures equipped with dense residual connections and dilated
kernels in base units to reduce the overall computational burden of the net-
work. In contrast to the cascaded boosting, Choi et al. [124] developed a convex
optimization procedure to optimally aggregate the outputs of multiple denois-
ing units (CsNet). Specifically, they solve a quadratic minimization problem
to find the optimal weights for combining the complementary outcomes of
different denoising networks.
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Fig. 4: A glimpse of the some methods representing different network architectures
for supervised image denoising.

4.2 Generative Image Denoising

In contrast to the discriminative models that compute P (yi | zi), a generative
model often captures the generation process of the observed noisy example
by modelling P (zi | yi). In other words, the discriminative models are mostly
focused on separating the underlying clean image, while the generative models
try to understand the basics of noisy image formation. In the following, we will
elaborate on a few representative denoisers based on the generative models.
We review the existing works related to the generative models from two per-
spectives, methods based on variational inference and, generative adversarial
networks.

4.2.1 Variational Inference

In an attempt to discern the generation process of the noisy observations, Yue
et al. [125] proposed a novel variational inference framework that performs
both noise estimation and noise removal in a Bayesian framework. To be con-
crete, their proposed framework learns an approximate posterior of the clean
and noise statistics conditioned on the observed noisy image. By replacing
the approximate posterior with a variational distribution, they take advan-
tage of the independence property of variational latent variables and represent
the variational distribution in form of two distinct functions. Consequently,
the variational approximation of the clean image is modelled by a conjugate
Gaussian prior with mean and covariance parameters. For noise estimation,
the inverse Gamma distribution is taken as the conjugate prior. Two distinct
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deep networks were trained to learn the mapping between the noisy image
and the parameters of the variational posteriors. A second important gener-
ative denoiser was proposed by Abdelhamed et al [140] (NoiseFlow) which
unites the basic parametric noise models and the power of normalizing flow
architectures [141], initially proposed in variational inference [142] and density
estimation [143], to approximate the real noise distribution from large datasets.
Starting from a simple distribution, NoiseFLow learns the transformation to
a complex distribution of the real noise via a sequence of differentiable and
invertible mappings. The learned noise distribution is then used to compile a
set of realistic synthetic images for training deep neural networks.

4.2.2 Generative Adversarial Networks

In recent years, generative adversarial networks (GAN) [144] have received
significant attention in a variety of applications in computer vision and image
processing tasks, thanks to their compelling ability to generate realistic exam-
ples plausibly drawn from an existing distribution of samples. Typically, GANs
consist of a generator and a discriminator network. The former is used to gen-
erate synthetic samples which are hard to be distinguished from real data and,
the latter is trained to distinguish whether the sample is from real data or the
generator. For image denoising, the applicability of GANs has been explored
in recent years [25, 122, 126, 145–147].

Chen et al. [25] was the first to leverage GAN for real noise modelling and
build a paired training dataset for training. Specifically, the generator produces
synthetic noise while the discriminator is trained to distinguish between real
and synthetic noise. However, this approach only takes a random vector as
the input to the noise generator. Thus, the noise samples from the generator
are signal-independent since it has not seen the clean intensity during the
training. Kim et al. [145] improved the previous method by including more
parameters such as clean image, ISO and shutter speed as additional inputs to
the generator. Most recently, Chang et al. [126] proposed to decouple the noise
generation and camera characteristics via two distinct networks. Particularly,
a noise generative network receives and processes the clean image and an initial
noise sample. In addition, a latent vector generated from a camera encoding
network is adopted to transfer camera-specific characteristics of the image to
the noise generative network via feature concatenation. The final synthetic
noise is obtained in the output of the generative network. The noise generative
and camera encoding networks are trained jointly along with a discriminator
supervised by adversarial and feature matching [148] and triplet loss [149].

Inspired by TripleGan [150], Yue et al.[122] designed a dual GAN to
learn the joint distribution of noisy and clean pairs. The joint distribution is
approximated by its two different factorized forms. Therefore, their proposed
framework consists of two networks; a) a denoiser that maps the noisy image to
the clean estimate and, b) a noise generator that maps the clean image to the
noisy one. Both of these networks are jointly trained along with a discrimina-
tor. After training, the learned denoiser can be directly used for noise removal.
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On the other hand, the noise generator can also be utilized to build realistic
noisy and clean training pairs. Marras et al. [147] proposed to constrain the
residue of the noisy input. A denoising network takes the noisy input as well
as encoded information about the camera and produces the residue estimate.
During training, the ground-truth residue, clean image and, encoded camera
information are further fed into an auto-encoder to estimate the residue esti-
mate. Given that the decoders in both denoising and auto-encoder are shared
across networks, the denoiser is explicitly constrained to generate residual
estimates that are consistent with the noise manifold.

5 Unsupervised & Self-supervised Denoising

The DL-based image denoising research has flourished with hundreds of
works seeking to learn the mapping between noisy and clean pairs. However,
collecting clean images in some domains is very expensive, or sometimes infea-
sible. Accordingly, some interests have been recently put into unsupervised
learning schemes for denoising. Among them, leveraging image priors [151–
153, 166, 167] and/or noise statistics [155–160, 168–171] has been a prominent
approach. Another line of work is to design advanced self-supervised loss func-
tions to train networks in absence of clean images [161, 162, 172, 173]. It
is noteworthy that researchers often use the terms unsupervised denoising,
self-supervised denoising and, blind denoising interchangeably in the literature.

5.1 Unbiased MSE Estimators

Mean-squared error is recognized as an indispensable element of the deep
denoisers that necessitates the availability of clean ground truths during
the training. In the past, the applicability of Stein’s unbiased risk estima-
tor (SURE) [172] has been explored for unsupervised denoising in traditional
frameworks [174, 175]. Given its success, SURE has attracted considerable
attention in DL-based image denoising over the past few years [161, 162, 173].
Soltanayev et al. [161] proposed the first work investigating the benefits of
SURE in DL-based denoisers in lieu of the MSE loss. The SURE function can
be written as:

LSURE =
1

n
X−F(X; θ)2 − σ2 +

2σ2

n

n
∑

i=1

∂F(xi; θ)

∂xi

(18)

However, the divergence term in Eq. 18 cannot be analytically solved in many
circumstances. To address this issue, authors adopted Monte-Carlo SURE [176]
to approximate the divergence term with the following:

1

n

n
∑

i=1

∂F(z; θ)

∂zi
≈

1

ϵn
η̂T (F(z+ η̂; θ)− z) (19)

Provided that η̂ is a random vector from normal distribution η̂ ∼ N(0, 1) and,
ϵ is a fixed small positive value. The DnCNN [51] network is trained with the
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Table 4: Summary of some representative methods in self-supervised and unsuper-
vised denoising. The “BS”, “SU”, “PR”, “IO” represent networks based on blind-spot
networks, SURE-based losses, image prior, and input output custimization, respec-
tively.

Ref Publication Framework Technique

BS SU PR IO

[151] 2018, CVPR - - ✓ -
captures image statistics via
network structure

[152] 2020, ECCV - - ✓ -
combines deep image prior with
neural architecture search

[153] 2019, ICASSP - - ✓ -
combines deep image prior with
total variation regularization

[154] 2018, ICASSP ✓ ✓ - -
denoiser based on SURE-like
estimated loss and blind-spot nets

[155] 2020, CVPR - - - ✓
adds noise to input and learns mapping
between noisier and original noisy images

[156] 2019, CVPR - - - ✓
leverages surrounding context to predict
noise-free estimates of a central pixel.

[157] 2018, ICML - - - ✓
learns mapping between pairs of noisy
images of the same clean image.

[158] 2019, NeurIPS - - - ✓
formulates blind-spot denoising in a
Bayesian framework.

[159] 2021, CVPR - - - ✓
assumes neighboring pixels as
different noisy realizations of same signal.

[160] 2020, NeurIPS - - - ✓
provides a novel training and loss which
exploits the entire noisy image for updates.

[161] 2018, NeurIPS - ✓ - -
uses SURE-based loss for unsupervised
training of denoising networks

[162] 2019, NeurIPS - ✓ - -
combines SURE-based loss and
noise2noise training.

[163] 2021, CVPR - - - ✓ unpaired noisy input outputs

[159] 2021, CVPR - - - ✓ uses neighboring pixels as target noisy outputs

[164] 2021, ICCV - - ✓ -
designs a new stopping criterion for
image prior scheme.

[165] 2021, NeurIPS - - - ✓
provides a Bayesian solution based on
Tweedie’s formula.

proposed MC-SURE objective function for simulated Gaussian noise removal.
Zhussip et al. [162] extended the SURE-based method to train denoising net-
works when two uncorrelated noise realizations per clean image are available.
Furthermore, they investigated the feasibility of using imperfect clean ground
truths for supervision. The Monte-Carlo approximation for SURE involves a
hyper-parameter for optimal performance that is hard to select. To address
this, Soltanayev et al. [173] proposed a new approximation for divergence term
without any hyper-parameter.
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Fig. 5: A glimpse of the some methods representing different network architectures
for supervised image denoising.

5.2 Image Prior

Some researchers have examined the benefits of data-driven or hand-crafted
priors for unsupervised denoising. [151, 152, 166, 167]. Ulyanov et al. [151]
showed that the structure of the neural networks itself is able to capture a great
portion of the image statistics prior. Specifically, an image-specific network is
firstly initialized with random weights and then a random uniform vector u is
fed into the input layer and, the parameters of the network are optimized to
match the output of the network to the observed noisy image using L2 loss. i.e.

θ∗ = argmin
θ

Fi(u; θ)− xi; ∀i ∈ {1, 2, ...,n} (20)

In a clean image, different regions are spatially coherent and therefore the
network can rapidly capture this prior and reconstruct smooth estimates. Con-
versely, less spatial coherency makes the perfect reconstruction of the noise to
be time-consuming. Accordingly, the implicit regularization imposed by the
structure of the image and the early stopping of the optimization implies gener-
ating clean estimates. Mataev et al. [167] combined the implicit regularization
captured by the CNN structure in deep image prior [151] with the explicit regu-
larization paradigm in Regularization by Denoising [177] to improve the overall
regularization effect and enhance image denoising. Similarly, Liu et al. [153]
proposed to combine the implicit CNN regularization with an explicit total
variation penalty to improve the denoising power of deep image prior [151].
Chen et al. [152] took deep image prior idea one step further and employed
neural search algorithm [178] to optimize the CNN structure by searching for
both the upsampling units in the decoder and skip connection patterns between
encoder and decoder layers. Jo et al. [164] designed a novel metric based on
the loss value to improve the stopping criterion in deep image prior training.



Springer Nature 2022 LATEX template

Image Denoising in the Deep Learning Era 25

5.3 Noise Statistics

One of the well-known properties of the noise component in digital images
imply that the noise pixels at different spatial locations are independent given
the clean pixel values, i.e.

P (ηi | yi) ⊥i ̸=j P (ηj | yj); ∀i, j ∈ {1, 2, ..., n} (21)

Furthermore, the noise is assumed to be zero-mean distributed, i.e.

E[ηi] = 0; ∀i ∈ {1, 2, ..., n} (22)

Many works have recently relied on these statistical properties of the noise
and have employed neural networks for the denoising task in absence of clean
images[156, 157, 168], showing a great advance in performance with respect
to both the reconstruction error and perceptual quality. We briefly discuss the
representative methods related to this line in the following.

Noise2Noise Learning. Lehtinen et al. [157] introduced noise2noise a train-
ing scheme in which the parameters of the network are optimized to learn a
mapping function Φ−1(X, θ) between pairs of independent corrupted images
X = {yi+ηi} and X′ = {yi+η′i}. In other words, two images X and X′ in the
training pairs are identical as they share the same underlying clean image Y,
but per pixel noise realizations, i.e. {ηi} and {ηi′}, are independent and dif-
ferent. With such training pairs, the network minimizes the MSE loss between
the original noisy input and the noisy target,

θ∗ = argmin
θ

n
∑

i

∥xi − x′
i∥

2 (23)

Obviously, it is impossible for the learned network to predict a different noisy
image from another one. Therefore, the network inevitably converges to output
the arithmetic mean of inputs for each pixel, i.e. E[xi]. Given that the noise is
assumed to be zero-mean, the learned network converges the clean image, as
shown below:

E[xi] = E[yi + ηi] (24)

= E[yi] + E[ηi] (25)

= E[yi] (26)

This training framework allows the network to be trained only based on the
noisy images without access to the clean ground truth. Even though this
learning strategy may ask for multiple noisy images during training, however,
Lehtinen et al. demonstrated that even one additional noisy image is sufficient
to achieve reasonable denoising performance. Recently,

Blind-spot Networks. Despite the unprecedented success of noise2noise,
requiring different noisy pairs during training is a significant shortcoming of
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noise2noise. To solve this problem, a line of works [154, 156, 158, 168, 171, 179]
pioneered by noise2void [156] and noise2self [168] proposed the idea of blind-
spot networks to train denoisers by using single noisy images without ground
truth. Considering a patch {xi}

k2

i=1 of size k×k centered at location i, the cen-
tral pixel xi is excluded from the receptive of the network through a masking
scheme. Then, the network is trained to predict the value at location i while
the original pixel value xi is utilized as the ground truth for loss calculation.
Due to the lack of information about the xi in feed-forward, the network fails
to learn an identity mapping between the input and output and, unavoidably
produces an estimate consistent with the surrounding. According to Eq. 21
and Eq. 24, the neighbouring pixels carry no information about the noise part
ηi and therefore the networks produce the expected value of inputs at con-
vergence. i.e. E[xi]. The key idea of blind-spot networks has been recently
expanded by Laine et al. [158] who incorporated the blind receptive field in
architecture design rather than masking scheme on input patches. In particu-
lar, four rotated version of the input image is fed into a network with directional
receptive filed to build exclude the central pixel from the surrounding context.

Other Improvements. Along this direction, Quan et al. [169] proposed
self2self which trains a single network for every noisy image. They exploit the
dropout operations [59] to randomly mask a subset of pixels during training.
At inference, multiple random masks are applied to the input image to pro-
duce a set of clean estimates followed by an averaging to generate a robust
clean estimate with less variance. Moran et al. [155] built on noise2noise and
proposed a novel learning strategy called noisier2noise. Given a statistical
model for the noise, a synthetic noise is drawn and added to the original noisy
image to generate a doubly-noisy image. Then, the network is trained to pre-
dict the original noisy image from the doubly-noisy image. After convergence,
the clean estimate is obtained by a set of simple mathematical operations.
Similar to noisier2noise, Xu et al. [170] proposed to add synthetic noise to the
original noisy image in the input, however, they train a distinct network for
every individual image to be denoised. Additionally, Huang et al. [159] intro-
duced neighbor2neighbor learning to train a network on different versions of
the individual noisy image collected by a novel random neighbour sub-sampler.
Since neighbour pixels are very similar in terms of underlying clean con-
tent and, the noise is independent, such a learning strategy approximates the
noise2noise learning using only single noisy images. Furthermore, the authors
proposed a novel regularization in the loss function to improve the denoising
performance. Pang et al. [163] extended the noise2noise and proposed Recor-

rupted2Recorrupted scheme where only a set unorganized noisy images without
pair-wise correspondences are used during training. Lastly, Kim et al. [165]
introduced a novel Bayesian framework called noise2score that provides the
posterior mean of canonical parameters from noisy images based on Tweedie’s
formula [180].



Springer Nature 2022 LATEX template

Image Denoising in the Deep Learning Era 27

6 Denoising Applications

Thanks to the ubiquitous demand for denoising algorithms based on deep
learning and the vigorous advances of denoising techniques in recent years, the
ideas of DL-based denoising are being widely adopted in various applications
such as video and, burst images.

6.1 Joint Demosaicing and Denoising

Image demosaicing and denoising typically form the first two components in
the image processing pipeline of the camera systems, which bring the most
data loss and perturbation. The sequential nature of these two modules results
in accumulative errors introduced by either and it is therefore sub-optimal.
Recent data-driven approaches have been developed to mitigate this challenge
by joint demosaicing and denoising [76, 181–184]. Ehret et al. [183] presented
the first attempt to leverage a deep neural network for joint learning of demo-
saicing and denoising through fine-tuning on RAW bursts. Inspired by the
emergence of content-adaptive networks, Liu et al. [182] proposed a self-guided
network for joint demosaicing and denoising. In particular, an initial estimate
of the green channel is used to guide the improve content recovery for all
channels in the main branch. Moreover, a density map is utilized in the main
branch to help the network deal better with different difficulty levels of regions.
Xing et al. [184] focused on developing a joint solution for three fundamen-
tal image restoration problems – demosaicing, denoising, and super-resolution.
Their proposed network is universal in the sense that each of the modules can
be eliminated from the process, which results in the output for the remaining
modules.

6.2 Burst Denoising

In recent years, mobile photography on handheld mobiles has been re-targeted
to the task of burst denoising. A burst captures a sequence of short exposure
with small cross-frame motion and strong in-frame noise. Given that the noise
is independent across different frames, burst denoising relies on the assumption
that averaging multiple noisy images lead to a more accurate estimate of the
clean image. Many recently proposed burst denoising techniques employ deep
neural networks to improve the state-of-the-art [76, 92, 185–192].

Mildenhall et al. [185] adopted kernel-prediction networks (KPN) for burst
denoising in which pixel-wise kernels are predicted by the network and con-
volved with the sequence of frames to obtain a clean frame. Doing so, The
averaging weights in every window centred at pixels are predicted from the
noisy images to address the cross-frame motion and in-frame image discon-
tinuities. Later, Marinc et al. [191] proposed an extended version of KPNs
with multiple kernels of different sizes. Additionally, Zhang et al. [92] equipped
KPNs with an attention mechanism to account for inter-frame and intra-frame
relationships for better denoising performance. Taking one step further, Xia et
al. [186] proposed a basis prediction network (BPN) that, given a sequence of
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the burst images, produces a set of basis 3D kernels and per-pixel mixing coef-
ficients. Basis kernels and coefficients are then combined to generate per-pixel
kernels which are then convolved to estimate the clean image. Liang et al. [188]
designed a model to decouple the learning of motion from the learning of
noise statistics for burst denoising. Most recently, Bhat et al. proposed a deep
reparametrization of the MAP formulation for burst image super-resolution
and denoising. Their method learns a error metric and a feature space for the
target clean image. The learned feature space can then be used to directly
image formation process and to integrate image priors in to the clean estimate.

6.3 Video Denoising

Until recently, video denoising with neural networks had been largely under-
explored. Similar to burst denoising, video data typically contain a strong
correlation along the temporal dimension that could help the restoration pro-
cess. Therefore, existing works on video denoising mainly focus on making full
use of the spatio-temporal correlations between consecutive frames via recur-
rent methods [193–195], explicit motion estimation and warping [196–198] and,
implicit motion compensation [199–203]. The first attempt to denoise videos
was proposed by Chen et al. [195] who leveraged recurrent neural networks
to learn the mapping between noisy and clean video sequences. Among the
optical flow-based methods, Tassano et al. [197] proposed to align individually
denoised frames with respect to the reference frame, followed by a tempo-
ral denoiser to operate on a sequence of aligned frames. Similarly, Claus et
al. [200] proposed the idea of decomposing video denoising into two steps –
frame alignment and temporal filtering. Vaksman et al. [204] introduced the
idea of generating artificial frames based on patch-crafting, which are used to
augment video sequences. The enlarged video sequence is then processed by
applying spatial and temporal filtering to yield the denoised video.

Due to the heavy computational costs associated with motion estimation,
several attempts have tried to deal with motion in an implicit manner. Claus
et al. [200] suggested sequentially chain spatial denoising and temporal fusion
by processing three frames at a time to get the clean estimate of the middle
frame. Similarly, Tassano et al. [201] extended their previous work by replacing
the optical flow alignment with an implicit motion compensation integrated by
network architecture. Maggioni et al. [194] adopted a multi-stage framework
to perform video denoising. The temporal coherency across frames is firstly
aggregated by a fusion stage and, then a spatial denoising stage discards the
leftover noise in the fused image. Lastly, a spatio-temporal refinement step
restores more high-frequency details.

More recently, some works have attempted to take advantage of the
temporal redundancy in videos in designing self-supervised denoising solu-
tions [198, 203, 205]. Inspired by noise2noise [157], Ehret et al. [198] proposed
a frame-to-frame training scheme for blind video denoising to adapt a generic
pre-trained denoiser for different noise models and data. Lee et al. [206]
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proposed a simple yet effective self-supervised training scheme in which a pre-
trained denoiser is fine-tuned for every individual input test sequence. During
fine-tuning, the initial output of the pre-trained network is considered as the
pseudo clean ground truth for loss calculation. Given a sequence of noisy
frames surrounding frame at time t, Dewil et al.[203] adopted a solution sim-
ilar to blind-spot networks and proposed to withhold frame at time t-1 from
the inputs to the network and use it as the ground truth to penalize network’s
output for the frame at time t during training. Lastly,

6.4 Medical Imaging

Medical imaging analysis has witnessed rapid development in recent decades
and has become a crucial factor in disease diagnosis. Medical images are often
used to provide an accurate internal view of the human body which is subse-
quently assessed by diagnostic techniques to identify tissues or body organs
requiring treatment. In medical imaging, precise and accurate information
extraction is of paramount importance for disease diagnosis, staging and treat-
ment. However, noise artifacts may degrade the visual representation of the
medical images during the process of acquisition and/or later processing steps.
On the other hand, low-quality medical images baffle the identification of the
disease and may hamper the patient’s care and treatment. Hence, denoising of
medical images is indispensable and has become a mandatory pre-processing
stage in medical imaging systems. In this section, we firstly provide a brief
introduction to most prevailing medical imaging modalities followed by recent
advances in denoising algorithms for each of them.

Ultrasound Imaging. Ultrasound provides an efficient and non-invasive
medical imaging modality and is widespread in medical diagnosis for muscle-
skeletal, cardiac, and obstetrical diseases. One of the main issues with ultra-
sound images is the presence of noise artifacts introduced during the process of
acquisition, transmission and analysis, which complicates the diagnosis of dis-
eases by clinicians or computer-aided diagnosis (CAD) systems liu2019deep.
In recent years, attempts have been made to leverage the strength of CNNs
with application in ultrasound denoising, a.k.a despeckling [207–209]. Lan
et al. [207] proposed a novel residual network based on UNet architecture
for ultrasound image despeckling. Furthermore, they equipped the network
with both spatial and channel-wise attention mechanisms to enhance the fea-
ture learning of the network for improved noise removal. Cammarasana et
al. [209] trained a network in which the inputs are noisy images and the ground
truths are denoised counterparts obtained from the parameters-tuned WNNM
algorithm.

Magnetic Resonance Imaging. Magnetic resonance (MR) imaging is a
widely used non-invasive imaging technique that provides high-resolution visu-
alization of the anatomical structure, tissues and organs. However, MR images
may inevitably be captured along with noise artifacts caused by physiolog-
ical motion, instabilities of the MR imaging scanning hardware, and short



Springer Nature 2022 LATEX template

30 Image Denoising in the Deep Learning Era

acquisition time. As a result, noise removal or attenuation is essential for the
comprehension and evaluation of MR images. In recent years, a number of
deep learning-based methods have been proposed for image denoising [210–
213]. Jian et al. [210] proposed to extend DnCNN [51] for multi-channel MR
inputs in two training strategies: with and without noise model. Ran et al. [211]
exploited a residual encoder-decoder coupled with adversarial and perceptual
loss [214] to outperform state-of-the-art methods in both simulated and real
clinical data. You et al. [212] used a wide architecture design to address the
vanishing gradient issue and facilitate capturing more structural features. Most
recently, Aetesam et al. [213] proposed to incorporate the prior information
about the image degradation in form of loss functions to improve the learn-
ing performance of the network. They also adopted the Bayesian maximum
a posteriori (MAP) estimator to further improve the quality of the restored
images.

Given the advanced in self-supervised denoising approaches [156, 157, 168],
Xu et al. [215] proposed a denoising framework for dynamic MRI images. This
approach only single noisy images along with a few auxiliary observatories from
different time frames to optimize the parameters of the network. To further
improve the quality of restored image, single-image and multi-image denoising
schemes are aggregated in an end-to-end trainable network. Furthermore, spa-
tial transformer networks [216] are utilized to approximate the motion between
slices.

Computed Tomography. Computed tomography (CT) imaging is a
widespread imaging modality that allows high-resolution visualization of
anatomical structures. However, a major concern inherent to CT acquisition
is about the potential health hazard related to the ionizing radiation [217].
A common strategy to alleviate radiation exposure is to lower the operating
current in CT examinations. However, a potential drawback of dose reduc-
tion is the introduction of noise artifacts in reconstructed CT images. A line
of work to improve the quality of low-dose CT images is to post-process
the obtained images after reconstruction. Recently, DL-based denoising meth-
ods have shown promising performance to remove the unwanted artifacts in
low-dose CT.

Early deep learning methods leveraged feedforward and residual architec-
tures to improve the feature extraction capability of networks for low-dose
denoising [218–220]. Chen et al. [218] adopted a CNN to learn the mapping
between low-dose and normal-dose CT in a patch-by-patch manner. Concur-
rently, they continued their efforts by proposing a residual encoder-decoder
network for patch-based low-dose denoising. Kang et al., [220] proposed to
apply a directional wavelet transform on low-dose CT images prior to feeding
them into CNNs. By doing so, the network can efficiently exploit the intra-
and inter-band correlations to suppress the noise artifacts. In order to cap-
ture structural information across large regions, Li et al. [221] introduced a
3D self-attention module to benefit from spatial information both within CT
slices and between CT slices.
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With the increased popularity of GANs in medical imaging [222], many
researchers attempted to boost the performance of DL-based low-dose CT
denoising methods [223–226]. Wolterink et al. [225] was the first who adopted
GANs for low-dose CT denoising. Next, Yi et al. [226] used a UNet-like archi-
tecture for the generator and demonstrated improved denoising performance,
thanks to its multi-scale encoding and decoding structure. Yang et al. [227]
further augmented the loss functions in a Wasserstein GAN with perceptual
loss [214] to replace noise artifacts with more plausible recovered details. Most
recently, Zhang et al. [224] further improved the low-dose denoising perfor-
mance by adding edge-aware and noise-aware attention mechanisms in the
generator. They also adopted a multi-scale discriminator to expand its recep-
tive field and improve its judgemental capabilities. A recent work by Li et
al. [228] investigated the applicability of cycleGAN [229] to train a low-dose
CT denoising network based on unpaired image-to-image translation.

Built around successful use of self-supervised denoisers on the natural
images, several works have tried to remove the need for normal-dose CT images
during trains of deep networks [230–232]. Hendriksen et al. [232] Noise2Inverse
where a CNN is trained to transform an image reconstructed from a sub-
sinogram to another from the complementary sub-sinogram. The key idea of
Noise2Inverse is to partition the data in the sinogram domain and train the
CNN in the image domain. After the training, the network is applied to per-
form denoising only in the image domain. Inspired by Noise2Noise, Hasan et
al. [231] introduced a collaborative technique to map many low-dose CT images
to the normal-dose CT counterpart through joint training of multiple genera-
tors. The difference between any two generated outputs is further incorporated
in the overall loss function to provide the collaborative circumstance between
generators. The most recent work on self-supervised CT denoising was pro-
posed by Won et al. [230] who developed a novel training strategy based on the
pre-trained noise model and denoiser. For a new test low-dose CT image, the
pre-trained denoiser is further fine-tuned through back-propagating the loss
between the output and Pseudo-CT, which is simply a noise difference map
predicted by a pre-trained noise model.

Positron Emission Tomography. Positron emission tomography (PET)
imaging is one of the leading imaging modalities for quantitative in vivo

measurement of physiological and biochemical processes with application in
oncology [233], cardiology [234] and neurology [235]. However, high noise levels
are one of the main shortcomings of PET compared to CT or MR. The amount
of noise artifact in PET directly depends on two factors: 1) amount of injected
tracer and 2) duration of scanning. On the other hand, patients’ exposure to
radiation has been a major concern in recent years [236]. Therefore, a signif-
icant amount of researches has been devoted to reconstructing normal-dose
PET images from low-dose counterparts by removing the noise artifacts.

The DL-based denoising methods for PET imaging can be divided into
two categories. The first category only works on the PET image for noise
removal [237–241]. Xu et al. [239] proposed to leverage a UNet to learn the
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mapping between the reconstructed PET images with 1/200 injection and
normal-dose ground truths. They further offered a multi-slice input strategy to
improve the robustness of the network. Gong et al. [237] proposed the idea to
pre-train a CNN with simulated data and fine-tune the last few layers using real
data. They also adopted perceptual loss [214] to improve details of the restored
image. Later, Wang et al. [238] exploited a 3D GAN framework to estimate
high-quality normal-dose PET images from their corresponding low-dose PET
images. Zhou et al.[241] adopted cycleGAN [229] to learn an enhanced mapping
between low-dose and full-dose PET mapping. Most recently, Gong et al. [242]
used a Wasserstein GAN to perform denoising on low-dose PET images. They
further adopted a task-specific initialization to transfer the weights from a
pre-trained model for improved training. The other category encompasses the
works that receive PET and MR images as the input to the networks [243, 244].
Xiang et al. [243] designed a CNN with two input channels of low-dose PET
and the accompanying T1-weighted acquisition from the MR modality. Then,
the network learned to combine these two different inputs to help better remove
the noise. Intending to incorporate more structural information in the network,
Chen et al. [244] proposed a network to receive multi-contrast MR images
along with low-dose PET in the input.

Another emerging family of low-dose PET denoising methods is based on
self-supervised or unsupervised training. Cui et al. [245] conducted the first
investigation of performing low-dose PET denoising without full-dose clean
ground truth. Inspired by deep image prior [151], they designed a network
whose input is CT or MR images of the same patient and used original low-dose
PET image for loss computation against the loss between network output. The
Noise2Noise [157] formed the motivation for Yi et al. [246] to propose a self-
supervised method for low-dose PET denoising. In particular, they proposed
to employ clinical list-mode PET data allowing for the generation of the real
statistically independent noisy image with various noise levels. This data then
were used to train CNNs over pairs of noisy images.

Fluorescence Microscopy. Fluorescence microscopy (FM) has become an
indispensable tool in cell biology that provides visualization of living cells and
tissues, hence forming the basis for the analysis of their morphological and
structural characteristics. However, due to the weak signals and diffraction
limit, FM images suffer from high noise artifacts. There are several methods
focused on the development of DL-based denoising schemes in FM imag-
ing [247–249]. Weigert et al. [247] applied a data generation technique to
collect semi-synthetic FM images followed by training a UNet model for image
restoration. A step into combining optimization scheme and deep learning was
made by Pronina et al. [248] by aggregating learnable regularizers into the
Wiener-Kolmogorov filter.

A common practice to collect pairs of noisy and clean images in FM is
to simulate noise from models and overlay it onto the synthetic clean images.
Zhong et al. [250] followed the same strategy and adopted a GAN framework
to synthesize synthetic noisy and clean pairs to train a denoising network.
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Zhang et al. [251] introduced the first dataset for CM imaging where the clean
images are obtained by averaging multiple noisy captures. Averaging process,
however, is not an effective way to obtain the clean images as it only weakens
the noise artifact rather than eliminating them. On the other hand, the process
of collecting the clean ground truths is cumbersome.

To lift the requirement of the clean image during training, a variety of
self-supervised and unsupervised schemes for CM denoising were proposed in
recent years [250, 252–258]. Izadi et al. [252] developed a disentangling network
that was able to separate the noise and signal parts of the noisy image using
formulated prior information about noise and desired clean output in the loss
function. Later, they integrated classic the patch-based non-local Bayesian fil-
tering algorithm into deep networks [253]. Goncharova et al.[256] built upon
the success of blind-spot networks and proposed to include additional knowl-
edge about the structure of the signal into the self-supervised training. They
added a convolution operation between the network output and a point spread
function (PSF) to account for the diffraction limitation in light microscopy.
Krull et al. [255] extended Noise2Void [156] by computing a posterior distri-
bution based on the sampling-based noise model and prior distribution over
the true pixel intensities. The clean estimate for each pixel is then obtained
with an arbitrary statistical estimator. The most recent work was developed
by Byun et a. [258] with the focus on improving the computational burden
and inference speed of blind-spot networks.

7 Future Direction

Very recently and thanks to the advent of deep learning techniques, especially
the strong learning capacity of convolutional neural networks, recent literature
has witnessed promising progress of denoising in both methodology and appli-
cations. However, there still exists open problems, challenges, and limitations
because of the intrinsic difficulty of solving ill-posed problems. In this section,
we summarize a few challenges together with possible future directions in this
field.

Theoretical Analysis. Most of the existing works in DL-based image denois-
ing lack a theoretical foundation to endorse the design choices. Particularly,
the proposed methods are often mainly designed by intuition and empirically
evaluated on benchmark datasets. In the era of deep learning, it is of the
highest significance to bridge the gap between traditional image denoising tech-
niques and neural networks through establishing a solid theoretical foundation
in architecture designs, loss functions, and even training strategies.

Universality and Robustness The universality mentioned here is twofold:
generalization of the denoising algorithms against 1) different types of noise
and 2) different strengths of the noise of the same type. Among the studied
denoising algorithms, most of them train distinct networks for different noise
strengths and noise types represented by the statistical distributions and their
parameters. However, many extrinsic factors from the scene and/or intrinsic
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parameters from the camera can dynamically influence the nature of the noise
in practice. Therefore, improving the robustness of the model against various
noise characteristics is substantially meaningful.

Interpretability. DL-based denoising approaches inherit the black-box
nature of deep learning models and often aim to reach higher performance on
benchmark datasets, ignoring the explainability of the learned representations
and results. We believe that the literature demands more thorough efforts to
make the models more transparent to humans by illustrating why the found
setting and design performs better.

Computational Efficiency. Since DL-based denoising research has been
focused on improving the state of the art, progressive improvements on bench-
mark datasets have been correlated with an increase in network complexity,
power consumption and execution time. Accordingly, such powerful denoising
models might not necessarily be efficient enough for direct deployment in the
real world. For instance, one of the essential uses cases of denoising algorithms
in smartphones ISP and other embedded devices with limited computational
power that demand highly efficient and fast models for real-time execution. As
such, improving the computational burden of DL-based denoising approaches
to make them more compatible with existing real-world compute constrained
hardware and software is a timely yet challenging topic.

8 Conclusion

Image denoising has played a key role in steadily improving the acquisition
quality of cameras and delivering high-quality content to customers and/or
other downstream tasks in computer vision. In this paper, we started with
revisiting the fundamental concepts and mathematical definition of image
denoising and later provided an in-depth review of existing benchmark datasets
and widely used evaluation metrics. Then we laid out a novel categorization
of supervised and unsupervised techniques and systematically highlighted the
improvements and new trends in each category. The novel taxonomy intro-
duced in the paper is systematic and comprehensive and may help the reader
appreciate the multiple focus areas of training strategies, loss functions, and
architecture designs. We further discussed the denoising problems in burst
images and videos and elaborated on the important future research directions
in image denoising. This survey provided a unique view of the recent progress
in image denoising based on deep learning, which we hope will drive further
interest in image denoising problems and address their limitations.
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