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Abstract: In remote sensing applications and medical imaging, one of the key points is the acquisition,
real-time preprocessing and storage of information. Due to the large amount of information present
in the form of images or videos, compression of these data is necessary. Compressed sensing is an
efficient technique to meet this challenge. It consists in acquiring a signal, assuming that it can have
a sparse representation, by using a minimum number of nonadaptive linear measurements. After
this compressed sensing process, a reconstruction of the original signal must be performed at the
receiver. Reconstruction techniques are often unable to preserve the texture of the image and tend to
smooth out its details. To overcome this problem, we propose, in this work, a compressed sensing re-
construction method that combines the total variation regularization and the non-local self-similarity
constraint. The optimization of this method is performed by using an augmented Lagrangian that
avoids the difficult problem of nonlinearity and nondifferentiability of the regularization terms. The
proposed algorithm, called denoising-compressed sensing by regularization (DCSR) terms, will not
only perform image reconstruction but also denoising. To evaluate the performance of the proposed
algorithm, we compare its performance with state-of-the-art methods, such as Nesterov’s algorithm,
group-based sparse representation and wavelet-based methods, in terms of denoising and preserva-
tion of edges, texture and image details, as well as from the point of view of computational complexity.
Our approach permits a gain up to 25% in terms of denoising efficiency and visual quality using two
metrics: peak signal-to-noise ratio (PSNR) and structural similarity (SSIM).

Keywords: compressive sensing; image reconstruction; regularization; total variation; augmented
Lagrangian; nonlocal self-similarity; wavelet denoising

1. Introduction

Compressed sensing (CS) has already attracted great interest in various fields. Ex-
amples include medical imaging [1,2], communication systems [3–6], remote sensing [7],
reconstruction algorithm design [8], image storage in databases [9], etc. Compressed sens-
ing provides an alternative approach to Shannon’s vision to reduce the number of samples
and/or reduce transmission/storage costs. Other approaches also address this issue, such
as random sampling [10]. Compressed sensing recovery is a linear optimization problem.
The most common CS retrieval algorithms explore the prior knowledge that a natural image
is sparse in certain domains, such as the wavelet domain, where simple and efficient noise
reduction is possible [11–15], or in the discrete-gradient domain, which we will develop in
this work.

In real life, images are usually noisy, but noise is random and is, therefore, unknown.
This noise can have many origins: It can be due to poor weather conditions (wind, haze, fog,
mist, . . . ), light fluctuations, the electronic image sensor of a digital camera, the conditions
under which the image was acquired or simply the manner the image was stored and the
techniques used to compress it. Therefore, denoising is an essential preprocessing step to
recover improved image quality.
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We can consider the problem of image recovery as an inverse problem because the
goal is to reconstruct an image close to the original image from a degraded image while
respecting two constraints: an optimized image quality and the speed of execution. Our
strategy is part of this framework, which consists in recovering a quality image—a debatable
notion that is imprecise and depends not only on objective criteria but also on the “eye” of
the observer—in a relatively short time.

The regularization of an inverse problem corresponds to the idea that data alone do not
allow obtaining an acceptable solution and that it is, thus, necessary to introduce a priori
information on the regularity of the image to be estimated, reconstructed or recovered. The
regularization of an inverse problem corresponds to the idea that data alone cannot make
obtaining an acceptable solution possible and that it is, therefore, necessary to introduce a
priori information, likely allowing an estimation, reconstruction or recovery of the image
of interest.

Many inverse problem optimization approaches for image denoising have been pro-
posed in the literature. Some are based on deep learning and, more precisely, on the deep
generative network [16], and others are based on models [17].

In particular, the total variation (TV)-based approach has been one of the most popular
and successfully applied approach, where, for example, Chambolle [18] introduced the
dual approach to the unconstrained real case. Subsequently, Beck and Teboulle [19] pre-
sented a fast computational method based on a gradient optimization approach to solve the
TV-regularized problem. Recently, other denoising approaches have been proposed, such
as a remote sensing image denoising method via a low-rank tensor approximation [20],
which can be formulated as a generative Bayesian model. Another method for regularizing
nonuniformly sampled data based on least-squares spectral analysis [21] can be applied to
nonstationary signals by introducing classical sliding windowing, as was the case for pro-
cessing marine seismic data. Other approaches to denoising hyperspectral images [22,23]
combine total variation regularization and low-rank tensor decomposition.

However, since the total variation model favors piecewise constant image struc-
tures, the total variation models tend to oversmooth image details; it tends to smooth
out the fine details of an image. To overcome these intrinsic drawbacks of the total
variation model, we introduce a nonlocal self-similarity constraint as a complementary
regularization. Nonlocal self-similarity can restore high-quality images. To make our
algorithm robust, an augmented Lagrangian method was used efficiently to solve the
above inverse problem.

The remainder of this paper is organized as follows. In Section 2, the basics of the
methods used to image restoration are presented. The tools of denoising image considered
in the proposed framework are described in Section 3. Section 4 presents our proposed
algorithm, called DCSR. The experimental results from the processing of Lena, Barbara
and Cameraman images, available in the public and royalty-free database https://ccia.
ugr.es/cvg/dbimagenes/index.php (accessed on 1 June 2021), and the comparison with
competing methods are shown in Section 5. The results are discussed in Section 6. Finally,
conclusions are provided in Section 7.

2. Related Works
2.1. Compressive Sensing

Compressive sensing or compressed sensing [24,25] allows acquiring and efficiently
reconstructing a signal by solving underdetermined linear systems. This technique is based
on the principle where, by optimization, the sparsity of a signal can be exploited to recover
it from several samples that are much lower than that required by the Nyquist-Shannon
condition, which was, until recently, unavoidable.

Compressive sensing is based on three conditions: signal sparsity, the measurement
matrix’s incoherence and the reconstruction algorithm’s robustness.

https://ccia.ugr.es/cvg/dbimagenes/index.php
https://ccia.ugr.es/cvg/dbimagenes/index.php
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Let us assume a real signal x ∈ RN possessing a sparse representation in some
transform domain, with K sparsity, (K � N). Then, the signal can be written as follows:

x = ψ u (1)

where ψ = (ψ1, ψ2, . . . , ψN) is the basis matrix, and u ∈ RN×1 is a weighted N dimensional
vector with the following being the case:

ui = 〈xi, ψi〉 = ψTx (2)

using φ as a sensing matrix of dimension M× N with K < M � N. The measurement
vector is acquired according to the following linear model:

f = φ x = A u (3)

with A = φ ψ−1. A is an M× N matrix that verifies the restricted isometry condition of
order K.

1− δK ≤
‖ Au ‖2

2

‖ u ‖2
2

≤ 1 + δK, 0 < δK < 1 (4)

The compressed sensing recovery of x from f can be obtained via l1 norm minimization
as the following optimization problem [26].

û = min‖ u ‖1 subject to f = A u (5)

More often, when f is contaminated by noise, the equality constraint is as follows:

û = min‖u‖1 subject to‖Au− f ‖2
2 ≤ ε (6)

where ε > 0 is the noise level. For an appropriate scalar weight α, we can obtain the
following variant of (6).

min
u

1
2
‖Au− f ‖2

2 + α ‖u‖1 (7)

Problems (6) and (7) are equivalent because solving one will determine the parameter
in the other such that both provide the same solution. The signal x can be reconstructed by
solving the l1 norm minimization problem under the condition that x is sufficiently sparse,
and the measurement matrix ψ is inconsistent with the orthogonal basis φ.

Several iterative reconstruction algorithms solve the problem of denoising algorithms
for CS recovery and obtained high performances for nature images, such as orthogonal
matching pursuit [27] and approximate message passing (AMP) [28], an extension of AMP
and denoising based AMP [29].

2.2. Augmented Lagrangian

The augmented Lagrangian method, originally known as the multipliers method [30],
combines the Lagrangian function and a quadratic penalty term. It is applied to solve a
constrained optimization problem iteratively:

min
u

f (u) subject to H u = g (8)

where u ∈ RNand g ∈ RM, and H is a matrix of dimension M× N.
Applied to Equation (8), the augmented Lagrangian can be expressed as follows:

L(u, λ, ρ) = f (u)− λT(Hu− g) +
ρ

2
‖Hu− g‖2

2 (9)

where λ ∈ RM is a vector of the Lagrange multiplier, and ρ > 0 is the augmented La-
grangian penalty parameter for the quadratic infeasibility term [31]. We recall in Algorithm 1
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the so-called Augmented Lagrangian method: this consists of searching for the optimal
solution providing signal u by alternately updating u and the Lagrange multiplier λ. The
alternate iteration method keeps one vector fixed and updates the other successfully until
the stopping criterion is satisfied.

Algorithm 1: Augmented Lagrangian method.

Fixed: k = 0, ρ > 0, λ0, u0
Iterations: for k = k + 1 until the stopping criterion is
satisfied, repeat steps 1–2
1. Keep λ fixed and update u:

uk+1 = min
u

f (u)− λT
k (Hu− g) +

ρ

2
‖Hu− g‖2

2

2. Keep u fixed and update λ:
λk+1 = λk + ρ(Huk+1 − g)

Output: u the optimal solution.

3. Technical Framework for Image Denoising

Several methods exist for image denoising, including total variation image regular-
ization [32], wavelet thresholding [33], nonlocal means [34], basis pursuit denoising [35],
block matching and 3D filtering [36], among others. Moreover, these methods can perform,
to a certain extent, image smoothing and preserve edges. Therefore, we can reconstruct the
image well by CS theory to obtain more precise measurements of the original images than
the corresponding noisy images.

In particular, we can insert them into two classes as exceptional cases of the pro-
posed framework.

3.1. Regularization Functions

Image recovery in these application domains can be formulated as a linear inverse
problem, which can be modelled as follows:

f = A u + ε (10)

where f ∈ RM is the noisy image observation, u ∈ RN . is the cleanest image unknown,
ε is an additive noise and A ∈ RM×N is a linear operator. Given A, image reconstruction
extracts û from f , making classical least-squares approximation alone unsuitable. To
stabilize recovery, regularization techniques are frequently used, producing a general
reconstruction model of the following form:

arg min
u

1
2
‖A u− f ‖2

2 + λ φreg(u) (11)

where λ > 0 is a regularization parameter, and ‖ ‖2 denotes the l2 norm. The fidelity
term, ‖ A u − f ‖2

2, forces the reconstructed image close to the original image, and the
regularization function, φreg(u), performs noise reduction.

The choice of the regularization function is very important for reconstructing an image
that reflects, as accurately as possible, the original image of interest. In our work, we have
combined total variation and nonlocal self-similarities. The interest of such a choice is
linked to the fact that the total variation (TV) model shows high efficiency in preserving
the contours and recovering smooth regions. However, this operator is local. It, therefore,
does not take into account nonlocal features of the data, such as repetitive structures (such
as texture, for example). However, nonlocal self-similarity describes the repetitiveness of
textures [37,38] or embodied structures in realistic images, which allows the preservation
of sharp edges.
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The total variation has been introduced first by Rudin, Osher and Fatemi [39] as a
regularizing criterion for solving inverse problems. Then, the total variation model is
written as follows:

TV(u) = ‖Du‖p (12)

where u ∈ RN represents an image, and D = [Dh , Dv] with Dh and Dv represents the
gradient of the image in the horizontal and vertical direction, respectively. The lp norm
could be the l1 norm corresponding to the anisotropic TV or the l2 norm corresponding to

the isotropic TV. By definition, lp norm is ‖ u ‖p = (∑ N
i=1|ui|p)

1
p . In this paper, we consider

p to be equal to 1.
A nonlocal self-similarity (NLS) is a significant property of natural images too. It was

proposed for the first time in image denoising [40] and was obtained in these steps. Image
u of size N is divided into many overlapping blocks ui of size

√
n ×

√
n , at location

i , i = 1, 2, . . . , N. Then, find (m− 1) similar blocks, which comprise set Sui in the training
window with (L× L) size. Finally, all blocks of Sui are stacked into a 3D array Zui of size√

n ×
√

n ×m. Nonlocal self-similarity can be formulated as follows:

NLS(u) = ‖θu‖1 =
N

∑
i=1
‖T3D(Zui )‖1 (13)

where T3D is a transform operator, and T3D(Zui ) includes the transform coefficients
for Zui . θu is the column vector of the lexicographically stacked representation of all 3D
transform coefficients.

3.2. Wavelet Denoising

Wavelet shrinkage denoising removes whatever present noise and retains whatever
signal is present regardless of the signal’s frequency content. In the wavelet domain,
the energy of a natural signal is concentrated in a small number of coefficients; noise is,
however, spread over the entire domain. The basic wavelet shrinkage denoising algorithm
comprises three steps:

• Discrete wavelet transform (DWT) [41];
• Denoising [42];
• Inverse DWT.

The following is the measurement model:

f = u + ε (14)

where u is the original image of size M× N corrupted by additive noise ε. The goal is to
estimate denoised image û from noisy observation f . The elimination of this additive noise
permits the assumption that the appropriate decomposition basis allows the discrimination
of a useful signal (image) from noise. This hypothesis justifies, in part, the traditional
use of denoising by thresholding. Two thresholding methods are frequently used. The
soft-thresholding function (also called the shrinkage function) is as follows.

dû
j (k) =


dy

j (k)− S if dy
j (k) > S

dy
j (k) + S if dy

j (k) < −S

0 otherwise

(15)

The hard-thresholding function, another popular alternative, is as follows.

dû
j (k) =

{
dy

j (k) i f
∣∣∣dy

j (k)
∣∣∣ > S

0 otherwise
(16)



Sensors 2022, 22, 2199 6 of 22

dy
j (k) includes the wavelet coefficients of the measured signal at level j, and dû

j (k) is the

estimation of the wavelet coefficients of the useful signal with the threshold S = σ
√

2 log N,
where N and σ represent the number of pixels for the test image and the standard
noise deviation.

4. Our Efficient Image Denoising Scheme

In what follows, we substitute the aforementioned results (12) and (13) into (7), and
we obtain the following problem.

arg min
u

1
2
‖Au− f ‖2

2 + τ TV(u) + µ NLS(u) (17)

Let us recall that TV(u) = ‖Du‖1 and NLS(u) = ‖θu‖1 = ∑N
1 ‖T3D(Zui )‖1.

Recovering image u with high quality requires solving the optimization problem
described by Equation (17). This issue is converted into an equality-constraint problem by
introducing w and x:

min
w,u,x

1
2
‖Au− f ‖2

2 + τ ‖w‖1 + µ ‖θx‖1 subject to Du = w, u = x (18)

where τ and µ are control parameters. The augmented Lagrangian function of (18) is
as follows:

LA(w, u, x) =
1
2
‖Au− f ‖2

2 + τ ‖w‖1 + µ ‖θx‖1 − γT(Du− w)− ϕT(u− x) +
µ

2
‖Du− w‖2

2 +
β

2
‖u− x‖2

2 (19)

where µ and β are the penalty parameters corresponding to ‖Du−w‖2
2 and u− x2

2, respectively.
To solve (18), we use the augmented Lagrangian method iteratively as follows.

(wk+1, uk+1, xk+1) = arg min
w,u,x

LA(w, u, x)

γk+1 = γk − µ(Duk+1 − wk+1)
ϕk+1 = ϕk − β(uk+1 − xk+1)

(20)

Here, subscript k denotes the iteration index, and γ and ϕ are the Lagrangian multipli-
ers associated with the constraints Du = w, u = x, respectively.

The alternative direction method is introduced to solve the problem efficiently. Due to
the non-differentiability of Equation (19), the alternative direction method is introduced to
solve the problem efficiently, which alternatively minimizes one variable while fixing the
other variables to split Equation (19) into the following three subproblems. For the sake of
simplicity, subscript k is omitted without confusion.

• Update w

Given u and x, we obtain subproblem w.

arg min
w

τ‖w‖1 − γT(Du− w) +
µ

2
‖Du− w‖2

2 (21)

The optimization problem described by Equation (21) can be solved using the shrink-
age formula [43]. Then, w̃ can be obtained as follows:

w̃ = max
{∣∣∣∣Du− γ

µ

∣∣∣∣− τ

µ
, 0
}

sgn
(

Du− γ

µ

)
(22)
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where max {·} represents the larger number between two elements, and sgn(·) is a piece-
wise function that is defined as follows.

sgn(x) =


−1 if x < 0
0 if x = 0
1 if x > 0

• Update u

By fixing w and x, the optimization associated with u is as follows.

arg min
u

1
2
‖Au− f ‖2

2 − γT(Du− w)− ϕT(u− x) +
µ

2
‖Du− w‖2

2 +
β

2
‖u− x‖2

2 (23)

Equation (23) is u-quadratic; thus, the minimization of the subproblem is simplified to
a linear system.(

DT D +

(
β

µ
+

1
µ

)
I
)

u =
1
µ

AT f + DT
(

w− γ

µ

)
+

(
β

µ
x− ϕ

µ

)
(24)

The matrix on the left-hand side of the above system is positive, definite and tridiago-
nal, since DT D is a positive semidefinite tridiagonal matrix. Moreover, µ and β are both
positive scalars.

• Update x

Given u, we obtain the x subproblem as follows.

arg min
x

µ ‖θx‖1 +
β

2
‖u− x‖2

2 − ϕT(u− x) (25)

By applying a completing square method and omitting all constants independent of x,
the subproblem defined in Equation (25) can be simplified as follows.

arg min
x

1
2
‖x− r‖2

2 +
µ

β
‖θx‖1 (26)

Considering = u − c, with c = ϕ
β , as a noisy observation of x, error (or noise)

e = x− r follows a probability law that is not necessarily Gaussian, with zero mean and
variance σ2. According to the central limit theorem or law of large numbers, the following
equation holds:

1
N
‖x− r‖2

2 =
1
K
‖θx − θr‖2

2 (27)

with e, x, r ∈ RN and θx , θr ∈ Ri for i = 1, . . . , N.
Incorporating (27) into (26) results in the following.

arg min
θx

1
2
‖θx − θr‖2

2 +
Kµ

Nβ
‖θx‖1 (28)

Since θx is component-wise separable and an unknown variable, according to [44], the
closed-form of the minimization problem of Equation (28) can be written as follows.

θ̂x = soft(θr,
√

2ϕ), ϕ =
Kµ

Nβ
, K =

√
n ×
√

n ×m (29)

θ̂x = sgn(θr)max{|θr| −
√

2ϕ, 0} (30)
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Thus, the solution of the x subproblem of Equation (25) is as follows:

x̃ = Ω
(
θ̂x
)

(31)

where Ω is the reconstruction operator.
Based on the discussions above, we obtain Algorithm 2 for solving (17):
Algorithm 2 is applied to recover corrupted images by white Gaussian noise and salt

pepper noise.
The comparative performance of competing methods for the recovery of noisy images

is discussed in the next sections.

Algorithm 2: Our algorithm (DCSR).

Input: The measurement f and the linear measurement matrix A
Initialization: γ0 = ϕ0 = 0, u0 = f , w0 = x0 = 0
while Outer stopping criteria unsatisfied do
while Inner stopping criteria unsatisfied do
use Equation (22) to solve w sub-problem
use Equation (24) to solve u sub-problem
use Equation (31) to solve x sub-problem
end while
Update multipliers by using Equation (20)
end while
Output: The final image u is restored.

5. Experimental Results

In this section, we verify the efficiency and practicability of the proposed method
by describing experiments with simulated and real data sets. The proposed algorithm’s
performance, DCSR, is evaluated by comparing it with three other popular CS recovery
algorithms: The first algorithm is wavelet thresholding, which involves denoising natural
images by assuming that they are sparse in the wavelet domain. It transforms signals into
a wavelet basis, thresholds the coefficients and then inverses the transform. The second
algorithm extends Nesterov’s smoothing technique to TV minimization by modifying
the smooth approximation of the objective function, called the NESTA algorithm. The
third algorithm, group-based sparse representation (GSR), simultaneously enforces image
sparsity and self-similarity under a unified framework in an adaptive group domain.

We used three images, Barbara and Cameraman gray-scale images with sizes of
256× 256 and a color Lena image sized 512× 512 in our experiments (see Figure 1).

Figure 1. Test images. (a) Barbara, (b) Cameraman and (c) Lena.

The simulations used two types of noise: additive white Gaussian noise (AWGN)
measured by its standard deviation σ and its mean m and the salt and pepper noise.
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The salt and pepper noise in image has the following form:

η(p) =
{

vmax with probability q1
vmin with probability q2

(32)

where p = (p1, p2, . . . , pn) ∈ Rn pixels, vmax is the pixel intensity of salt pixels and vmin
is the pixel intensity of pepper pixels. The sum, q = q1 + q2, is the level of the salt and
pepper noise.

5.1. Visual Quality Comparison

First, we evaluate the performance of our DCSR algorithm by performing experiments
on Barbara’s image corrupted by white Gaussian noise with a standard deviation σ ranging
from 20 to 80. Then, to verify the superiority of the proposed method, we compared it with
the GSR algorithm, wavelet denoising and the NESTA algorithm. In Figure 2, each line
represents the Barbara image reconstructed according to the following algorithms: DCSR
(ours) in the first line, GSR in the second line, wavelet denoising in third line and NESTA
in the fourth line. The level of the initial Gaussian white noise varies according to each
column: (a) σ = 20, (b) σ = 50, (c) σ = 60 and (d) σ = 80.

Figure 2. Visual comparison of the reconstruction quality for different noise levels. (a) σ = 20,
(b) σ = 50, (c) σ = 60 and (d) σ = 80. The algorithms used are DCSR, GSR, wavelet denoising and
NESTA: the denoised images are arranged in rows 1, 2, 3 and 4, respectively.
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The Barbara image is relatively complex given its rich texture and its geometric
structure: it is clear that our algorithm (see the first line of Figure 2) has this ability
to effectively denoise while preserving the details and texture of this particular image.
Secondly, we handled the proposed approach to process impulsive salt and pepper noise in
various noise levels varying from 20% to 70% and compared its denoising performance with
several denoising algorithms: GSR algorithm, NESTA algorithm, and wavelet denoising.
Figure 3 provides visual results for different algorithms and several noise levels; it can
be observed that the Cameraman image has been reconstructed very well by our DCSR
algorithm. By analyzing the images in the fifth column of Figure 3, obtained by the NESTA
algorithm, we can observe some artifacts above the camera head and in the upper right
corner due to the nature of the NESTA algorithm itself, which is characterized by a loss of
precision in high-frequency components. We can conclude that the DCSR method presents
the best quality image compared to other methods.
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Figure 3. Visual comparison of the reconstruction quality for different noise levels in the case of salt
and pepper (see column 1 located on the left side). The algorithms used are DCSR, GSR, wavelet
denoising and NESTA: the denoised images are arranged in columns 2, 3, 4 and 5, respectively.

5.2. Image Quality Metrics

Peak signal-to-noise ratio and mean square error (MSE) have long been used as fidelity
metrics in the image processing community. The formulas are simple to understand and
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implement; they are easy and fast to compute, and minimizing MSE is also very well
understood from a mathematical point of view.

PSNR (peak signal-to-noise ratio, unit: dB) [45] is the ratio between the maximum
possible power of a signal and the power of noise. Higher PSNR value means better visual
quality. PSNR is defined as follows.

PSNR = 10 log10
(2k − 1)2

MSE
(33)

MSE =
1

MN

M

∑
i=1

N

∑
j=1

(u(i, j)− û(i, j))2 (34)

MSE is the mean square error between initial image u and estimated image û of size
M× N; i and j represent the image row and column pixel position, respectively; and k is
the number of bits of each sample value.

Structural similarity (SSIM) textures [46] have proven to be a better error metric for
comparing the image quality with better structure preservation. They are in the range of
[0,1], which is a value closer to one indicating better structure preservation:

SSIM = l(u, û)× c(u, û)× s(u, û) (35)

such that l(i, j) is the luminance comparison defined as follows:

l(i, j) =
2µiµj + c1

µ2
i + µ2

j + c1
(36)

where µi and µj are functions of the mean intensities of signals i and j, respectively.
c(i, j), the contrast comparison, is a function of standard deviations σi and σj, and it is

defined as the following form.

c(i, j) =
2σiσj + c2

σ2
i + σ2

j + c2
(37)

Structure comparison s(i, j) is defined as follows:

s(i, j) =
σij + c3

σiσj + c3
(38)

where µi and µj are the mean value of images u and û, respectively. σ2
i and σ2

j represent the
variance of u and û, respectively. σij is the covariance of images u and û. c1, and c2 and c3
are constant.

Specifically, it is possible to choose ci = K2
i D2 with i = 1 and Ki � 1 and D as the

pixel values’ dynamic range.

5.3. Quantitative Assessment

In this subsection, we evaluate the quality of image reconstruction. We compare these
methods quantitatively; the peak signal-to-noise ratio and structural similarity indices are
calculated for images with different algorithms.

Remember that, at first, Barbara was contaminated by Gaussian white noise with
different values of standard deviation σ and denoising with other algorithms. The results
of the PSNR values by various algorithms are shown in Figure 4. Let us recall that a higher
PSNR indicates superior image quality and good performance of the algorithm. The values
of PSNR illustrate that DCSR yields a higher PSNR than the other methods.
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Figure 4. PSNR for different noise levels using the proposed DCSR, GSR algorithm, wavelet denoising
and NESTA algorithm, arranged in rows 1, 2, 3 and 4, respectively. From left to right σ = 20, 50, 60
and 80, respectively.

Figure 5 presents the performance analysis of four denoising methods for grayscale
images corrupted by additive white Gaussian noise. We can see that DCSR, our algorithm,
exhibits the best performance with high PSNR (low noise level) and low PSNR (high
noise level).

Furthermore, to evaluate the effect of denoising our algorithm, DCSR, the grayscale
image is corrupted by salt and pepper noise with different levels. Table 1 shows the quanti-
tative assessment results of PSNR and SSIM relative to our algorithm, DCSR, for several
values of noise levels, and the results were obtained using GSR, wavelet and NESTA.

The best results are highlighted in bold type font. Table 1 validates that our method
has superiority in image reconstruction compared with the three other methods.

The performance of our method is confirmed in Figure 6, which illustrates PSNR
output variations concerning the input PSNR.
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Figure 5. Grayscale image corrupted by additive white Gaussian noise (AWGN): performance
analysis of four denoising methods.

Table 1. Quality metric results on different algorithms for different values of noise levels.

Method Noise level PSNR SSIM

Ours

20% 33.97 0.99
50% 30.08 0.95
60% 27.03 0.93
70% 25.24 0.92

GSR algorithm

20% 26.70 0.80
50% 24.66 0.78
60% 23.61 0.74
70% 22.40 0.69

Wavelet denoising

20% 31.68 0.89
50% 28.61 0.86
60% 26.69 0.79
70% 24.84 0.74

NESTA algorithm

20% 18.88 0.39
50% 16.71 0.38
60% 16.33 0.37
70% 16.03 0.36

Figure 6. Grayscale image corrupted by salt and pepper noise: performance analysis of four
denoising methods.

The next challenge is to apply this DCSR algorithm to color or multidimensional
images. This is essential since most digital images used in the modern world are not
grayscale but usually operate in either RGB or YCbCr color spaces. Both these colorspaces
are three-dimensional.
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We evaluate the proposed DCSR algorithm on the Lena color image because this test
image is interesting from the point of view of the mixture of details, flat regions, shadow
areas and texture. We mainly compareed our proposed method to wavelet denoising and
the GSR algorithm.

As mentioned previously, two types of noise were used in these experiments: AWGN
with a standard deviation σ and several salt and pepper noise levels.

Our first experiment is to add white Gaussian noise with different σ values,
σ = 20, 50, 60 and 80, to the test image (here Lena), thus generating noisy observations,
and the challenge is to determine the most efficient denoising method in terms of PSNR.

The denoising results of this image with different algorithm are shown in Figure 7.
From Figure 7, the proposed method achieves the highest scores of PSNR in all cases, which
fully demonstrates that the denoising results by the proposed method are the best both
objectively and visually.

Figure 7. Restoration results of the AWGN-corrupted Lena image for different values of σ (see
column 1 located on the left side of the figure). The algorithms used, the proposed DCSR, wavelet
denoising and GSR, are arranged in columns 2, 3 and 4, respectively.

Figure 8 shows the output results (after reconstruction) evaluated at different noise
levels. DCSR algorithm provides the best denoising performance.

In the second experiment, we added salt and pepper noise with different noise levels at
10%, 15%, 20% and 30% to the Lena test image. Then, we applied our denoising algorithm to
restore the noisy images and compared them with two other algorithms: wavelet denoising
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and GSR algorithm. Figure 9 shows that the DCSR algorithm provides better visual quality
results. This performance is confirmed by Figure 10, which represents the variations of the
output PSNR vs. the input PSNR. The robustness of our algorithm relative to the noise
level is, thus, verified.

Figure 8. Color image corrupted by AWGN: performance analysis of three denoising methods.

Figure 9. Restoration results of the salt and pepper noise-corrupted Lena image for different values
of σ (see column 1 located on the left side of the figure). The algorithms used, the proposed DCSR,
wavelet denoising and GSR, are arranged in columns 2, 3 and 4, respectively.
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Figure 10. Color image corrupted by salt and pepper noise: performance analysis of three deno-
ising methods.

From these results of PSNR and SSIM, in all the cases, the proposed method achieves
the highest scores, which fully demonstrates that the restoration results by the proposed
method are the best both objectively and visually.

5.4. Algorithm Robustness

The robustness of the proposed algorithm will be confirmed in this subsection.
The test images are corrupted, on the one hand, by additive white Gaussian noise

and, on the other hand, by salt and pepper noise at different noise levels. Figures 11–14
show PSNR values (after reconstruction) as a function of the number of iterations for the
greyscale images of Barbara and Cameraman and for the color image of Lena using different
algorithms. Note that we did not use the NESTA algorithm in the case of the color images
because NESTA is not suitable for color images.
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5.5. Computational Complexity

In the following paragraph, we will estimate the computational complexity of the
proposed DCSR algorithm. It is clear that the main complexity of the proposed algorithm
comes from total variation TV and the high cost of the nonlocal self-similarities (NLS).

Knowing that the computational complexity of TV is O(N) [47], let us compute that
of NLS.

For an image u of N pixels, the average time to compute similar blocks for each
reference block is Ts.

If
√

n ×
√

n represents overlapped blocks ui, i = 1, 2, . . . , N and (m− 1) is the
number of similar blocks denoted Sui , all blocks of Sui are stacked in a matrix of size
(n×m) with complexity O

(
n×m2); hence, the resulting complexity is O

(
N
(
n m2 + Ts

))
,

similarly to the computational complexity of a group-based sparse representation GSR [48].
We point to the finding that the total computational complexity of our algorithm is

O
(

N
(
n m2 + Ts

)
+ N

)
.

It is interesting to compare the computational complexity of DCSR with competing methods.
The computational complexity of NESTA algorithm is O(N + N log2 N) [49] and that

of wavelet denoising is O(N log2 N) [50].
Table 2 summarizes the computational complexity of the four algorithms used.
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Table 2. Computational complexity.

Algorithms Computational Complexity

TV O(N) [46]
Wavelet denoising O(N log2 N) [49]
NESTA O(N + N log2 N) [48]
GSR O

(
N
(
n m2 + Ts

))
[47]

Our algorithm DCSR O
(

N
(
n m2 + Ts

)
+ N

)
The result of this comparison is as follows.

O(N log2 N) < O(N + N log2 N) < O(N (n m2 + Ts)) < O(N(n m2 + Ts) + N) (39)

Relation (39) clearly shows that our proposed algorithm is more expensive in terms of
computational complexity by an order N. Such an increase is not excessive in view of the
good performance of this algorithm and the current computational means, which permit
real-time processing.

6. Discussion

In the real world, the images acquired or measured or recorded have generally suffered
degradation of various origins:

- Bad weather conditions (wind, fog, haze, etc.);
- Chain of acquisition of the image;
- Compression of the image.

This degradation can be canceled or at least reduced by proceeding to a preprocessing
procedure called a denoising operation or simply denoising. Such an operation allows,
on the one hand, producing a perception of a quality image and, on the other hand, the
improvement in the performance of subsequent image processing (extraction of the desired
information, prediction, classification, texture analysis, segmentation, etc.).

With this in mind, the authors of reference [51] propose a new image denoising method
called dehazing because it tends to eliminate haze due to bad weather conditions. This
original method is based on the application of artificial multiexposure image fusion [52]
involving local and global image details. Such an approach allows the recovery of quality
images but, unfortunately, halos or artifacts often appear near the edges when the inputs
are sparse, which makes postprocessing (linear saturation adjustment) introduced by the
authors ineffective.

Wavelet image denoising [53] is powerful for edge detection in three preferred di-
rections: diagonal, vertical and horizontal. For this purpose, several types of wavelets
exist, such as the Haar wavelet that preserves edge information, but technically it is not
continuous and is not differentiable. This wavelet can be identified with the optimization
problem using an l1 norm. In contrast, the Morlet wavelet [13], which is continuous, can be
identified with the use of the l2 norm.

Our method mixed the total variation with nonlocal self-similarities to recover the
image without artifacts and preserve details and textures of the image. On a psycho-
emotional level, the visual quality of an image is necessary for the observer. In this respect,
it is interesting to note that the images reconstructed in Figure 2 by the NESTA algorithm
are visually unpleasant and lose some important details. Limitations also appear during
wavelet denoising: The noise contained in the image cannot be removed if the standard
deviation is set too large (above 50), i.e., if the noise level is high. Concerning GSR (second
row of Figure 2), we can observe that this algorithm is quite efficient in removing noise;
however, it has a slight loss of contrast. On the other hand, it can be observed that our
algorithm, DCSR, is efficient in removing even noise with standard deviations equal to 80.
It is, therefore, confirmed that the proposed method provides the most visually satisfying
results for both edges and textures.



Sensors 2022, 22, 2199 19 of 22

On an objective and therefore measurable level, Table 1 shows that the PSNR and
SSIM values obtained by NESTA are the lowest, which clearly indicates a limitation in the
performance of this algorithm. GSR and wavelets obtain intermediate PSNR and SSIM
values. At the end of the convergence analysis, Figures 11–14 allow us to conclude that, as
the number of iterations increases, all PSNR curves increase monotonically and stabilize
from the 10th iteration. These figures show that all these algorithms converge very quickly.
Nevertheless, the most robust algorithm should have a high PSNR. According to these
figures, regardless of the nature of the noise or the test image used, DCSR has the highest
PSNR. It is, therefore, the most robust algorithm among the competing methods.

However, when we compared our method, DCSR, in terms of computational complex-
ity, our approach is not the most advantageous; however, real-time processing is largely
feasible. Hence, complexity reduction techniques such as block-compressed sensing [54] or
deep learning technique [55] are feasible.

We applied our algorithm in an ablation study to clarify the effect of total variation
(TV) and nonlocal self-similarity (NLS) on the compressed sensing (CS) recovery model.
First, we cancel all regularization constraints and leave only the CS alone. Next, we analyze
CS coupled with TV and cancelled NLS. Then, we delete TV, replaced it with NLS and
kept CS. Table 3 summarizes this ablation analysis using quantitative values: PSNR (dB)
and SSIM. From Table 3, we can conclude that the presence of TV or NLS improves the
quality of the reconstruction with CS, while noting that the CS+NLS coupling performs
better than CS+TV. On the other hand, by comparing the four scenarios with each other, we
can conclude that the reconstruction, with both regularization functions simultaneously
(CS+TV+NLS), is significantly better than the other three scenarios: it effectively removes
noise and improves the robustness of our approach.

Table 3. Ablation analysis.

Method σ PSNR SSIM

CS
20 22.11 0.53
50 20.35 0.43
60 18.59 0.37

CS+TV
20 22.34 0.54
50 21.74 0.52
60 20.67 0.44

CS+NLS
20 29.45 0.89
50 28.57 0.78
60 27.97 0.74

CS+TV+NLS
(DCSR)

20 38.75 0.99
50 35.16 0.97
60 34.67 0.96

7. Conclusions

In this paper, we proposed an original image denoising method based on compressed
sensing that we called denoising-compressed sensing by regularizations terms (DCSR),
by incorporating two regularization constraints in the model: total variation and non-
local self-similarity. The optimization of this method is performed by the augmented
Lagrangian, which avoids the difficult problem of nonlinearity and non-differentiability of
the regularization terms.

The effectiveness of our approach was validated using images corrupted by white
Gaussian noise and impulsive salt and pepper noise. Comparing DCSR in terms of PSNR
and SSIM to state-of-the-art methods such as Nesterov’s algorithm, group-based sparse
representation and wavelet-based methods, it turns out that, depending on the image
texture and the type of noise corrupting the image, our method performs much better: We
gain at least 25% in PSNR and at least 11% in SSIM. The price to pay is a slight increase in
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terms of computational complexity of the order of image size, but this does not call real
time processing into question.

Due to the robustness and the speed of convergence of DCSR algorithm, its application
is efficient in vital and sensitive domains such as medical imaging and remote sensing.
Our future contribution is a technological breakthrough that includes introducing a layer
of intelligence at the acquisition level aimed at automatically determining image texture
and its quality in terms of noise level, blur and shooting conditions (lighting, inpainting,
registration, occlusion, low resolution, etc.) [56–61] in order to automatically adjust the
parameters necessary for an optimal use of the proposed DCSR algorithm.

The definitions of the acronyms used in this work are given in Table 4.

Table 4. Definition of acronyms.

Acronyms Description

CS Compressed Sensing
DCSR Denoising Compressed Sensing by Regularizations terms
PSNR Peak Signal-to-Noise Ratio
SSIM Structural Similarity
TV Total Variation

NLS Nonlocal self-Similarity
DWT Discrete Wavelet Transform

NESTA Nesterov’s algorithm
GSR Group-based Sparse Representation

AWGN Additive White Gaussian Noise
MSE Mean Square Error
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