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Abstract

In recent years, overcomplete dictionaries combined with sparse learning techniques

became extremely popular in computer vision. While their usefulness is undeniable, the

improvement they provide in specific tasks of computer vision is still poorly understood.

The aim of the present work is to demonstrate that for the task of image denoising, nearly

state-of-the-art results can be achieved using orthogonal dictionaries only, provided that

they are learned directly from the noisy image. To this end, we introduce three patch-

based denoising algorithms which perform hard thresholding on the coefficients of the

patches in image-specific orthogonal dictionaries. The algorithms differ by the method-

ology of learning the dictionary: local PCA, hierarchical PCA and global PCA. We carry

out a comprehensive empirical evaluation of the performance of these algorithms in terms

of accuracy and running times. The results reveal that, despite its simplicity, PCA-based

denoising appears to be competitive with the state-of-the-art denoising algorithms, espe-

cially for large images and moderate signal-to-noise ratios.

1 Introduction

In the past few years, image denoising has been deeply impacted by a new approach: instead

of processing each pixel individually, it has been shown to be preferable to denoise the

image block-wise (or patch-wise). Taking advantage of the redundancy of small sub-images

inside the image of interest, new robust methods have emerged that can properly handle

both constant, geometric and textured areas. Originally introduced for texture synthesis

[8] and image inpainting [4], patch-based methods have proved to be highly efficient for

image denoising. Those methods range from the original Non Local Means (NL-Means) [3],

UINTA [2], optimal spatial adaptation [11] to the state-of-the-art algorithms BM3D [5],

NLSM [13] and BM3D Shape-Adaptive PCA[6]. Most recent algorithms, either explicitly

[1, 12, 13] or implicitly [5, 6], rely on the use of overcomplete dictionaries which are learned

from the noisy image or from a larger data set.
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Figure 1: Patch based PCA approaches compute the principal axes/components of patches extracted

from the noisy image

While the overcomplete-dictionary-based algorithms exhibit excellent results, they are

usually considerably more sophisticated than the traditional algorithms dealing with orthog-

onal dictionaries.

The main question our work responds to is whether or not the improvement achieved

with an overcomplete dictionary instead of an orthogonal one is large enough to justify such

a sophistication. To this end, we investigate in detail the performance of three variants of a

simple patch-based denoising algorithm. It consists of the following two steps:

(a) learn an orthogonal basis from the noisy image by performing a Principal Component

Analysis (PCA) and decompose the noisy patch in this basis,

(b) obtain the denoised patch by zeroing all the small coefficients in the representation of

the noisy patch in the learned basis.

This strategy is similar to the wavelet denoising of Donoho and Johnstone [7], with the

notable advantage of dealing with an orthonormal basis adapted to the image and computed

from noisy patches by PCA (see Fig. 1). In this framework, the set of patches used as input

for PCA can be chosen in several ways. We focus our attention on three natural choices:

global, hierarchical and local, and carry out a comprehensive empirical study to quantify

their differences both in terms of accuracy and computational cost. More precisely, the three

variants we consider are:

Patch based Global PCA (PGPCA): we create an orthogonal basis adapted to the target

image by performing a PCA on the whole collection of patches extracted from the

noisy image.

Patch based Hierarchical PCA (PHPCA): we use quadtrees with iterative partitions, i.e.

we recursively divide the image into four rectangles and proceed to the PCA to the

level k of partitioning. At each step a few (usually one) axes are added to the bases

and the remaining patches are projected onto the orthogonal supplement of the current

orthogonal sub-basis.

Patch based Local PCA (PLPCA): we use dynamic localization to build the axes. This

strategy relies on a sliding window of size WS ×WS in which the patches are selected

to proceed to a local PCA 1.

1A similar algorithm has been earlier proposed by [14] and [17] in association with Wiener filtering rather than

hard thresholding.
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(a) Input image (b) 16 first axes (c) 16 last axes

Figure 2: An image (House), its 16 first axes and 16 last axes obtained by a PCA over all the

patches of the image.

Once the whole collection of patches is denoised, it remains to reproject the information

onto the pixels. Among various solutions proposed in the literature (see for instance [15] and

[5]) the most popular, as the one we use in our experiments, is to uniformly average all the

estimates provided by the patches containing the given pixel.

2 Patch denoising

In the problem of denoising we are concerned with in the present work, the data consist of a

vector y assumed to be a version of an unobserved deterministic vector f (true image) cor-

rupted by an Additive White Gaussian Noise (AWGN). Let Ω ⊂ Z
2 be the (finite) indexing

set of the pixels. If |Ω|= M, we enumerate the pixels (for instance, by stacking the columns)

from 1 to M. Thus the model has the following formulation:

yi = fi +wi for i = 1, · · · ,M, (1)

where y is the noisy image, f is the underlying true image and w is a zero-mean Gaussian

noise with known variance σ2. We denote by Yi,Fi and Wi the patches (of size WP ×WP)

whose upper left corner corresponds to the ith pixel, extracted respectively from the noisy

image, the true image and the noise component. Then, the patch model can be rewritten as

Yi = Fi +Wi for i = 1, · · · ,M. (2)

Note that in the latter model the noise components are no longer independent, because of the

presence of overlapping patches.

2.1 Patch based Global PCA (PGPCA)

Let Y1, . . . ,YM be the entire collection of patches of size n = WP ×WP extracted from the

image y. Let Σ be the n×n empirical covariance matrix:

Σ =
1

M

M

∑
k=1

YkY
′
k − ȲȲ ′, where Ȳ =

1

M

M

∑
k=1

Yk. (3)
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(a) Cameraman
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(b) House

Figure 3: Comparing various strategies of reconstruction from the projections onto the basis

provided by PCA, for House and Cameraman (σ = 20): Hard Thresholding, Soft Threshold-

ing, “Keep or Kill” and Wiener Filtering. The x axes are different. The number of coefficients

kept for the “Keep or Kill” strategy (top) and the threshold ratio λ/σ (bottom).

Principal Component Analysis consists of computing the singular value decomposition of

Σ. More precisely, let λ1 ≥ . . . ≥ λn ≥ 0 be the eigenvalues of Σ and X1, . . . ,Xn ∈ R
n

the corresponding eigenvectors. For each k, Xk is called the kth principal axis of the data

Y1, . . . ,YM . Since principal axes form an orthonormal basis, any patch Yi can be decomposed

as Yi = ∑
n
k=1〈Yi|Xk〉Xk. Figure 2 gives an example of the patches obtained by computing the

principal axes over the stack of all patches lying in an image.

Assuming that the noise is uniformly spread out over all the directions, while the image

lives in a low dimensional subspace, patch denoising can be achieved by projecting it onto

the first n′ < n axes. This is the common approach with PCA and provides the following

estimators: F̂KOK,i = Ȳ +∑
n′

k=1〈Yi − Ȳ |Xk〉Xk. In that case, PCA ensures that such a “keep

or kill” reconstruction maximizes the variance of the training data among all subspaces of

dimension n′. Unfortunately, such a procedure leads in practice to poor results compared

to other alternatives such as the thresholding of coefficients (see Fig. 3). The reason of this

poor behavior is that the axes that are learned on the whole image are unable to adequately

represent a significant proportion of patches.

In fact, instead of considering as noise the axes carrying low variance, it appears better to

consider all axes as relevant for modeling the patches Y1, . . . ,YM . For a given patch Yi, only a

few axes are relevant, but the relevant axes may vary from one patch to another. Therefore,

a reasonable strategy is to process the coefficients 〈Yi − Ȳ |Xk〉 according to their magnitude

(instead of the magnitude of the variance of the corresponding principal component). This

leads to the general form of estimators F̂i of Yi given by:

F̂i = Ȳ +
n

∑
k=1

η(〈Yi − Ȳ |Xk〉)Xk , (4)

where η is a shrinkage function. The classical examples include Soft Thresholding (ST) and

Hard Thresholding (HT) for which η is one of the following:

ηST(x) = sign(x) · (|x|−λ )+ (Soft Thresholding) , (5)

ηHT(x) = x ·1(λ < |x|) (Hard Thresholding) . (6)
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(a) Local search windows (b) 16 first axes in window 1 (c) 16 first axes in window 2

Figure 4: An image and its 16 first axes obtained over two stacks extracted respectively

in two different local windows. The resulting dictionaries are quite different and suitably

describe the local textures of the image.

where (t)+ = max(0, t) for any t ∈ R. These shrinkage functions are parametrized by a

threshold parameter λ which is usually chosen by cross validation.

Another solution consists in using the Wiener filter (also referred to as the Bayes filter

in the statistical literature) as proposed by [14] and [17]. As illustrated in Figure 3, Hard

Thresholding is the procedure having the best accuracy among all the aforementioned meth-

ods. Therefore, this is the solution we have adopted in this work.

2.2 Patch based Local PCA (PLPCA)

The good performance of the PGPCA (see Table 3), as well as that of other recent denoising

algorithms, is due to the patch redundancy property of natural images. By selecting the axes

of highest variance, the PCA retrieves the most frequent patterns of the image. Though, with

the PGPCA, one is bounded to use one single orthonormal basis for the whole image. This

has two limitations for denoising. First, the PGPCA is unable to represent rare patches, since

they contribute weakly to the total variance and their representations are usually not sparse

in this basis. Moreover, only few axes explain most of the variance and are visually relevant,

the remaining ones resembling noise (see Fig. 2).

To overcome these drawbacks, we propose to perform several PCAs on subsets of patches

presenting less variability, for instance inside small image regions or over a cluster of similar

patches. The advantage of this approach is that the resulting basis is not only adapted to

the image but also to the region of the image containing the patch of interest. In this spirit,

Muresan and Parks [14] and Zhang et al. [17] compute the PCA over sliding square windows.

However, this has two drawbacks: overfitting and increased computational burden. Indeed,

the accuracy of the axis estimation is deteriorated because of the limited number of training

patches to perform the PCA. On the other hand, the computational complexity is increased

since PCA needs to be performed repeatedly.

An illustration of local axes obtained by PLPCA in two different local windows is given

in Fig. 4. While a global approach explains the set of patches with a small number of axes,

local approaches find different dictionaries adapted to the local regions in the image. Unfor-

tunately, such approaches are highly time consuming and require to be accelerated to handle

common image sizes.
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(a) Quadtree decomposition (b) 16 first axes in part 1 (c) 16 first axes in part 2

Figure 5: An image and its 16 first axes obtained over two stacks extracted respectively in

two different leaves of the quadtree decomposition. Here, the four main axes are kept at each

node of the quadtree and three level of decomposition is used. The resulting dictionaries

seem to describe more and more local features.

Since we allow searching windows to overlap, we can move the sliding window with a

step δ = WS−1
2

(so that there are still overlaps between the searching zones). This sliding

step allows to divide the computation time by a factor δ 2 without any significant loss of

performance. In practice, this acceleration can reduce the running time by a factor 5.

The fact that the sliding windows overlap creates a source of redundancy for patch es-

timation: each sliding window containing a given patch provides candidate for estimating

the true noise-free patch. The final patch estimate is then the uniform average of those can-

didates. Moreover a second level of redundancy exists (as with any patch based method).

Since every pixel belongs to many patches, one gets multiple estimators for a given pixel.

So a reprojection step from the collection of patches to pixel estimators is required to re-

construct a two dimensional image (see [15] or [10] for more details). The usual and the

simplest solution is again to uniformly average the candidate estimates for all pixels. This is

the solution we have also adopted here.

2.3 Patch based Hierarchical PCA (PHPCA)

This approach aims to provide an intermediate solution between local and global PCAs,

which is less time consuming than the PLPCA and is more adapted to local regions than

the PGPCA. The idea is to create hybrid bases that contain elements characterizing global

features of the image along with elements characterizing localized features. This strategy

allows us to combine the advantages both of the PGPCA, to accurately estimate axes which

explain most of the variance, and of the PLPCA to model the behavior of rare patches.

We propose to extract the first n′ principal axes of Y1, . . .YM and to include them in all the

local bases. The remaining axes will be computed from the residual patches, i.e., the patches

Y ′
i = P⊥

n′
Yi, P⊥

n′
being the projector onto the subspace spanned by the axes Xn′+1, . . .Xn. In

practice n′ is small and chosen between one and five. The fact that the remaining axes

are not kept is justified by the observation that, as mentioned above, they are irrelevant to

model the underlying signal since they look like randomly drawn vectors from the orthogonal

complement of span(X1, . . . ,Xn′).

We then consider a geometric partitioning (we simply divide the image in four parts) of
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PGPCA PHPCA PLPCA

σ WP λ Mmin n′ WS

5 7×7 2.50σ 32×32 1 17×17

10 7×7 2.50σ 32×32 1 21×21

20 7×7 2.75σ 32×32 1 23×23

Table 1: Optimal parameters obtained by cross validation on a set of 13 standard benchmark

images for 3 different noise levels.

Size PGPCA PHPCA PLPCA NLM BM3D INLM NLSM

2562 1.73 s 2.37 s 4.58 s 1.45 s 0.76 s 7.56s 36min

5122 7.25 s 10.9 s 15.0 s 5.48 s 2.69 s 41.7 s 162min

10242 30.6 s 50.0 s 63.3s 27.8 s 19.1 s 190 s N/A

Table 2: Running times for the three variants of the patch based PCA algorithms and for

classical methods. Timings are given for the parameters with the longest running time (for

our methods), for a Matlab implementation with an Intel Core 2 Duo CPU 3.00GHz.

the M patches and we re-estimate the principal axes for each partition on smaller spaces.

This provides for each partition new axes orthogonal to the previous ones. The process can

be repeated iteratively until the partition reaches a limiting size Mmin. The eigenvalues as-

sociated to the PCA provide an ordering of the axes. This ordering reflects the ability of

the axes to explain features that are more and more localized. Eventually, several dictionar-

ies (for spatially close areas) share the first axes, and any vector Yi can be decomposed as

follows: Yi = ∑
n
k=1〈Yi|X

di

k 〉Xdi

k , where di is the index of the dictionary associated to Yi, and

depends on the position i of the patch in the image.

An example of PHPCA decomposition is provided in Fig. 5. A global approach is not

suitable to describe local features and local approaches provide more variability for higher

running time. We found that the hierarchical approach appears to provide a reasonable trade

off between both methods by estimating a dictionary whose features are more and more

localized. Once the dictionary computed, the denoising is done using Hard Thresholding in

the same manner as described in the previous section.

3 Experiments and Results

This section provides qualitative and quantitative evaluation of the proposed algorithms on

13 standard benchmark images damaged by synthetic AWGN with three levels of noise σ =
5,10 and 20. For the quantitative evaluation, two measures of accuracy are considered:

the Peak Signal to Noise Ratio (PSNR) defined by PSNR( f̂ , f ) = 10log10
2552M

‖ f̂− f‖2 , and the

Structural SIMilarity (SSIM) defined in [16]. The SSIM is between 0 and 1 and a value

close to 1 means that the estimated image has a similar structure to the noise-free image.

Performances have been measured for the three patch based PCA approaches described in

previous sections and four recent denoising approaches: the non-local means (NLM) [3], the

block-matching and 3D denoising (BM3D) [5], the improved non-local means (INLM) [9]

and the non-local sparse model (NLSM) [13].

In order to make fair comparison between the different patch based PCA method, the
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(a) Noisy image (b) PGPCA (PSNR=33.6) (c) PLPCA (PSNR=34.8)

Figure 6: Visual evaluation of the denoising performance of PGPCA and PLPCA on an

image (Barbara) damaged by an AWGN with noise level σ = 10, with their PSNR.

parameters of PGPCA, PHPCA and PLPCA have been tuned globally by cross validation on

the set of the 13 images. The optimal parameters have been chosen for each level of noise σ
as those maximizing the PSNR. The obtained optimal values are reported in Table 1. For the

four other methods, we have used the default parameters and the implementations provided

by the authors.

Quantitative results of our experiments are presented in Table 3. Estimators using patch

based PCA provide numerical results comparable to the state-of-the-art methods and out-

performing the NLM (even for the global version). Among PGPCA, PHPCA and PLPCA,

the best performance is reached by PLPCA, however PHPCA leads to almost the same re-

sults. Note that the gain between global or localized approach differs between images. For

instance, PLPCA provides around +1dB on Barbara which presents lots of local textures

while the gain is less significant on Peppers.

Qualitative results obtained by PGPCA and PLPCA are presented in Fig. 6. As expected,

we can notice that the textures are better restored for PLPCA than for PGPCA. The results

obtained by PHPCA have not been included since they are very close to the one obtained

by PLPCA. The most important factor differentiating PHPCA and PLPCA is the running

time. As one can observe in Table 2, PHPCA provides significant time saving as compared

to PLPCA. Running times of PHPCA are comparable to that of BM3D though our PHPCA

is a pure Matlab implementation while BM3D is implemented in C.

4 Conclusion

We have presented a rigorous framework for performing image denoising based on orthonor-

mal dictionaries learned from the image itself by three different strategies: local, hierarchical

and global. A comprehensive experimental evaluation on the benchmark images with dif-

ferent level of noise has been conducted and showed that the methodology developed in

this work leads to an excellent ratio accuracy/running time. The highly competitive running

times make the algorithms we proposed attractive for denoising video sequences. Moreover,

the methods proposed in this work requires the user to choose at most three parameters: size

of patches, threshold level, and searching zone width (PLPCA) or the number of recursions

(PHPCA).

Possible improvements include
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NLM BM3D INLM NLSM PGPCA PHPCA PLPCA

σ = 5

barbara 37.0 / .987 38.2 / .989 38.0 / .988 38.5 / .989 37.6 / .988 38.3 / .989 38.5 / .989

boat 36.5 / .984 37.1 / .986 36.9 / .984 37.3 / .985 37.1 / .985 37.2 / .985 37.3 / .986

bridge 34.9 / .964 35.3 / .967 35.2 / .966 35.4 / .967 35.2 / .966 35.3 / .966 35.3 / .967

cameraman 37.7 / .955 38.2 / .962 37.8 / .958 38.4 / .962 37.8 / .958 37.8 / .958 38.0 / .958

couple 36.8 / .984 37.4 / .986 37.1 / .986 37.5 / .986 37.2 / .986 37.3 / .986 37.4 / .986

fingerprint 34.8 / .997 36.4 / .997 36.5 / .997 36.7 / .997 36.5 / .997 36.6 / .997 36.7 / .997

flinstones 36.0 / .992 36.1 / .991 35.7 / .991 36.2 / .992 35.9 / .991 36.0 / .991 36.1 / .991

hill 35.7 / .950 36.0 / .952 35.8 / .950 36.1 / .952 35.8 / .950 35.9 / .951 36.0 / .951

house 38.5 / .943 39.6 / .957 39.0 / .952 39.9 / .959 39.1 / .950 39.3 / .953 39.5 / .954

lena 37.9 / .982 38.6 / .984 38.4 / .983 38.7 / .984 38.4 / .983 38.7 / .984 38.8 / .984

man 37.1 / .984 37.7 / .986 37.3 / .984 37.9 / .986 37.4 / .985 37.6 / .985 37.7 / .986

mandril 35.6 / .987 37.4 / .989 37.6 / .988 39.0 / .990 38.1 / .989 38.1 / .989 38.1 / .989

peppers 37.4 / .951 38.0 / .956 29.9 / .944 38.2 / .956 37.7 / .954 37.7 / .954 37.9 / .955

σ = 10

barbara 33.0 / .967 34.9 / .977 34.3 / .973 35.0 / .975 33.6 / .969 34.5 / .973 34.8 / .974

boat 32.8 / .955 33.9 / .966 33.2 / .961 34.0 / .966 33.5 / .962 33.6 / .963 33.7 / .964

bridge 30.3 / .903 30.7 / .909 30.5 / .908 30.8 / .911 30.5 / .905 30.6 / .906 30.7 / .909

cameraman 33.2 / .894 34.0 / .930 33.4 / .926 34.2 / .931 33.3 / .913 33.4 / .912 33.5 / .913

couple 32.7 / .955 34.0 / .967 33.3 / .959 34.0 / .967 33.5 / .963 33.5 / .963 33.6 / .964

fingerprint 30.6 / .988 32.4 / .990 32.1 / .990 32.6 / .990 32.2 / .990 32.3 / .990 32.4 / .990

flinstones 31.9 / .981 32.4 / .981 31.6 / .978 32.5 / .981 32.0 / .979 32.1 / .979 32.2 / .979

hill 31.5 / .879 31.8 / .884 31.4 / .878 32.0 / .889 31.6 / .880 31.7 / .883 31.8 / .884

house 34.8 / .875 36.6 / .921 35.7 / .906 37.0 / .926 35.4 / .899 35.7 / .902 35.8 / .904

lena 34.2 / .958 35.9 / .969 35.4 / .966 35.9 / .968 35.3 / .965 35.4 / .966 35.6 / .967

man 32.9 / .955 33.9 / .963 33.4 / .959 34.1 / .964 33.5 / .960 33.6 / .961 33.7 / .962

mandril 31.3 / .958 33.1 / .966 32.7 / .960 34.0 / .967 33.4 / .965 33.3 / .965 33.3 / .966

peppers 33.3 / .895 34.6 / .929 27.9 / .910 34.8 / .928 33.8 / .916 33.9 / .916 34.1 / .917

σ = 20

barbara 29.8 / .928 31.7 / .953 30.9 / .945 31.5 / .948 29.7 / .927 30.8 / .940 31.1 / .942

boat 29.4 / .887 30.8 / .925 29.9 / .902 30.9 / .922 30.0 / .908 30.2 / .912 30.3 / .915

bridge 26.3 / .759 26.7 / .777 26.2 / .764 27.0 / .798 26.5 / .766 26.5 / .769 26.6 / .774

cameraman 29.4 / .790 30.4 / .874 29.4 / .854 30.5 / .875 29.3 / .838 29.5 / .837 29.6 / .835

couple 29.0 / .886 30.7 / .928 29.8 / .904 30.7 / .926 29.9 / .911 30.0 / .913 30.0 / .915

fingerprint 27.2 / .955 28.8 / .972 27.8 / .966 28.8 / .971 28.3 / .967 28.4 / .968 28.4 / .968

flinstones 28.5 / .958 29.6 / .967 28.5 / .962 29.6 / .966 28.5 / .956 28.7 / .957 28.8 / .955

hill 27.9 / .745 28.6 / .782 28.0 / .758 28.8 / .791 28.2 / .760 28.3 / .765 28.3 / .769

house 31.6 / .789 33.8 / .874 32.8 / .859 34.1 / .884 32.2 / .845 32.5 / .844 32.5 / .843

lena 31.0 / .912 33.0 / .939 32.4 / .931 32.9 / .935 32.1 / .927 32.2 / .929 32.3 / .929

man 29.3 / .882 30.5 / .915 29.8 / .893 30.7 / .915 29.9 / .903 30.0 / .904 30.1 / .906

mandril 27.4 / .868 29.0 / .911 28.2 / .886 29.4 / .912 28.8 / .899 28.8 / .900 28.9 / .903

peppers 29.8 / .815 31.2 / .886 25.9 / .859 31.4 / .884 30.2 / .862 30.3 / .862 30.5 / .863

Table 3: Comparisons of denoising approaches for different degradation levels in terms of

PSNR and SSIM values (PSNR/SSIM). The compared methods are NLM [3], BM3D [5],

INLM [9], NLSM [13] and the three studied patch based PCA approaches: PGPCA, PLPCA

and PHPCA. The supremacy of the NLSM in terms of the accuracy is achieved at the cost of

prohibitively large execution times.

• Iterating the process (at least one more time). A second “pass” is necessary for strong

noise (σ > 20), and it was already proposed in other contexts by [5], [13] and [17].

• Building the principal components over (homogeneous) clustered regions as in [5, 13].
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