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Abstract

Image-derived input function (IDIF) obtained by manually drawing carotid arteries (manual-IDIF) can be reliably used in
[11C](R)-rolipram positron emission tomography (PET) scans. However, manual-IDIF is time consuming and subject to inter-
and intra-operator variability. To overcome this limitation, we developed a fully automated technique for deriving IDIF with
a supervised clustering algorithm (SVCA). To validate this technique, 25 healthy controls and 26 patients with moderate to
severe major depressive disorder (MDD) underwent T1-weighted brain magnetic resonance imaging (MRI) and a 90-minute
[11C](R)-rolipram PET scan. For each subject, metabolite-corrected input function was measured from the radial artery. SVCA
templates were obtained from 10 additional healthy subjects who underwent the same MRI and PET procedures. Cluster-
IDIF was obtained as follows: 1) template mask images were created for carotid and surrounding tissue; 2) parametric image
of weights for blood were created using SVCA; 3) mask images to the individual PET image were inversely normalized; 4)
carotid and surrounding tissue time activity curves (TACs) were obtained from weighted and unweighted averages of each
voxel activity in each mask, respectively; 5) partial volume effects and radiometabolites were corrected using individual
arterial data at four points. Logan-distribution volume (VT/fP) values obtained by cluster-IDIF were similar to reference results
obtained using arterial data, as well as those obtained using manual-IDIF; 39 of 51 subjects had a VT/fP error of ,5%, and
only one had error .10%. With automatic voxel selection, cluster-IDIF curves were less noisy than manual-IDIF and free of
operator-related variability. Cluster-IDIF showed widespread decrease of about 20% [11C](R)-rolipram binding in the MDD
group. Taken together, the results suggest that cluster-IDIF is a good alternative to full arterial input function for estimating
Logan-VT/fP in [11C](R)-rolipram PET clinical scans. This technique enables fully automated extraction of IDIF and can be
applied to other radiotracers with similar kinetics.
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Introduction

[11C](R)-rolipram is a positron emission tomography (PET)

radioligand for phosphodiesterase 4 (PDE4), an enzyme that

metabolizes cyclic adenosine monophosphate (cAMP). By imaging

the cAMP cascade, [11C](R)-rolipram may offer unique insights

into the internal machinery of brain cells. Our laboratory

previously showed that patients with major depressive disorder

(MDD) have widespread and significantly reduced [11C](R)-

rolipram binding compared to healthy subjects [1].

[11C](R)-rolipram can be reliably quantified by a two-tissue

compartment model and a 90-minute brain scan [2]. Alternative

techniques for [11C](R)-rolipram quantification, both at the region

and voxel level, include the Logan plot, the hierarchical basis

function method, and spectral analysis [3]. Because of widespread

distribution of PDE4 in whole gray matter and no region for

reference tissue, all of these techniques require measuring arterial

input function, which is a labor-intensive and invasive procedure.

We previously found that the workload for obtaining the input

function could be considerably reduced by using an image-derived

input function (IDIF) from carotid arteries [4]. In that study, IDIF

curves were derived from manual segmentation of the carotid and

background regions; however, manual segmentation is a time-

consuming (and tedious) task that suffers from intra- and inter-

operator variability.

Several algorithms have been proposed in the literature for

more objective segmentation of PET images. Some are semi-

automated, meaning that they still require intervention from the

operator [5,6]. Nevertheless, many completely automatic algo-

rithms based on the unsupervised clustering of voxels are now

available [7–11]. However, unsupervised clustering algorithms

define tissue classes in a data-dependent manner that may not
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accurately describe the underlying physiology and, therefore,

introduce instability or inaccuracies in the grouping [12]. When

the pharmacokinetic behavior of the different tissues is already

known, segmentation can be achieved in a simple and robust way

by taking advantage of predefined kinetic classes [13]. Indeed,

Turkheimer and colleagues [12] developed a supervised clustering

algorithm (SVCA) for the automatic extraction of reference tissue

curves. This algorithm was validated in [11C](R)-PK11195 scans,

and the reference time-activity curve (TAC) was extracted by

discriminating regions with and without pathologically increased

[11C](R)-PK11195 binding.

In the current study, we examined a new objective method to

automatically segment PET images for IDIF by applying SVCA.

In addition to extracting reference tissue curves, the SVCA can

also be used to extract the blood signal from the intracranial

vessels in a fast, objective, and reproducible way. After opportune

partial volume effect and spill-in correction, this signal could be

used as an IDIF for kinetic modeling. The present study sought to:

1) adapt Turkheimer’s SVCA to our PET data in order to

automatically derive an IDIF–without any intervention from the

operator–for calculating [11C](R)-rolipram binding; and 2) repli-

cate the findings of a previous clinical study that compared

[11C](R)-rolipram binding between healthy subjects and MDD

patients using cluster-IDIFs [1].

Methods

Radioligand Preparation
[11C](R)-rolipram was synthesized as previously described [14]

and according to our Investigational New Drug Application

#73,149, submitted to the US Food and Drug Administration. A

copy of our application is available at: http://pdsp.med.unc.edu/

snidd/nidpulldownPC.php. The radioligand was obtained in high

radiochemical purity (.99%).

Subjects
Study subjects included 25 healthy individuals (9 females, 16

males, 37611 years old, body weight = 83616 kg) and 28 patients

with moderate-to-severe MDD (9 females and 19 males, 36611

years old, body weight = 86623 kg) [1]. Two of the MDD subjects

were excluded because their arterial input function was obtained

only for the first 60 minutes. See [1] for inclusion criteria and

clinical characteristics of the subjects. This study was approved by

the Combined Neuroscience Institutional Review Board of the

NIH Intramural Research Program, and all subjects provided

written informed consent to participate.

Measurement of [11C](R)-rolipram in Plasma
All blood samples (1 mL each) were drawn from the radial

artery at 15-second intervals for the first 150 seconds, followed by

3 mL samples at 3, 4, 6, 8, 10, 15, 20, 30, 40, and 50 minutes, and

4.5 mL at 60, 75, and 90 minutes. The plasma TAC was corrected

for the fraction of unchanged radioligand [14,15]. The plasma free

fraction (fP) of [
11C](R)-rolipram was determined by ultrafiltration

[16]. Assay-by-assay fluctuations in fP measurement were correct-

ed based upon fP of a standard plasma sample assayed with the

subject’s sample [17].

PET Scans
PET images were acquired with an Advance scanner (GE

Healthcare, Milwaukee, WI). A head holder was used to minimize

head movements during the scan. An 8-minute 68Ge transmission

scan was obtained before injection of the radiotracer for

attenuation correction. The mean injected activity was 726697

MBq for healthy subjects and 7036108 MBq for MDD patients.

The emission scan was conducted for 90 minutes in 3D mode

using frames of increasing length from 30 seconds to 5 minutes.

After attenuation and a model-based scatter correction, PET

images were reconstructed with filtered back projection and a

Hanning filter in 1286128635 matrix with 26264.25 mm voxel

size, resulting in a 7 mm image spatial resolution.

Magnetic Resonance Image (MRI) Scans
T1-weighted structural MRIs were also obtained using either a

3-T Signa scanner (GE, Milwaukee, WI) or an Achieva 3-T MRI

scanner (Philips Health Care, Andover, MA). We used a TFE

(turbo field echo) sequence (TR=8.1 msec, TE= 3.7 msec, flip

angle = 8, matrix = 18162566256, voxel si-

ze = 160.98360.983 mm).

Image Analysis
The merged automated anatomical labeling (AAL) template was

used to measure regional TAC [18]. Predefined volumes of

interest (VOIs) were positioned on the PET images using the

following methods. The MR image from each subject was

coregistered using SPM8 (Wellcome Department of Imaging

Neuroscience; University College London, UK) to the average

PET image created by summing all of the dynamic image frames.

The MR and the realigned PET images were normalized to a

standardized spatial array (Montreal Neurological Institute (MNI)

space) based on transformation parameters from the MR images.

The final VOIs included the following regions: thalamus (12.6

cm3), caudate (5.6 cm3), putamen (6.5 cm3), cerebellum (51.2 cm3),

frontal (27.2 cm3), parietal (26.6 cm3), lateral temporal (25.0 cm3),

occipital (31.2 cm3), anterior cingulate (7.5 cm3), and medial

temporal (14.3 cm3) cortices.

Creation of the IDIF
Three steps were involved in creating the IDIF: 1) the template

was defined; 2) the whole blood curve was extracted from dynamic

PET; and 3) partial volume effect and radiometabolites were

corrected.

1) Defining the template. To create the templates necessary

for the clustering procedure, [11C](R)-rolipram images were used

from 10 healthy subjects (8 males and 2 females, 74367.0 MBq,

84.2621.1 kg, 31.4610.7 years old) who did not belong to the

population described above. Scans for these subjects were acquired

using the same machine and acquisition protocol as for the 51

subjects in the clinical study.

Creation of a ligand-specific PET template. Dynamic

PET images were first realigned to correct for motion. All time

frames of the dynamic PET images were then averaged to create a

mean PET image (Figure 1a), and the T1-weighted MR image was

coregistered to this mean PET image (Figure 1b). The averaged

PET images were spatially normalized to the MNI MR template

using the transformation parameters of the coregistered MR

images (Figure 1c). The ligand-specific spatial template was

created by averaging the spatially normalized mean PET images

of the 10 subjects (Figure 1d). This ligand specific template for

[11C](R)-rolipram PET was used to obtain the transformation

matrix for normalizing each PET image without using the MR

image.

Creation of the template time-activity curves. We

extracted three kinetic tissue models: gray matter, white matter,

and blood. The gray and white matter masks were delineated on

the individual MR images of the 10 subjects. It should be noted

that prior removal of extracerebral tissues, as proposed in an

optimized version of this algorithm [19], was not necessary in the

IDIF from Clustering Algorithm
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present study because blood voxels were readily identified in all

scans. The reconstructed T1-weighted MR images were corrected

for intensity inhomogeneity and segmented into gray and white

matter (Figure 1e). The gray matter mask was created by selecting

the voxels showing a probability greater than 0.9. To obtain the

white matter mask we first created a map of the amount of spill-

over from the gray matter into the white matter. This was done by

applying a 3D Gaussian kernel with 7 mm of Full Width at Half

Maximum (FWHM) to the gray matter mask image after applying

a probability of 0.5 as a threshold. The final white matter mask

was created using the voxels within the white matter whose spill-

over amount was less than 0.5% of the imaginary uniform activity

of gray matter (Figure 1f). To acquire template TACs for blood,

we manually drew carotid VOIs on a PET image comprising the

averaged first frames (from the second to the fourth) (Figure 1g).

The activity of each frame was standardized by subtracting the

mean and dividing by the standard deviation of the individual

frame (Figure 1 h). Finally, the template curves for the three tissues

were derived by averaging the TACs of the 10 subjects obtained

from the masks for gray matter, white matter, and carotid applied

to the standardized PET image of each subject (Figure 1i and j).

Classification of tissue types using supervised

clustering. The supervised clustering procedure was carried

out as originally described [12], using in-house software imple-

mented in MATLAB 7.1 (MathWorks, Natick, MA). In brief, all

time frames of the dynamic PET images were first standardized by

activity (Figure 2a). Then, using the template TACs for the three

tissues, weighting parameters were calculated for each tissue using

a voxel-wise non-negative least squares algorithm (Figure 2b and

c). The weighting parameters describe the similarity to each

template TAC in each voxel. Finally, 3D volumes with the

information of weighting parameters for gray matter, white

matter, and blood were acquired (Figure 2d).

Creation of vascular template and template mask for the

carotid and surrounding tissue. The mean PET images were

spatially normalized to the ligand-specific PET template and the

resulting transformation parameters were used to normalize the

images weighted for the blood component (Figure 3a). Spatially

normalized blood-weighted images from the 10 subjects were then

averaged to create a vascular template image for designing a

template mask for the carotid artery and surrounding tissue

(Figure 3b).

After manually removing the voxels belonging to the cerebral

venous sinuses and voxels considered to be noise from the blood

template image, we created a template mask image for the carotid

artery by including only the voxels whose parameters were higher

than 0.2. For the surrounding tissue mask, a 3D Gaussian kernel

with 7 mm of FWHM was first applied to the carotid mask image.

The template mask image for the surrounding tissues was then

created by selecting the voxels with values between 0.1 and 0.001.

The two masks were merged into a single volume to obtain a

template VOI mask image for both carotid and surrounding tissue.

Figure 1. Creation of ligand-specific PET template and time-activity curve (TAC) templates. Mean positron emission tomography (PET)
image was created by first averaging the motion-corrected PET dynamic frames (a). The T1-weighted magnetic resonance (MR) image was then
coregistered to mean PET image (b). This coregistered mean PET image was spatially normalized (c) based on the transformation parameters from
spatial normalization of MR image to the Montreal Neurological Institute (MNI) MRI template. Spatially normalized mean PET images from all 10
subjects were averaged to obtain the final ligand–specific template (d). From automatic MRI segmentation (e), we obtained the volumes of interest
(VOIs) for grey and white matter (f). The carotid VOIs were obtained from manual segmentation of the early PET frames (g). Motion-corrected dynamic
PET images were standardized by activity (h). The template curves for the three tissues (i) were derived by averaging the TACs of the 10 subjects
obtained from each mask applied to the standardized PET images (j).
doi:10.1371/journal.pone.0089101.g001

IDIF from Clustering Algorithm

PLOS ONE | www.plosone.org 3 February 2014 | Volume 9 | Issue 2 | e89101



Figure 2. Classification of tissue types using supervised clustering. The time frames of the dynamic positron emission tomography (PET)
images were first standardized by activity (a). Then, using the template TACs for the three tissues (b), we calculated the weighting parameters by
using a voxel-wise non-negative least squares algorithm (c). A 3D volume with the weighting parameter information for grey matter, white matter,
and blood was generated (d).
doi:10.1371/journal.pone.0089101.g002

Figure 3. Creation of volumes of interest (VOIs) mask for the carotid artery and its surrounding tissue. The template VOI mask for
carotid and surrounding tissue was obtained from the spatially normalized (a) and averaged weighting parameter image for blood (b). Individual VOI
masks for carotid and surrounding tissue were created by inverse spatial normalization of the template VOI mask (c). The inverse normalization
parameters were derived from the spatial normalization of the average image of dynamic positron emission tomography (PET) to the ligand specific
PET template.
doi:10.1371/journal.pone.0089101.g003

IDIF from Clustering Algorithm
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The inverse spatial normalization parameters derived from the

normalization of the individual mean PET image to the ligand-

specific template were applied to the template VOI mask. This was

done to create individual VOI masks to measure TACs for carotid

and surrounding tissue (Figure 3c).

2) Extracting whole blood curve from dynamic

PET. Both activity standardization and supervised clustering to

extract weighting parameters for blood were conducted for all 51

PET scans from the clinical study. The individual mask images for

the carotids and surrounding tissues were created by applying the

inverse normalization parameter derived from the spatial normal-

ization of each averaged PET image to the ligand-specific

template. Voxels showing more than 50% of weighting parameter

values within the carotid mask were selected, and the carotid TAC

was obtained by averaging the voxels; these were weighted by their

weighting parameter [12]. In addition, within the individual mask

of surrounding tissue, the TAC of the surrounding tissue was

obtained using the unweighted average of the voxels with less than

0.1% of weighting parameter for blood.

3) Correction for partial volume effect and

radiometabolites. The method used here, originally proposed

by Chen and colleagues for [18F]FDG [20], is very robust with

regard to motion artifacts [21], thus making it applicable for

imaging patients with dementia or movement disorders. We

validated this method for [11C](R)-rolipram [2,4,22]. Briefly, the

carotid signal in the images is represented as a linear combination

of the radioactivity from the blood and that spilling into the carotid

from the surrounding tissue, according to the formula:

Ccarotid tð Þ~RC|Cwb tð ÞzSP|Csurround tð Þ ð1Þ

where Ccarotid and Csurround are the radioactivity concentrations in

the carotid and the surrounding tissue, respectively; Cwb is the

radioactivity measured in arterial whole blood; and RC and SP are

the recovery and spill-in coefficients, which were estimated with

linear least square fitting of Ccarotid, Cwb, and Csurround in equation

(1) at the sampling times (t). Cwb was measured at 6, 20, 60, and 90

minutes. In one subject, whole-blood IDIF was obtained using

only the first three samples (6, 20, and 60 minutes) because the

addition of the fourth sample resulted in a curve whose shape was

inconsistent with that of an input function. To obtain the

concentrations of unchanged parent ligand, a monoexponential

function was fitted to the individual parent/whole blood concen-

tration at at 6, 20, 60, and 90 minutes and then multiplied by the

whole-blood IDIF.

Calculation of [11C](R)-rolipram Binding
Logan analysis was used to calculate VT values, which were

divided by the individual plasma free fraction (VT/fP). Logan-VT/

fP values obtained in the control group and MDD patients were

compared using repeated measures two-way analysis of variance

with regions as the within-subjects (repeating) factor. The analysis

was performed using Logan-VT/fP values obtained with reference

arterial input function and with IDIF. Statistical analyses were

performed using IBM SPSS Statistics 20 (Armonk, NY).

Results

The clustering algorithm clearly segmented the carotid arteries

in all PET scans. Although the height of the IDIF peaks generally

presented some variations compared to the arterial peak, at later

times the image-derived curves followed the full arterial curves

well. Both visual inspection as well as comparison of IDIFs

obtained from manual drawings [4] found that IDIFs obtained

with the clustering procedure were less noisy for most subjects

(Figure 4). To quantitatively support our visual impression, we

calculated the sum of the squared distance at each time point after

10 minutes between the reference arterial curve, manual-IDIF,

and cluster-IDIF. The mean sum of the squared distance

expressed in kBq/mL from the 51 subjects for cluster-IDIF

(160.36142.4) was lower than that for manual-IDIF

(172.66138.1). The cluster-IDIF gave a lower value in 34 of 51

subjects; the likelihood of this occurring by chance is approxi-

mately 1%.

The estimated Logan-VT/fP values obtained via cluster-IDIF

were very similar to the reference values (Pearson’s correlation, p,

0.0001, R2=0.976 in Figure 5A) and showed no proportional bias

through the range of measurements (Figure 5B). The estimated/

reference Logan-VT/fP ratio was 0.9960.04, and these results

were equally accurate for healthy controls (0.9860.04) and MDD

patients (1.0160.04). Thirty-nine of 51 subjects had a VT/fP error

of ,5%, 11 had an error between 5 and 10%, and one had an

error of 11%.

Logan-VT/fP values obtained with cluster-IDIF showed a

widespread decrease of about 20% [11C](R)-rolipram binding in

the MDD group (mean VT/fP in controls: 13.263.10 mL/g,

MDD: 11.063.30, two-way ANOVA p=0.017 for group

difference in the 10 brain regions); these findings echoed previous

results obtained using the full input (controls: 13.563.10 mL/g,

MDD: 10.963.21; p= 0.005) as well as IDIF by manual

segmentation (controls: 13.463.20 mL/g, MDD: 10.963.33;

p = 0.008) [4].

Discussion

This study found that an SVCA-derived cluster-IDIF provided

good carotid segmentation for [11C](R)-rolipram brain PET scans.

After partial volume and radiometabolite correction, the carotid

TACs were used as an IDIF to estimate [11C](R)-rolipram binding.

The technique was validated on a large number of subjects.

Furthermore, we were able to replicate the results of a previously

published clinical protocol comparing healthy subjects and MDD

patients [1], which showed a global reduction of [11C](R)-rolipram

binding (of about 20%) in MDD patients compared to controls.

The main advantage of automatic segmentation is that it

completely removes intra- and inter-operator variability. Although

this variability is quite small (a few percentage points at most)

when using Chen’s method [20], results obtained with manual

segmentation are nevertheless always influenced by the shape of

the VOIs and the number of slices included because the carotid

TACs are ultimately fitted to blood samples.

In most subjects in this study, the IDIF obtained with the

clustering algorithm was also of better quality (less noisy) than the

IDIF drawn manually on the same scans [4] (Figure 4), as

demonstrated by a lower sum of the squared distance between the

reference arterial curve and both the manual- and cluster-IDIFs.

Indeed, carotid VOIs obtained from automatic segmentation

would likely include a higher number of vascular voxels and a

lower number of background voxels than when segmentation is

obtained manually. This improved IDIF quality, however, did not

translate into a more accurate estimate of the final Logan-VT

results. In fact, the differences in the area under the curve were

minimal; regardless, all input functions were fitted with a tri-

exponential function before modeling, thus effectively eliminating

noise. It can also be argued that if a given IDIF technique yields

significantly different results on the basis of a difference of a few

voxels between manual or automatic segmentation, then it would

be too unstable to be used. Our results nevertheless suggest that

IDIF from Clustering Algorithm
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voxel selection with the clustering algorithm is not only more

reproducible, but also more accurate than manual segmentation.

These results further echo those obtained by Chen and colleagues

using an automatic carotid segmentation with independent

component analysis (ICA) [23]. The use of ICA resulted in a

faster and more objective carotid segmentation, although the

results were not significantly better than those obtained by simple

manual segmentation [20].

Another advantage of automatic segmentation is the amount of

time saved. When the procedure is entirely automated, a simple

computer script allows a whole population of subjects to be

analyzed at once, as was done in the present study.

Notably, the present technique does not require coregistered

anatomical images. MRI and computer assisted tomography (CT)

scans have sometimes been used to help delineate the carotid

arteries [24,25]. However, the carotid is a very small and elastic

structure that may present significant coregistration challenges

[26,27]; direct segmentation from PET images is therefore

preferable. New hybrid PET/MRI machines would allow the

position and size of the carotid vessels to be determined more

accurately, and some authors have argued that this might facilitate

IDIF estimates, possibly in a completely non-invasive way [28,29].

In our opinion, however, a more accurate coregistration with MRI

will not improve IDIF estimates because of the intrinsic limits of

Figure 4. Manual and cluster-IDIF in a representative subject. Metabolite corrected arterial input function (in red) and image-derived input
function (IDIF) (in black) in a representative subject. The insets show the curves from 10 to 90 minutes. Main graphs show the early part of the curves
until 10 minutes. Carotid and background segmentation was performed manually (A) or with the clustering algorithm (B). In most subjects, the
automatic IDIFs were slightly less noisy.
doi:10.1371/journal.pone.0089101.g004

Figure 5. Correlation and agreement between the Logan-VT/fP values derived from arterial input function and cluster-IDIF. (A) The
image-derived input functions (IDIFs) derived from cluster segmentation yielded Logan-VT/fP values that were well-correlated with those derived
from the reference arterial input function (Pearson’s correlation, p,0.0001). Each of the 51 points represents an average VT/fP value of grey matter in
a single subject. (B) The Bland-Altman plot shows that the two measurements are in good agreement, with no proportional bias through the range of
measurements. The dotted line in the middle shows the mean difference; the other two dotted lines show the 95% confidence interval.
doi:10.1371/journal.pone.0089101.g005

IDIF from Clustering Algorithm
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PET technology. For instance, even a theoretically perfect spatial

delineation of the carotids would not solve the problem of poor

temporal resolution and the separation of the parent concentration

in plasma from total blood radioactivity. Poor temporal resolution

would not allow a good estimate of the rapidly changing early part

of the input function (the peak). For radioligands with a fast

washout from the vascular compartment, an accurate estimation

of the peak is necessary when using a Logan analysis because a

large part of the area under the curve is found under the peak [26].

Moreover, even if a perfect partial volume effect recovery could be

obtained from the images, the reference recovery coefficient would

already be available with a simple measurement of the whole-

blood concentration in the blood samples that must, regardless, be

collected for radiometabolite correction.

It should be noted that good segmentation can likely be

obtained with other radioligands, PET scanners, and subject

populations. Indeed, the extant literature shows that the supervised

clustering method has been acquired with different scanners, as

well as successfully applied to populations with brain atrophy [30–

32]. However, after carotid segmentation, partial volume and spill-

in correction must be performed. For [11C](R)-rolipram, excellent

results were obtained using the method developed by Chen and

colleagues [20], using both a high resolution research tomograph

[2] and a machine with a lower resolution such as the one used in

the present study. However, partial volume correction methods

are very tracer-specific and an appropriate technique must be

found for each tracer [26]. To correct for partial volume effect,

some blood samples are necessary to estimate an IDIF, given that

non-invasive methods are generally less reliable [22,33]. In order

to avoid an arterial line, the best option would be to use venous,

instead of arterial, samples. However, arterovenous equilibrium is

uncommon [34]. In particular, [11C](R)-rolipram does not

demonstrate satisfactory equilibrium; thus, some arterial samples

are still necessary to correct for partial volume effect [4].

In summary, cluster-IDIF is capable of estimating Logan-VT/fP
in [11C](R)-rolipram PET clinical scans as well as full arterial input

function. Nevertheless, the applicability of this technique must be

tested for each new radioligand. We believe that good segmen-

tation of blood voxels will not be difficult to achieve for most

radiotracers. However, the main obstacle to widespread applica-

tion of this technique is finding a reliable partial volume effect

correction of the raw carotid curves.
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