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Abstract. Image diffusion can smooth away noise and small-scale structures

while retaining important features, thereby enhancing the performances of many

image processing algorithms such as image compression, segmentation and rec-

ognition. In this paper, we present a novel diffusion algorithm for which the filter-

ing kernels vary according to the perceptual saliency of boundaries in the input

images. The boundary saliency is estimated through a saliency measure which

is generally determined by curvature changes, intensity gradient and the interac-

tion of neighboring vectors. The connection between filtering kernels and per-

ceptual saliency makes it possible to remove small-scale structures and preserves

significant boundaries adaptively. The effectiveness of the proposed approach is

validated by experiments on various medical images including the color Chinese

Visible Human data set and gray MRI brain images.

1 Introduction

To accentuate certain image features for subsequent analysis or display, image enhance-

ment is usually performed by either suppressing the noise or increasing the image con-

trast. In the early development of image processing, linear filters were used primarily

owing to their mathematical simplicity and ease of implementation. However, linear

filters such as low-pass filtering [1] tend to blur away the sharp boundaries that help to

differentiate large scale anatomical structures. Even in cases where linear filters do not

obliterate boundaries, they tend to distort the fine structures of the image and thereby

change subtle aspects of the anatomical shapes in question.

To alleviate the detrimental effects of linear filters, many efforts have been devoted

in the literature for preserving the signal details while eliminating the noise. A power-

ful approach for denoising is to define a penalty functional that results in the recovered

signal as close as possible to the measured signal while maintaining the smoothness

except for the salient boundaries. As shown in [2], many well-known approaches, such

as the Weighted Least Squares (WLS) [3], Robust Estimation technique (RE) [4] and

Anisotropic diffusion (AD) [5], have a fundamental relationship. Similar to the Com-

plex Diffusion [6], all these methods are based on the assumption that local relations

between the samples dictate the final result and hence resort to an iterative algorithm.

Tomasi and Manduchi proposed an alternative non-iterative Bilateral Filter (BF) [7]

which performs smoothing by using both domain and range neighborhoods. This non-

linear approach does not involve the solution of partial differential equations and can be
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implemented in a single iteration to generate results as good as iterative approaches [8].

Elad [2] shows that the bilateral filter can also be derived from the Bayesian approach

using a novel penalty functional. Despite the relationship between the bilateral filter

and AD/RE/WLS, the major difference of the former approach is that it considers all

the relative neighborhoods in parallel while the latter focuses on the diffusion of con-

nected samples. Although the bilateral filtering is capable of reducing the noise in an

image by an order of magnitude while maintaining edges, it is a challenging task to

choose an appropriate kernel, for balancing the trade-off between edge maintenance

and noise removal. In [9], Ramanath and Snyder proposed a demosaicking approach

using an adaptive bilateral filter kernel generated by linear interpolation.

In this paper, we propose to enhance the performance of the bilateral filter by replac-

ing the constant kernels with a function decreasing with the boundary saliency. This

leads to an adaptive filtering scheme which can average smooth regions with a broad

filtering kernel and preserves strong boundaries with a sharp kernel. For each pixel in an

image, we define a fixed set of “orientation elements” connecting the pixel to its neigh-

boring pixels. The saliency of boundaries in the original images are evaluated through a

novel saliency measure which is determined by the intensity gradient at an element, the

interaction of neighboring elements and the curvature changes along a sequence of ele-

ments. The curvature gradient factor provides us a measure that can treat different types

of curves equally. Another advantage of this novel measure is that it doesn’t depend on

the closure criterion, which makes it more suitable for realistic applications. Using this

edge feature, we propose the Saliency Bilateral Filter (SBF) which can be applied on

both gray and color images for adaptive edge-preserving smoothing.

2 Method

The idea behind the bilateral filter is to combine domain and range filtering together,

thereby enforcing both geometric and photometric locality. This filter generally smooths

signals while preserving steps via a nonlinear combination of nearby sample values. For

a 2D image f , the bilateral filter can be described as:

h(p) =

∫

∞

−∞

∫

∞

−∞
f(q)Υd(p, q)Υs(f(p), f(q))dq

∫

∞

−∞

∫

∞

−∞
Υd(p, q)Υs(f(p), f(q))dq

(1)

where p and q refer to space variables. Function Υd(p, q) is the closeness function which

measures the geometric distance:

Υd(p, q) = exp{
−d2(p − q)

2σ2
d

} (2)

and Υs(f(p), f(q)) is the photometric similarity function:

Υs(p, q) = exp{
−[f(p) − f(q)]2

2σ2
s

}. (3)

The diffusion effect of the bilateral filter is controlled by three parameters: the filter-

ing window size N , the geometric spread σs, and the photometric spread σd. Usually,
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Fig. 1. ( Left ) Summary of the proposed searching algorithm to compute the novel saliency

measure. ( Right ) Schematic explanation of an iteration of the searching algorithm.

the filtering window size is decided by the spatial kernel radius, while the photomet-

ric spread σs and geometric spread σd are chosen to achieve the desired amount of

combination of sample values and the desired amount of low-pass filtering.

2.1 Curvature Gradient Saliency Measure

In this section, we propose to choose the filtering kernel in an adaptive scheme by using

perceptual metrics so that the regions with different properties can be treated accord-

ingly. For the measurement of the perceptual saliency of structures in the original image,

we propose a novel saliency measure, called Curvature Gradient Saliency (CGS). For

each orientation element v on the input image, the L level saliency ΦL(v) is defined to

be the maximum saliency over all curves of length L emanating from v. The saliency

of a curve Γ (s) of length l (s denotes arc length, 0 ≤ s ≤ l) is defined as

S(Γ ) =

∫ l

0

ρsg(s)C(s)ds (4)

where ρ is a constant that determines how quickly the contribution of an element to

its neighboring elements decays with distance, and g(s) is the normalized intensity

gradient of arc Γ (s) defined as:

g(s) =
G(s) − Gmin

Gmax − Gmin

(5)

with G(s) represents the intensity gradient of Γ (s). Terms Gmax and Gmin are the

maximum and minimum values of the gradient map respectively. The purpose of em-

ploying the normalized intensity gradient is to guide the expansion of saliency in a

smoother manner so that elements with high intensity gradient can extend their saliency

farther. Function C(s) in Eq. (4) is the curvature gradient function defined as

C(s) = exp(−|∇k(s)|) (6)

where k(s) refers to the curvature of arc Γ (s).
This measure favors significant, long boundaries with constant curvature. Further,

it calculates the smoothing factor in local areas providing an efficient way to restrain
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Fig. 2. Three cases of spatial relationship between the central pixel p and its neighbor q for photo-

metric similarity computation, including two cases ((a) and (b)), where q is away from the salient

edge across the central point p and case (c) when q is just located on the salient edge.

the spread of local noise. Unlike most existing methods [10, 11], this measure does not

depend on the closure criterion. Since the boundaries are not always closed curves in

natural and medical images, the independence of closure criterion makes our measure

more genetic for realistic applications.

2.2 Computation of CGS

To compute this saliency measure in gradient maps of 2D images, we developed a local

searching algorithm which is summarized in Fig. 1(left) and is briefly described as fol-

lows. To compute the L level saliency SL(v) of element p, we consider all the elements

V = {hi}, i = 1, . . . , N in the 2L ∗ 2L window centered on p. A set of elements is

maintained E = {h1, h2, . . . , hn} to which we currently know the most salient curve

from v as illustrated in Fig. 1(right). Initially, only element v is in set E. Then at each

following iteration, we find an element ht from set V − E such that

dt = max
hj∈(V −E)

[dj−2 − Ψj−1] (7)

where dt is the saliency of the most salient curve from v to ht and dj−2 is the saliency

of the most salient curve from v to hj−2, the previous second element before element

hj . It is obvious that all previous elements should have been in E. Ψj−1 is the saliency

of the fragment from ht to ht−1 and is defined as

Ψj−1 = (ρj−1gj−1 + ρjgj)Cj−1 (8)

with

Cj−1 = |Kj−2,j−1 − Kj−1,j | (9)

where Kj−1,j is the curvature of fragment from hj−1 to hj . Since ht satisfies Eq. (7),

it is guaranteed that all elements of the most salient curve from v to ht must have been

in set E. Hence, we put ht into set E as a new element with a known most salient

curve from v. After finding the most salient curve for each element in the window, we

search for the element hmax with the maximum saliency value among the elements

whose lengths lj are equal to L. Then, we define its saliency value dmax as SL(v), the

saliency of the central element v.
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Fig. 3. The filtering results on a 2D gray MRI brain image. ( a ) The input MRI image. ( b ) An

enlarged part. ( c ) The result of bilateral filter. ( d ) The result of adaptive bilateral filter using

intensity gradient. ( e ) The result using saliency bilateral filtering.

2.3 Adaptive Filtering Based on CGS

After extracting the saliency features using the approach introduced above, each pixel p

on the 2D image plane Ω has a saliency measure sp which is defined as the saliency of

the greatest boundary across it. Using the basic idea in Eq. (2), the geometric closeness

function for SBF can be defined as:

Υd(p, q) = exp

{

−
(1 + sp)

2||p − q||

2

}

. (10)

Further, we follow the region based filtering idea to measure the photometric similarity

between two locations using region difference. The region filtering can improve the ro-

bustness of the filtering process instead of using the intensity of single pixel. For pixels

on salient boundaries, there are two subregions with significantly different appearances

besides the boundary. To compute the photometric similarity more accurately, we com-

pare two pixels within the same side of the salient boundary so that the interference of

other subregions can be avoided. As shown in Fig. 2, there are three relations of the

locations of pixels p with its neighbor q. For both the cases (Fig. 2(a) and 2(b)) where

q is not located on the salient edge, we compute the similarity using only the subregion

Ωpq containing q. When pixel q is located on the salient edge (Fig. 2(c)), we compare

the similarity within the whole filtering window Wp. Thus, the photometric similarity

function for our approach is defined as:

D(p, q) =

⎧

⎪

⎨

⎪

⎩

��
Ωpq

(f(x)−f(y))2dxdy
��

Ωpq
dxdy

, Case 1 & 2
��

Wp
(f(x)−f(y))2dxdy
��

Wp
dxdy

, Case 3
(11)

The range similarity function using saliency measures is then obtained by:

Υs(p, q) = exp(
−D(p, q)

2σ2
s

) (12)

When σs is set at a larger value (e.g. 100), the range filtering kernel is very broad, and

the range component of the filter has little effect for the domain component. In other

words, all neighbors have the same weight so that the combined filter acts as a simple

domain filter. When σs is small (e.g. 10), only pixels with very similar contexts will be

averaged.
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3 Results

In this section, we analyze the performance of the proposed approach on both synthetic

and medical images. One of the constants for saliency computation is the maximum

curve length L which should be chosen large enough to smooth away small-scale struc-

tures and noise, but not too large to corrupt significant features. Another constant is the

interaction factor ρ, ranging from 0 to 1. A large value of ρ enables our algorithm to fill

in large gaps between edge segments, while a small ρ can restrain the spread of local

noise more effectively. For all experiments presented here, we set L = 30, ρ = 0.8
and σs = 30.

Figure 3 shows the results on a gray MRI brain image. The bilateral filter was ap-

plied with σd = 3 and σs = 30. From the result in Fig. 3(c), we observe that most

of small-scale structures have been removed by the bilateral filter but important edges

were also blurred. Figures 3(d) and 3(e) show the results using adaptive filtering scheme

based on intensity gradient and saliency measure respectively. It is evident that using

intensity gradient can improve the preserving of boundaries, and SBF maintains most of

the significant boundaries in the original image. Following the same framework in [7],

our algorithm can be easily extended to vector-valued images. Figure 4 shows an ex-

periment on a color image (Fig. 4(a)). When using the RGB space (Fig. 4(c)), there

are some extraneous colors on the filtering result (e.g., the blurred pink-purple area).

This is because the RGB color models are not well suitable for describing colors in

terms that are practical for human interpretation. Therefore we make use of the CIE-

Lab color model [12] which is based on a large body of psychophysical data concerning

color-matching experiments performed by human observers. Thus, the similarity mea-

sured in this space correlates strongly with the perception of color discrepancy. As seen

Fig. 4. An experiment on a natural color image. ( a ) The original color image. ( b ) The output

of the bilateral filter using the CIE-Lab color space with σd = 1 and σs = 50. ( c ) The output

of the adaptive bilateral filter using the RGB color space. ( d ) The output of the SBF approach

using CIE-Lab color space.

Fig. 5. A diffusion example on the color CVH images. ( a ) The original color image in the CVH

dataset. ( b ) The patch selected as the test image. ( c ) The result of the bilateral filter. ( d ) The

result of SBF.
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Fig. 6. The brain MR phantom. ( a ) The artificial phantom of the MR head tomogram as a

reference image. ( b )The canny edge map. ( c ) The noisy version of (a). ( d ) An enlarged view

of the noisy image. ( e ) The canny edge map of the noisy image.

(a) (b)

(c) (d)

Fig. 7. The diffusion results of the noisy brain phantom image using different filters including

( a ) the bilateral filter with σd = 1 and σs = 40, ( b ) the Perona-Malik anisotropic filter 100

iterations with diffusivity constant K = 10 and time step of 0.1, ( c ) the complex decomposition

using θ = π/15, and ( d ) the proposed SBF. Each result shows the filtered image, an enlargement

part of the result and the canny edge map.

above, by measuring the color distance in the CIE-Lab space, both the bilateral filter

(Fig. 4(b)) and the SBF approach (Fig. 4(d)) have greatly corrected this undesirable ef-

fect. However, it is noticeable that our algorithm retains more details (e.g. the ear) than

the bilateral filter.

Figure 5 illustrates one of our experiments on the color Chinese Visible Human

(CVH) data set. The highest resolution CVH data set is about 1143 GB in size and

consists of 18, 200 cross-sectional color digital images (4064 × 2704 resolution, 24

bits per pixel) at 0.1mm intervals. Both the bilateral filter and our algorithm have suc-

cessfully removed most of shading, while more perceptually important edges were pre-

served by the SBF filter. Both the methods were implemented using C code. For a color

image in the CVH data set, the bilateral filter took 1.4 mins on a 2.8-GHz Pentium IV,

and our algorithm needs 3.2 mins including both saliency computation and adaptive

filtering.
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Fig. 8. ( Left ) The intensity difference of each region interior between brain phantom image with

the noisy image and the filtering results of different approaches. ( Right ) The Mean-Squared

Errors between the brain phantom image with the noisy image and the filtering results of different

approaches.

To evaluate the performances of those algorithms quantitatively, we use the step-

wise constant MR-head phantom in [13]. It contains five ideally segmented compo-

nents as shown in Fig. 6(a). Each component is stepwise constant with a given

intensity. The input image (Fig. 6(c)) is a noisy version of this reference image with

a Gaussian noise of standard deviation σ = 20. Figure 7 shows the filtered results using

four algorithms including the bilateral filter, anisotropic diffusion [5], complex diffu-

sion [6] and the proposed SBF algorithm. All the parameters involved in the previous

methods were selected by trial-and-error in order to get an optimal result from each

method.

We compared the filtering results with the original phantom image. Figure 8(left)

shows the intensity differences in five region interiors of the filtering results and the

stepwise constant reference image. The average difference of interior intensity reflects

the similarity of filtered images with the reference image. The statistics show that

among the tested four algorithms, the SBF approach produced the closest result to the

phantom image. For the whole frame of filtered images, the obtained Mean-Squared

Errors are illustrated in Fig. 8(right), where the result of the SBF algorithm hold the

lowest overall MSE for this experiment.

4 Conclusions

The paper presents a novel diffusion approach based on perceptual metrics. To ac-

commodate regions with different features, the filtering kernels are adjusted based on

the saliency of boundaries. The connection between the filtering kernel and percep-

tual saliency makes it possible to remove noise and preserve salient boundaries adap-

tively. Moreover, the calculation of the saliency provides an efficient way to accurately

measure the photometric similarity. We have shown that the proposed approach can be

extended for vector-valued images by combining the CIE-Lab color model and tested

the proposed saliency bilateral filter on a variety of synthetic and medical images. The

qualitative and quantitative results show convincing advantages in comparison with the

bilateral filter and other popular approaches.
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