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ABSTRACT

We investigate the methods of microstructure representation for the purpose of predicting processing condition from microstructure image
data. A binary alloy (uranium–molybdenum) that is currently under development as a nuclear fuel was studied for the purpose of develop-
ing an improved machine learning approach to image recognition, characterization, and building predictive capabilities linking microstruc-
ture to processing conditions. Here, we test different microstructure representations and evaluate model performance based on the F1 score.
A F1 score of 95.1% was achieved for distinguishing between micrographs corresponding to ten different thermo-mechanical material pro-
cessing conditions. We find that our newly developed microstructure representation describes image data well, and the traditional approach
of utilizing area fractions of different phases is insufficient for distinguishing between multiple classes using a relatively small, imbalanced
original dataset of 272 images. To explore the applicability of generative methods for supplementing such limited datasets, generative adver-
sarial networks were trained to generate artificial microstructure images. Two different generative networks were trained and tested to assess
performance. Challenges and best practices associated with applying machine learning to limited microstructure image datasets are also dis-
cussed. Our work has implications for quantitative microstructure analysis and development of microstructure–processing relationships in
limited datasets typical of metallurgical process design studies.

© 2020 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0013720

I. INTRODUCTION

Microstructure image data are rich in information regarding
morphology and implied composition of constituent phases and
can provide unique insight into the pathways leading to micro-
structure formation and mechanisms responsible for material
behavior and performance. Thus, the analysis of micrographs (i.e.,
microstructure image data) is central to several materials science
studies establishing processing–structure–property relationships
and for the design of new material systems. Despite the ubiquity of
micrographs in material science research, significant challenges

exist related to consistent and accurate recognition and analysis of
image data. Such challenges arise from the domain knowledge and

skill required to obtain micrographs, the diverse types of image data

possible (e.g., optical and electron microscopy), domain-specific

challenges to image analysis techniques, and more. With the advanc-

ing application of artificial intelligence (AI) (i.e., machine learning)

in a wide range of fields, we find that the application of established

AI methods to microstructure recognition and analysis opens up an

opportunity for computationally guided experiments and objective,

repeatable analysis of image data. To address the need for improved
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microstructure quantification via image-driven machine learning
using small, imbalanced datasets, we investigate microstructure–
processing relationships in a model binary uranium–molybdenum
(U–Mo) alloy. The U–Mo system is of particular interest due to the
alloy’s applicability as a nuclear fuel for research reactors and the
need to understand microstructure–processing relationships for
improved fabrication design and fuel qualification.

Uranium (U) alloyed with 10 weight percent (wt. %) molybde-
num (Mo), referred to here as U-10Mo, is currently under develop-
ment as a new metallic nuclear fuel for application in research and
radioisotope production facilities. U-10Mo is a candidate for low
enriched U (LEU) fuel, designed to replace currently used highly
enriched U (HEU) fuels with the aim of reducing proliferation
and safety risks associated with HEU handling and operation.1–4

A monolithic, plate-type design for U-10Mo has been selected due
to the high U densities achievable while meeting the low enrich-
ment specification, where the fuel must have �20% 235U relative to
all U isotopes. In order to fabricate fuel plates to meet dimensional
requirements, the U-10Mo alloy must be subjected to several
thermo-mechanical processing steps, leading to microstructural
evolution during fabrication (e.g., hot rolling and hot isostatic
pressing). To design a fuel with microstructure that meets perfor-
mance requirements and to enable future materials processing
design, the microstructure–processing relationship must be
well-established.

The equilibrium phase of pure U at room temperature (α-U)
has an orthorhombic crystal structure. α-U is known to experience
non-uniform thermal expansion in a high temperature, irradiation
environment, thus 10 wt. % Mo is added to stabilize the high-
temperature BCC γ-U phase at room temperature. During process-
ing, U-10Mo is exposed to temperatures below 560�575 �C during
hot isostatic pressing (HIP). Below these temperatures, a eutectoid
decomposition of the metastable γ-UMo matrix phase into α-U
and γ

0 (U2Mo) is expected, based on the equilibrium binary phase
diagram.5 Prior work has demonstrated that this eutectoid decom-
position occurs via a discontinuous precipitation (DP) mechanism.
The decomposition involves the γ-UMo matrix phase transforming
to α-U and Mo-enriched γ-UMo products with lamellar morphol-
ogy. Our previous work showed that this transformation was initi-
ated primarily at grain boundaries and interphase interfaces, where
Si segregation was observed.6–9

Significant prior work has been performed using machine
learning for a range of materials science applications.10–19 A rapidly
growing area in machine learning in materials science is in image
data quantification. Previous studies demonstrated success of con-
volutional neural networks (CNNs) in microstructure recognition
tasks without significant development time and state-of-the-art
performance for a wide range of microstructures (e.g., forged
titanium, perlitic steel, metal powder, and ceramics).11–15,20,21

Additionally, the application of machine learning methods to large
image datasets such as those available through ImageNet is rou-
tinely done.22,23 The ImageNet database includes over 14� 106

natural images that can be used for training and testing of machine
learning models. Application of machine learning methods to
limited datasets is still a frontier in the machine learning
community16,20,24–26 and is of interest to materials science data
analysis problems, where only limited, unbalanced, or historic

datasets are available, and the cost/time associated with obtaining
very large datasets is prohibitive.

The present study explores the applicability of image-driven
machine learning methods12 to developing microstructure–processing
relationships. Specifically, we seek to understand the role of several
thermomechanical processing steps in the microstructure evolution
observed in the U-10Mo system. An improved approach to determin-
ing microstructure–processing relationships is developed and presented
here, involving feature extraction, segmentation, and classification
using a random forest model. Microstructure image data are seg-
mented to identify microstructural features of interest and quantify
area fraction of these features, including the γ-UMo matrix, uranium
carbide, and DP reaction transformation products. The application of
generative adversarial networks (GANs)27,28 is also discussed as an
emerging method for microstructure image generation. Our work has
broad implications for machine learning applications in microstructure
image analysis and the development of quantitative microstructure–
processing relationships in a wide range of alloy systems.

II. EXPERIMENTAL AND COMPUTATIONAL METHODS

A. Image data

Image data used in this work are from two scanning electron
microscopes (SEMs): a FEI Quanta dual beam Focused Ion Beam/
Scanning Electron Microscope (FIB/SEM) and a JEOL JSM-7600F
Field Emission SEM. The backscatter electron detector was used for
improved atomic number (Z) contrast. Two different microscope
operators took the images. Thus, the image data analyzed here were
diverse in terms of resolution, contrast, focus, and magnifications
selected. The idea in using a variety of images taken by different
operators using different microscopes (but all of the same samples)
was to develop a more robust model that can distinguish between
different material processing conditions.

All images used in this work are of a depleted U-10Mo alloy
fabricated and prepared according to the details presented else-
where.29,30 Images were taken over a range of magnifications from
250� to 500�. Image data were labeled based on the processing
condition, detailed in Fig. 1. Ten different image classes were
studied, where each class corresponds to a different processing
history that generates a unique microstructure. The processing con-
ditions detailed in Fig. 1 include two different homogenization
annealing treatments (900 �C�48 h and 1000 �C�16 h) and several
thermo-mechanical processing steps such as cold and hot rolling.
Each image class is therefore labeled by the homogenization treatment
(HT) and processing condition (C) numbers, where 900 �C�48 h is
referred to as HT1 and 100 �C�16 h is HT2. Processing conditions
are indicated by C followed by the number in the list of all possible
conditions in Fig. 1. For example, HT1-C1 is a U-10Mo sample that is
in the as-cast and homogenized condition, where homogenization was
done at 900 �C for 48 h. Representative micrographs from each class
are given in Fig. 2.

Original images vary in size. Different image sizes used in this
work (in pixels) include 2048 by 2560, 1448 by 2048, 1428 by 2048,
and 1024 by 1280. All images included a scale bar region which
was removed prior to training and testing by cropping the image.
The dataset analyzed here consists of a total of 272 original images
from 10 classes. Bilateral filters were applied to each image for
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noise removal while keeping edges sharp. In our study, we chose
the diameter of each pixel neighborhood as 15 while keeping all
other default parameters.

B. Discriminative methods

1. Feature extraction

In order to determine how to best quantify microstructure image
data on the U-10Mo system (as a function of thermo-mechanical
processing parameters), different methods of feature extraction
were developed and tested. Here, each microstructure image is
described by a feature vector, and how that feature vector is derived
either depends on area fraction of different regions or spatial rela-
tionships between microstructural features of interest. These two
types of features are referred to here as area and spatial features,
respectively. These two different feature types are extracted from
each image after segmentation. Area features are simply the area
fractions of each phase or region (γ-UMo matrix, UC, and lamellar
transformation products). U-10Mo microstructures have been
described by the area fractions of these regions in prior work.8,29,31

Spatial features are computed by first measuring the following for
each region (matrix, carbide, lamellar transformation products): the
x and y coordinates of the centroid, area (in square pixels), and
the ratio of area of the region to the area of its bounding box. The
spatial feature is simply a concatenation the following measures:
the number of regions, the mean and standard deviation of the

areas, the standard deviation of the centroid coordinates, and the
mean and standard deviation of area ratios.

C. Approach and machine learning model

All experimentation was carried out with Python version 3.6.9
with the help of various open-source libraries. The opencv, scipy,
skimage, numpy, and sklearn packages (compatible with Python
version 3.6.9) were used for training, testing, and validation. All rel-
evant model parameters are summarized in Table I.

The approach to image recognition and characterization devel-
oped here is schematically described in Fig. 3(a) and involves the
following steps: (1) image segmentation, (2) extracting interpretable
features from the image data, and (3) classifying microstructures
from different classes based on extracted features.

The image segmentation algorithm used here is based on our
prior work where k-means was applied to classify image pixels
based on the grayscale values.31 This method is built upon the
assumption that pixels correspond to different grayscale values and
the differences between clusters are significant. However, in our
dataset not every image comes with three different phases (dictated
by processing condition), which leaves us with the question whether
k is 2 or 3 for each image. While there are some well-known
methods for choosing k, such as the elbow method and the silhouette
method, they do not work well in our experiments. A reason for why
these methods do not work here is that the grayscale shades are typi-
cally spread out evenly on a γ-compressed nonlinear scale, which

FIG. 1. (a) Schematic of U-10Mo fuel fabrication, where the steps shown in the bracket were used to generate microstructure imaged and analyzed in this work. (b)
Sample matrix of sample processing conditions analyzed. For each condition, SEM micrographs were analyzed. Two different homogenization temperatures were utilized,
and thus samples are grouped based on the homogenization treatment performed. Sample conditions are indicated by homogenization treatment (HT) number, where
HT-1 refers to 900 �C�48 h and HT-2 refers to 1000 �C�16 h. The processing condition (C) the micrographs represent is indicated by C followed by a number that corre-
sponds to the number processing condition (e.g., C1 is a sample in the as-cast condition).

Journal of
Applied Physics

ARTICLE scitation.org/journal/jap

J. Appl. Phys. 128, 134901 (2020); doi: 10.1063/5.0013720 128, 134901-3

© Author(s) 2020

https://aip.scitation.org/journal/jap


means there are insignificant differences in grayscale values, even
though they are noticeable to the human eye. Thus, for the image
data used here, a specific k value needs to be hard coded for each
class. However, this hard coding requires ground truth knowledge
about the image processing condition (i.e., class label).

To overcome the limitations associated with applying k-means
clustering to our image data, we developed a two-stage segmenta-
tion method that combines the k-means clustering and the image
morphology. This approach is schematically described in Fig. 3(b).
In the first stage, we apply k-means clustering based on the gray-
scale values of each pixel with k ¼ 2. The purpose of this step is
to segment the γ-UMo matrix phase from the rest of the image.
In the second stage, we apply morphological opening and closing
(i.e., dilation and erosion),33 to remove the fine-scale lamellae in
the transformed region (so that this region is considered as a single
grayscale value), and smooth the border of UC inclusions. These
morphological operations aid in improving segmentation results
via k-means. It is noted that for the purpose of this work, it is
desirable that transformation products that appear as fine lamellae

are treated as one region, where distinguishing between lamellae is
not needed.

K-means was selected over other popular clustering methods
(e.g., Agglomerative Hierarchical Clustering, Spectral clustering,
DBSCAN, Single Linkage, and DeBaCl Geom Tree) due to numer-
ous pixels classified in our work, and the faster time to classify
pixels and complete the clustering process in comparison to these
other algorithms.

TABLE I. Parameters selected for model specification, compilation, and cross vali-
dation for U-10Mo image analysis.

Parameter Value

Preprocessing Noise-reducing Bilateral
Diameter 15

Sigma color 75
Sigma space 75

Segmentation k-means k-means++ center initialization32

Lamellar (9,9) closing then (9,9) opening
UC (9,9) opening then (3,3) closing

FIG. 3. (a) Schematic describing the approach developed for the ten class clas-
sification experiment performed in this work. A two-stage segmentation
approach was used and is schematically described in (b). The two stage seg-
mentation is described as follows: (1) stage 1 involved the use of multiple fea-
tures and (2) stage 2 utilized the area-based features. A random forest model
was then used for classification and five-fold cross validation was used to vali-
date results.

FIG. 2. Example micrographs from the different material conditions studied in this work. Micrographs from homogenization temperature 1 (HT1) are given in (a)–(f ) for
conditions 1–6 (C1–C6), and for homogenization temperature 2 (HT2) in (g)–( j) for conditions 1–5 (C1–C5). A total of ten classes were assigned as part of this effort. In
the area of classification problems, this is a large number of class labels; furthermore, the availability of microstructures and the subtle differences between structures
further complicates the problem of successful classification.

Journal of
Applied Physics

ARTICLE scitation.org/journal/jap

J. Appl. Phys. 128, 134901 (2020); doi: 10.1063/5.0013720 128, 134901-4

© Author(s) 2020

https://aip.scitation.org/journal/jap


III. RESULTS AND DISCUSSION

A. Developing microstructure–processing relationships
using discriminative learning methods

Developing understanding of microstructure–processing rela-
tionships and improving predictive capability become more difficult
as processing complexity increases. In our case study on the U-10Mo
system, several steps are performed during fuel fabrication, and the
ability to recognize what processing parameters lead to a given
microstructure can allow for improved process design and quality
control. However, the question of how to quantitatively describe
microstructure image data in order to predict processing condition
from microstructure images remains unanswered. Significant prior
work has been performed in which area fraction of different phases
with varying gray scale serves as a proxy for volume fraction and is
thus used as the primary quantitative microstructure descriptor.8,29,31

Yet, the choice of area fraction may not be the best metric when
several phenomena are changing with varying processing conditions,
such as extent of phase transformations, distribution or fragmen-
tation of inclusions, and change in grain size and morphology.
To measure how accurately different features can represent micro-
structures, we use features (area and spatial, described above) as
inputs to train a random forest model to predict the correspond-
ing processing history. Images are segmented and area and spatial
features are extracted. In addition, we collect other texture fea-
tures, such as the Haralick features and the local binary patterns
(LBPs), which have previously been demonstrated to represent
microstructure image data well.12,31 The following four experi-
ments were considered to explore metrics of microstructure
representation:

1. Characterization of micrographs using area features only.
For the two tasks below, we train two separate random forest

models for classification and fivefold cross-validation is applied
to evaluate the model performance:
(a) A 10-class classification to predict microstructure process-

ing history (HT1-C1, HT1-C2, HT2-C1, etc.);
(b) A binary classification to predict the homogenization tem-

peratures (900 �C�48 h or 1000 �C�16 h).
2. Characterization of micrographs based on area, and spatial fea-

tures, in an effort to increase predictive power of our model.
Similar to Experiment 1 (above), we train two random forest
models for the two tasks listed in item 1(a) and (b).

3. Characterization of microgrpahs using area, spatial, and texture
features. All features are concatenated as a single feature vector
to represent a microstructure image. A model is trained to learn
and predict the processing history (HT1-C1, HT1-C2, HT2-C1,
etc.) of an image.

4. Binary classification for each possible pair of processing histories
(HT1-C1, HT1-C2, HT2-C1, etc.) based on area features only.
This experiment provides a detailed investigation of how well
area features represent micrographs.

Training results from these three experiments are summarized in
Table II. The model performance is measured in F1 score, defined
as follows:

F1 ¼
2� precision� recall

precisionþ recall

In Experiment 1, the F1 scores of the 10-class classification and
the binary classification are 62.4% and 68.5%, respectively. In
Experiment 2, spatial features are added to the area features to
help improve model classification results. The performance of
models is improved significantly to 78.9% and 65.1% for
Experiments 2a and 2b, respectively. This increased performance
indicates that spatial features are correlated with the processing
histories. In Experiment 3, we used all the features available (both
interpretable area and spatial features, and texture features) and
reach an F1 score of 95.1% for the 10-class classification task.
This result serves as a benchmark for this dataset and allows us to
evaluate the predictive power of other models. While the area
features have long been regarded as a strong indication of the
microstructure processing history, from the microstructure repre-
sentation experiments detailed here, we find that the predictive
power of area features is actually very limited. This limitation can
be visualized in Fig. 4, where there are multiple overlapping data

TABLE II. Summary of experiments, features used to represent microstructure
image data, metric, and performance.

Experiment Features Metric Performance

1a Area features F1 62.4%
1b Area features F1 68.5%
2a Area and spatial features F1 78.9%
2b Area and spatial features F1 65.1%
3 All features F1 95.1%
4 Area features F1 See Fig. 5

FIG. 4. Visualization of area feature for each phase.
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points, and thus micrographs from different processing histories
are difficult to separate. Based on a trained random forest model
from Experiment 3, the feature importance of the area feature
corresponding to UC is 0.09, which is higher than the other 40
features. However, there are many other features from spatial and
texture features with a feature importance of approximately 0.06.
This conclusion can also be verified in Experiment 4 (results
given in Fig. 5), where we find that for binary classifications
between two specific processing histories, the area features do not
always result in high F1 scores. This finding is highlighted by very
poor classification performance listed in the matrix, for example,
a F1 score of 61% for the following two conditions which were both
homogenized at 900 �C�48 h: HT1-C4 (cold rolled to 0.025 in.) and
HT1-C6 (cold rolled to 0.008 in. and annealed at 700 �C�1 h).

B. Synthetic microstructure generation using
generative adversarial networks

Generative adversarial networks (GANs) have been proven
successful for many image synthesis and unsupervised learning
tasks.28 It is a popular framework for representation learning, such
as disentangle pose from lighting in 3D rendered images,34 and
image completion, where large missing regions are synthesized
utilizing the surrounding image features.35 Variants of GANs have
surpassed many other generative models in the quality of samples
as well as their underlying representation. Recently, GANs have
emerged as a promising methodology for application in compu-
tational materials design, for the purpose of developing
structure-property and structure–performance relations via physical
simulations.36,37 GANs are implemented by deep neural networks

and thus are able to capture complex microstructural characteris-
tics. Hence, we investigate different GAN architectures here for the
specific material system of U-10Mo and the task of generating real-
istic artificial micrographs that could be useful in supplementing
real datasets or used in an effort to predict microstructure from
processing parameters.

A GAN framework consists of a generator, G, that generates
samples from a noise variable, z, and a discriminator, D, that aims
to distinguish between samples from the real data distribution and
those from the synthetic data distribution (from the generator).
The training of a GAN can be summarized as a two-player
minimax game:

min
G

max
D

V(D, G) ¼ Ex≏pdata(x) logD(x)½ � þ Ez≏pz (z) log (1� D(G(z))½ �,

where pdata is the underlying distribution of real images and pz is
some noise distribution.

Although the objective of the training is straightforward, the
actual training can be quite unstable because of the non-convex
cost functions and the high-dimensional parameter space.38

In practice, the model could encounter many problems, such as
vanishing gradients, where the discriminator gets too good and the
generator fails to make progress, and the mode collapses (i.e., the
generator collapses to a state where it always outputs the same
sample). Specifically in cases where we want the GAN to learn a
disentangled representation of the training data and output high-
quality samples, the training can be extremely hard to converge.

In this work, we make use of multiple variants of GANs to
generate artificial microstructure images and demonstrate how
GANs can be used to synthesize realistic images with varying reso-
lution. In this small case study, the same set of original SEM-BSE
U-10Mo micrographs described previously are used as the training
set. Images are cropped into 1024 by 1024 and resized to 512 by 512
square pixels. We choose 512 by 512 as the size of training images
and output samples for several reasons, including the following:

1. High-resolution images are needed for characterization. Phases
such as the lamellar transformation products may not be repre-
sented well if images are too low in resolution.

2. The microstructural area contained within the image should be
large enough to reflect the processing history. This would help
to keep the variance of the training images small enough so that
the GAN synthesized images represent the different classes well.

3. The most recent GAN technology is capable of higher resolution
images up to 1024 squared and in this study we wished to
explore this higher resolution capability.

Two different GAN architectures were trained and compared on
the basis of artificial image quality: (1) a progressively growing
GAN,39 where samples are generated from latent noise in original
micrographs, and (2) a Pix2Pix generative model,40 where a seg-
mentation label map is provided as input.

1. Progressive growing GAN

Progressively growing GAN (pg-GAN) is an adversarial network
variant that helps to stabilize the training of a high-resolution GAN.
The generator is initialized with low resolution images, over which

FIG. 5. Model performance of binary classification for each pair of processing
histories for the U-10Mo microstructure. Here, the F1 scores are reported on a
0–1 scale, where 1 indicates 100% correct predictions.
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new layers are added progressively to capture finer spatial details. Each
of the new layers is treated as a residual block that smoothly blends
into the network when the resolution of the GAN is doubled.

Data augmentation is applied to the original set of 272
SEM-BSE images in order to increase the number of images
available for training. The data augmentation utilized here involves
cropping original images into smaller squares with a horizontal
shift, rotation by 90� and horizontal/vertical flipping. Finally,
images are resized to 512 by 512 square pixels. Using these
methods, a total of 10 880 images were available for training.

We follow the model specification from the original paper39

with Python 3.6.9 and TensorFlow-GPU 1.13.1. We use the Adam
optimizer with the default learning rate scheduling algorithm. Both
training images and output samples are 512 by 512 square pixels,
and the training length is set to 1 000 000 images. To measure the
model performance, we sampled 1000 images generated by the
model, with examples given in Fig. 6. The images sampled from
the generated set are qualitatively close to the real data distribution
although some images contain visual artifacts, such as image (f ) in
Fig. 6 (the boundary between the microstructure and the back-
ground should be a straight line).

Lastly, the approximated distribution is entangled, meaning
that the image data are encoded in a complicated manner and the
input noise variables are not interpretable (see Fig. 7). Although
the synthetic images are visually nice, we cannot interpret the role
of the input noise vectors in the generation of synthetic images.
This blocks us from understanding how samples from different
processing histories are distributed in the learned space of micro-
structure images or possibly revealing their underlying connections.
Additionally, from visual examination of the Fig. 6 artificial images,
we find some spatial patterns that are not visible in training images.
Visually, we see the texture of artificial images is different, and such
texture anomalies are discussed in further detail in Sec. III B 4.

To better assess the GAN results, we turn to automated
methods such as the sliced Wasserstein distance (SWD)41 to
measure how similar artificial images are to the training set over
different scales. We measure the SWD with the checkpoint images
during training and plot the distances with respect to the number
of training images fed into the model, with results given in Fig. 8.
We find that the SWD at different resolutions generally decreases

FIG. 6. Example synthetic images generated by the trained progressive growing
GAN. Images given in (a)–(f ) show varying microstructural features, specifically
different extent of lamellar transformation products, and distribution of carbides.
The micrograph in (f ) shows the edge of a fuel plate.

FIG. 7. Schematic of an entangled
representation (left) and disentangled
representation (right). In the entangled
representation, data are encoded in a
complicated manner. In the disentan-
gled representation, the independent
variables are interpretable.
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as the training proceeds. The model converges after approximately
8000 thousand training images. Even with limited micrographs for
training, the progressive growing GAN can still learn the real data
distribution well, as demonstrated by the realistic synthetic images
shown in Figs. 6(a)–6(f ).

2. Pix2Pix generative model

Unlike the progressive growing GAN, Pix2Pix GAN is a con-
ditional GAN42 variant that learns a mapping from some extra
given information y (“condition”) and input noise z to output
images. The objective of a conditional GAN is given by

min
G

max
D

V(D, G) ¼ Ex≏pdata(x) logD(x j y)½ �

þ Ez≏pz(z) log (1� D(G(z j y)))½ �:

Image-to-image translation is the task of learning a mapping
between an input image and an output image. Several examples of
this image-to-image translation exist in the literature, including
Zhu et al. used CycleGAN to transfer images of one style to
another, such as between landscape images in summer and in
winter and between photographs and paintings of Monet.43

Park et al. used GauGAN to create photorealistic images from seg-
mentation maps, which are labeled sketches that depict the layout
of a scene.44 Isola et al. used Pix2Pix on many applications of
image-to-image translation, such as mapping from aerial photos to
maps and mapping from edges to photos.40 In this work, we use
the labels generated from the segmentation algorithm detailed
above as style A and realistic microstructure images as style B.
Overall, the Pix2Pix generative model takes a labeled image as
input and generates a realistic microstructure image, as shown in
Fig. 9. We note here that the segmented image given as the input
includes some noise (due to charging from the sample in the SEM)
that was segmented as a separate phase. Although from a

segmentation point of view, this is not an accurate representation
of the microstructure (i.e., the noise is not an important micro-
structure feature of the image), it does mean that the charging arti-
fact in the original image is accurately captured in the synthetic
image, thereby making the synthetic image realistic when compared
to the original image data. The same set of 272 original images is
used, after removing the scale bar and cropping each original image
into squares. These images are then used for training and are
referred to as real B, which serve as the ground-truth images (style

FIG. 8. We use the sliced Wasserstein distance (SWD) between the training images and generated images to evaluate the model performance. This figure shows the
SWD under different resolutions as the training progress.

FIG. 9. Pix2Pix generative model takes a label image as input and outputs a
synthetic microstructure image. In this example, the Real A image is generated
from a sample with the HT1-C1 processing history.
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B). Prior to training, real image labels are prepared, where the real
images are referred to as real A (the model input). Image segmen-
tation, such as the algorithm suggested in Ref. 31 or the one
described here in Sec. II B 1, can be applied so that for each image
in real B, we have a label image in real A.

We use the default model specification described in the
Pix2Pix model paper.40 After the training is finished, 50 synthetic
images are randomly sampled and some of them are displayed in
Fig. 10. From the sampled images, we can tell that the synthetic
images generated by the Pix2Pix model are visually close to the
ground-truth. With sufficient information from the label images,
they are more realistic than those sampled from the progressive
growing GAN. While spatial patterns are not visible in these
sampled images, we apply the same measurements as we did on the
progressive growing GAN as a comparison, which can be found in
Sec. III B 4.

While the outputs from the Pix2Pix model are visually more
realistic, they require additional information as inputs. They ignore
the distribution of microstructures in the image and focus on the
learning and simulating the textures in real images. Training a
high-resolution GAN with interpretable conditions remains a chal-
lenge. For future studies, training a high-resolution GAN could be
split into two steps in which we first focus on synthesizing the
underlying representation of the microstructures (such as the label
image), and then in a second step, adding texture to the image.

3. Analysis of microstructure distribution learned
by the pg-GAN

In this section, we measure the differences between the micro-
structure represented by the real images and synthetic images.
We apply the characterization pipeline introduced in Sec. II C.
Considering the visual differences (image “sharpness” and local
patterns) between real images and synthetic images and that

original images are resized to a smaller size before being used for
GAN training, we use a slightly different parameter setting (given
in Table III) from the previously described to ensure the quality of
image segmentation.

We generate 300 synthetic images by random sampling from
the trained pg-GAN model. Synthetic images are segmented; area
features, spatial features, and texture features are collected. The pro-
cessing histories of the synthetic images are predicted by the
trained model from Experiment 4 in Sec. III. The area features of
Lamellar Transformation Products and UC are plotted in Fig. 11,
along with the predicted processing histories. It can be found that
the area features collected from real images and area features col-
lected from synthetic images come from similar distributions.

To quantitatively measure whether the synthetic image is from
the same distribution as the real images, or how well the pg-GAN
has learned to represent the microstructure, we carry out the two
experiments below.

From the previous experiments, we have collected area fea-
tures, spatial features, and texture features from the 272 original
images and the 300 synthetic images. Two models are trained to
classify whether a specific feature is collected from a real image or a
synthetic image. The first model uses the area features as the only
input, while the second model takes all the features (area, spatial,
texture) as the input. Both models use the Gaussian Process
Classifier (GPC) to learn two distributions for the features from
real images and synthetic images (the model specifications are sum-
marized in Table III). With fivefold cross-validation, the accuracies
for the two models are 52.6% and 52.4%, respectively. The fact that
both models fail to distinguish between features collected from real
images and synthetic images supports our assumption that the
pg-GAN managed to learn the underlying distribution of micro-
structure well.

Here, we consider the area features collected from the 272
original images and the 300 synthetic images. For each pair of pro-
cessing histories (e.g., HT1-C1 and HT1-C2), we train a binary
classification model to classify between the area features collected
from real HT1-C1 images and the area features collected from syn-
thetic HT1-C2 images. Again, the Gaussian Process Classifier
(GPC) is used as the model classifier and the classification results

TABLE III. Parameters selected for microstructure characterization of synthetic
images.

Parameter Value

Preprocessing Sharpen (3, 3)
Noise-reducing Bilateral

Diameter 15
Sigma color 75
Sigma space 75

Segmentation k-means k-means++ center initialization32

Lamellar (7,7) closing then (7,7) opening
UC (5,5) opening then (3,3) closing

GPC Kernel Radial-basis function kernel
Length scale 1.0
Optimizer L-BFGS-B algorithm

FIG. 10. Randomly sampled images from the trained Pix2Pix model, where
rows (a) and (b) are different samples. From left to right, in each row (a,b) there
are the following images: real A, fake B (model output), and real B
(ground-truth).
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are reported in Fig. 12 as F1 scores with fivefold cross-validation.
It is noted here that since there are no synthetic images predicted
as HT2-C1 in the 300 synthetic images, the column corresponding
to HT2-C1 is left empty in the matrix.

It can be found that on the main diagonal matrix, where the
real area features and synthetic area features are from the same pro-
cessing histories, the F1 scores are generally low. This finding is
consistent with our assumption that the pg-GAN managed to learn
the underlying distribution of microstructure well. Also, the classifi-
cation performance in other cells off the main diagonal is relatively
high with a few exceptions. For those off diagonal cells with low F1
scores, such as the classification between HT2-C3 and HT1-C3,
they are quite consistent with the classification results reported in
Fig. 5. The poor classification performance for this particular
example of HT2-C3 and HT1-C3 may be attributed to the very
similar microstructure generated after few processing steps, where
the only difference between these two conditions is the homogeni-
zation temperature and time.

By evaluating classification performance between features
from real and synthetic images and between area features for differ-
ent processing histories, we can compare the area features, spatial
features, and texture features collected from real images and syn-
thetic images. In previous experiments, we have shown that these
features are quite good at characterizing the microstructure.
Specifically for the random forest model that takes all features as
the input, processing history of microstructure can be predicted
with an F1 score of 95.1%. However, these features are not explic-
itly considered during the GAN training. From the fact that fea-
tures collected from real or synthetic images are not distinguishable
indicates that the pg-GAN model managed to learn the underlying
distribution of microstructure well. Although the results from
binary classification are highly based on the processing histories
that are predicted by a random forest model and not originally
given by the pg-GAN, the results can serve as a comparison with
the experiment results in Sec. III and suggest that the underlying

FIG. 11. Comparison between area features from real images and synthetic images. The processing histories of the synthetic images are predicted by a random forest
model trained on features from real images. For interpretation of the references to color in this figure legend, the reader is referred to the online version of this article.

FIG. 12. Results of binary classification between area features collected from real
class A images and area features collected from synthetic class B images. Model
performance is measured in F1 scores with fivefold cross-validation. Notice that
there are no synthetic images predicted as HT2-C1 in the 300 synthetic images.
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representation learned by the pg-GAN is similar to the microstruc-
ture representation given by the real images.

4. Texture differences in real vs synthetic micrographs

Sub-regions of images from real microstructures and images
generated by the GAN were subjected to the Discrete Fourier
Transform (DFT) operation. This was performed with the objec-
tive of studying the spatial patterns exhibited by these two classes
of images.

DFT samples a discrete set of frequencies corresponding to
the size of the image in the spatial domain. In the Fourier domain,
the intensity at frequency point (k,l) is calculated by

F(k, l) ¼
XN�1

i¼0

XN�1

j¼0

f (i, j) e�
2π
N (kiþlj), (1)

where f(i,j) is the pixel intensity at position (i,j) in the real space.
Images exhibiting geometric or spatial patterns tend to amplify spe-
cific frequencies in the Fourier domain, and hence the Fourier
transform of an image can be used to highlight spatial patterns
present in the image. For example, when an image exhibits hori-
zontal patterns seperated by a pixel distance of WIDTH/2, its
Fourier transform exhibits a local maxima at (k, l) ¼ (2, 0).

In this work, DFT was implemented in Python using the
OpenCV45 and Numpy46 libraries. The “dft” method in OpenCV
was used to perform the transform, and the “fftshift” method in
Numpy was used to shift the zero-frequency (DC frequency) to the
center of the transform. The insets of Figs. 13 and 14 are magni-
tudes of the transforms that have been subjected to a log filter, in
order to visualize the local maximas effectively.

Figure 13 shows a characteristic example of an image of a real
microstructure and the Fourier transforms performed on the differ-
ent sub-regions of the image. The sub-regions selected for this
analysis are all 200 pixels� 200 pixels in size. It can be observed
that the horizontal texture manifests itself in thin vertical frequency
lines on the transforms.

Figure 14 shows a characteristic example of a synthetic image
generated from an adversarial network and the Fourier transforms
performed on the different sub-regions of the image. It can be seen
that the synthetic images are characterized by strong patterns,
which manifest as local maximas at several frequency points on the
transformed images. The Fourier transforms of a synthetic image
exhibit more local maximas than the corresponding transforms of a
typical image of a real microstructure.

In order to quantitatively analyze how the magnitudes of dis-
crete Fourier transform can be used to characterize the texture in
real and synthetic images, as well as microstructure from different
processing histories. We collect the magnitudes of the transform as
a feature vector, referred to as DFT features. More specifically, after
the DFT process, we take the magnitudes from the 9� 9 region in
the center and flatten them into a one-dimensional feature vector.
We collect the DFT features from the 272 real images and the 300
synthetic images, which are prepared in Sec. III B 3. Two experi-
ments are carried out as follows:

1. Using the DFT features only, we train a Gaussian process classi-
fier model to predict whether a DFT feature vector is collected
from real microstructure images or synthetic microstructure
images. With fivefold cross-validation, the accuracy of the
model is 99.4%.

2. For each pair of processing histories (e.g., HT1-C1 and HT1-C2),
we train a Gaussian process classifier model to predict if a DFT
feature vector is collected from real HT1-C1 images and real
HT1-C2 images. Similar experiments are conducted between real
HT1-C1 images and synthetic HT1-C2 images and between syn-
thetic HT1-C1 images and synthetic HT1-C2 images. Model per-
formance is measured in F1 scores, as reported in Fig. 15.

It can be concluded that as a feature vector, the DFT magni-
tudes can discriminate between real and synthetic images well, but
fail to characterize microstructure from different processing

FIG. 13. (a) A characteristic image of a real microstructure, showing visible
texture in the horizontal direction. (b) Fourier transforms of different sub-regions
of size 200� 200, superimposed upon the original image at the corresponding
region. The background pattern is reflected in the thin vertical lines on the trans-
form plots.
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histories. Considering the synthetic images generated from the
pg-GAN model, the DFT features are good indicators that the syn-
thetic images are not perfect.

It should be noted that the synthetic image used for the analy-
sis above was generated after the adversarial network had reached a
steady state (i.e., at a point when the network can no longer distin-
guish between a real and a synthetic image). Thus, it is reasonable
to conclude that though the images generated by GANs exhibit
spatial patterns that are not present in the training images, the
presence of these spurious patterns is not significant enough to
bias the discriminator. The likelihood of the occurrence of such
patterns must be taken into consideration for classification prob-
lems such as texture detection in a microstructure dataset.

Further, artifacts may be introduced into images from sample
preparation (i.e., scratches from polishing media), imaging (e.g.,

blurring or periodic patterns in the image due to a lack of a con-
ducting path for electrons, i.e., charging), and up-sampling in GAN
pipelines (i.e., checkerboard patterns in generated images47,48).
Such artifacts due to up-sampling for the purposes of this work are
considered minor, as they would not affect final classification accu-
racy of micrographs.

IV. CHALLENGES AND BEST PRACTICES

Several challenges associated with recognition and quantifica-
tion of microstructure image data exist due to various limitations
inherent in materials science studies. The two major challenges are
limited size of datasets and imbalanced datasets. Many machine
learning (particularly deep learning) models require large datasets
for training. A deep learning model generalizes to test datasets

FIG. 14. (a) A characteristic image of
a microstructure generated by pg-GAN.
(b) Fourier transforms of different
sub-regions of size 200� 200, super-
imposed upon the original image at
the corresponding region. Though these
synthetic images show strong back-
ground features, the presence of these
features does not bias the discriminator.

FIG. 15. Binary classification between microstructure images from different processing histories based on DFT features. The model performance is measured in F1
scores. From left to right, the matrices measure the model performance between (a) real images and real images, (b) real images and synthetic images, and (c) synthetic
images and synthetic images.
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better as the size of training set is increased. In a typical environ-
ment for microstructure imaging, generating high quality micro-
graphs in large numbers is dependent upon metallographic sample
preparation, microscope operator skill, facilities, and time. For
objectives such as multi-class classification, training from real data
sets could lead to a situation where few classes have a dispropor-
tionate number of images, highlighted in prior work,21 and in the
U-10Mo dataset studied here. Imbalanced datasets can result in a
reduced classification accuracy for the class with the disproportion-
ately lower number of images, even if the overall accuracy is within
acceptable tolerance. With respect to the case study of GAN seen
earlier in the study, an imbalanced dataset may also result in a
reduced significance for the spatial patterns present in the dispro-
portionate class among the patterns exhibited by the synthetically
generated images. Given these challenges, the authors suggest
several best practices, in addition to the current work, to produce
meaningful results from an image driven machine learning approach
to microstructure recognition and quantification:

1. Shallow learning and conventional learning techniques:
Convolutional neural networks and other algorithms such as
SVMs or ensemble classifiers are capable of performance within
an acceptable tolerance for simple classification problems.

2. Semantic segmentation: DeCost et al.13 demonstrated the use of
the semantic segmentation algorithm to isolate objects in the
microstructure dataset.

3. Serialization of techniques through a task pipeline: Prior work has
demonstrated a method for quantitative feature extraction by auto-
mating the algorithm selection process through a task pipeline.21

4. Dataset augmentation: The user may artificially populate the train-
ing dataset by methods such as cropping, rotating, and adding
uncorrelated noise to the original images in order to ensure that the
training process generalizes reasonably well to test datasets.

5. Automated algorithm selection and hyperparameter optimiza-
tion in machine learning: Given the size and scale of datasets in
material science, automatic methods for selection of algorithms
and hyperparameters49–54 can prove to be a viable option for
fine tuning the parameters of algorithms and improve generali-
zation performance as much as possible given the scarcity of
data to learn from.

V. CONCLUSIONS

In this work, we perform multi-class classification for the
purpose of linking microstructure to processing condition. The origi-
nal dataset consists of micrographs for ten different thermo-
mechanical processing conditions of a U-10Mo alloy. We evaluate
the classification model performance for different microstructure
reperesentations, and the results reveal that area, spatial, and texture
information are needed for accurately describing image data. Using
this newly developed microstructure representation, an F1 score of
95.1% was achieved for distinguishing between micrographs corre-
sponding to ten different thermo-mechanical material processing
conditions. Generative adversarial networks were also explored to
better understand if synthetic image data could be used to supple-
ment small, imbalanced original image datasets. Two different net-
works were trained and tested to assess the performance: progressive

growing GAN and Pix2Pix GAN. We find that the progressive
growing GAN introduces spatial patterns that are not present in
original image data. Texture detection in a microstructure dataset
might be adversely affected by the presence of such spurious
patterns. Our work highlights that semantically meaningful seg-
mentation alone may be insufficient in representing image data,
particularly as the complexity of material processing and the
resultant microstructure increase. Hence, the need for predictive
or generative methods is a frontier in materials science and engi-
neering and should be leveraged in future studies to accelerate the
materials design and characterization process.
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