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Abstract

Background: The heterogeneity of response to treatment in patients with glioblastoma

multiforme suggests that the optimal therapeutic approach incorporates an

individualized assessment of expected lesion progression. In this work, we develop a

novel computationalmodel for the proliferation and necrosis of glioblastomamultiforme.

Methods: The model parameters are selected based on the magnetic resonance

imaging features of each tumor, and the proposed technique accounts for intrinsic cell

division, tumor cell migration along white matter tracts, as well as central tumor

necrosis. As a validation of this approach, tumor growth is simulated in the brain of a

healthy adult volunteer using parameters derived from the imaging of a patient with

glioblastoma multiforme. A mutual information metric is calculated between the

simulated tumor profile and observed tumor.

Results: The tumor progression profile generated by the proposed model is

compared with those produced by existing models and with the actual observed

tumor progression. Both qualitative and quantitative analyses show that the model

introduced in this work replicates the observed progression of glioblastoma more

accurately relative to prior techniques.

Conclusions: This image-driven model generates improved tumor progression

profiles and may contribute to the development of more reliable prognostic estimates

in patients with glioblastoma multiforme.

Keywords: Glioblastoma, Magnetic resonance imaging, Diffusion tensor imaging,

Computational modeling

Background

Glioblastoma multiforme (GBM), the most common primary brain neoplasm in adults,

represents the most malignant end of the glioma spectrum. Though the prognosis is

generally poor, there is considerable variability in response to treatment and patient out-

comes. This variation suggests that the optimal therapeutic approach likely incorporates

an individualized assessment of expected tumor progression. To that end, there has been

considerable interest in developing computational models that accurately replicate the

observed temporal evolution of GBM lesions.

The most widely-studied models for GBM progression take the form of reaction-

diffusion systems, a well-characterized class of partial differential equations [1–4]. In the
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context of predicting GBM evolution, reaction-diffusion models of the form represented

by Eq. 1 describe the tumor cell concentration within the affected tissue as a function of

space and time:

∂c (x, t)

∂t
= Q (x, t) + R (x, t) (1)

The core underlying principle postulates that the change in tumor cell concentration

(c) at a particular location (x) over time (t) is driven by: 1) a diffusion term (Q (x, t)),

accounting for the net flux of tumor cells from adjacent locations, and 2) a proliferation

term (R (x, t)), representing the intrinsic cell multiplication rate.

Initial models considered tumor cell diffusivity (D) to be spatially and temporally invari-

ant (i.e., Q (x, t) = D∇2c), producing spherical profiles of tumor progression [1, 4–7].

Such models were later refined to allow for observed differences in diffusivity within gray

and white matter, yielding Q (x, t) = ∇ · (D (x)∇c), with D (x) taking on one of two val-

ues, depending on the underlying tissue type at x [8]. While this change addressed the

differential rates of GBM progression through gray and white matter, it did not accu-

rately reproduce the propensity for GBM to invade along white matter tracts [9–12].

Ultimately, the incorporation of the voxelwise diffusion tensor, D (x), allowed for the

successful simulation of preferential tumor cell migration along fiber bundles [13]:

Q (x, t) = ∇ · (D (x)∇c) (2)

Regarding the proliferation term, a variety of models for cell multiplication have been

previously described, including exponential growth (R (x, t) = ρc), Gompertz growth

(R (x, t) = ρc ln (cm/c)), and logistic growth (R (x, t) = ρc (1 − c/cm)), where the param-

eter ρ controls the growth rate and cm represents the maximum cell concentration [14].

Each of these functions generates monotonically increasing tumor cell densities, albeit

with differing temporal dynamics. GBM, however, is an aggressive malignancy that com-

monly outstrips the supporting capacity of its underlying substrate resulting in central

necrosis, a property that has been neglected by the existing proliferation models [15–17].

If, however, computational models are to serve as adjuncts for clinical decision-making,

accurate simulation of this tumoral necrosis is of critical importance.

The purpose of the present work is to develop a computational model that is both

driven by the observed imaging characteristics of each individual tumor and also based

on the most accurate descriptions of GBM cell diffusion and proliferation, including

central necrosis. In the following sections, we introduce our proposed computational con-

struct, outline its practical implementation, and qualitatively and quantitatively evaluate

its performance relative to existing techniques.

Methods

Model construction

We propose a model that combines the diffusion tensor driven migration of cells along

white matter bundles (Eq. 2) with logistic tumor cell proliferation and with a novel necro-

sis term which is activated once cell density has surpassed tissue supporting capacity:

∂c (x, t)

∂t
=

{

∇ · (D (x)∇c) + ρc (1 − c/cm) : max [c (x)] < τ

ηc : max [c (x)] ≥ τ
(3)
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We introduce the necrosis rate, η ∈ (0, 1), which produces an exponential decay of

tumor cells once cell concentration exceeds a threshold, τ . Here, max [c (x)] denotes the

maximum cell concentration at position x across time; in keeping with empiric observa-

tions, our model presumes a physiologic change that maintains the necrotic state even as

cell death causes the tumor cell density to fall below τ .

We utilize MR imaging features of each GBM lesion to estimate model parameters,

thus producing a customized, tumor-specific predictor of future growth and prolifera-

tion. Specifically, we measure tumor radii on serial T2-weighted and contrast-enhanced

T1-weighted images, which have been hypothesized to correspond to cell densities

of 0.16cm and 0.80cm, respectively [18, 19]. This relationship is illustrated schemat-

ically in Fig. 1. Given the tumor radial velocity (v) and cell density gradients thus

estimated, Fisher’s relationship (v = 2
√

ρD) enables the calculation of the prolifera-

tion parameter, ρ, and cell diffusivity, D [5]. We note the physiological implications

of this choice of sequences. The enhancing tumor corresponds to areas of angio-

neogenesis with capillary leak. The T2 margin represents infiltrating nonenhancing

tumor and associated vasogenic edema; the notion of subthreshold tumor beyond the

area of T2 abnormality has also been described and is important in radiation therapy

planning [20].

As has been previously described, to account for the observed strong preferential migra-

tion of GBM along white matter tracts, we consider D as the tumor cell diffusion tensor,

derived via a differential scaling of the eigenvalues of the symmetric, positive definite spin

diffusion tensor calculated from diffusion-weighted MRI [13, 21]. Furthermore, we scale

D such that the mean cell diffusivity matches the D estimated from the serial MR images

as described above.

We fix cm = 105cells/mm3 as in previous work [13]. The necrosis threshold, τ , is chosen

as a fraction of cm, and is customized for each tumor based upon the earliest detection of

necrosis on contrast-enhanced T1-weighted imaging; lesions which exhibit earlier necro-

sis have lower values for τ . Finally, η is also empirically selected for each tumor based on

the width of the enhancing rim on T1-weighted imaging such that lesions with narrower

regions of enhancement have lower η (more rapid necrosis).

Fig. 1 Estimation of GBM growth parameters. Tumor radii measured on serial MR imaging studies were used

to calculate tumor-specific model parameters. The T2-weighted and contrast-enhanced T1-weighted tumor

radii correspond to 16 and 80% of the maximal cell density, respectively
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Model validation

To validate our model, we simulate tumor growth in the brain of a healthy adult volun-

teer using parameters derived from the imaging data of a rare patient with GBM and

serial preoperative imaging. We computationally seed tumor cells in a voxel within the

brain of our volunteer corresponding to the location of the observed tumor isocenter, and

we study the simulated GBM progression over time. Allowing for intersubject anatom-

ical variability—which we attempt to minimize by using an age and gender matched

volunteer—we expect that an ideal model would reproduce the observed tumor growth

very closely. Thus, the ability of our simulation to recreate the lesion provides insight

into the validity of our technique. We qualitatively compare the observed tumor profile

to those produced by the proposed and prior models. We further perform a quantita-

tive comparison by nonlinearly registering the two individuals’ brains and computing the

mutual information between the simulated tumor profiles and the contrast-enhanced T1-

weighted image of the observed tumor. In this context, the mutual information (MI) is a

measure that quantifies the amount of information that the simulated cell density shares

with the post-contrast T1 signal intensity (s). If p(·) denotes a marginal probability density

function and p (·, ·) indicates a joint probability density function, the mutual information

is given by:

MI (c; s) =
∑

C∈c

∑

S∈s
p (C, S) log2

[

p (C, S)

p(C)p(S)

]

(4)

In addition, to examine the sensitivity of our model to the position of the initial seed

voxel, we repeat the above experiment with a fixed ρ and D, but we displace the initial-

ization voxel in each of four cardinal directions from the original seed. We qualitatively

describe the resulting tumor progression profiles in relation to the original, and we also

quantify the differences between profiles initialized with slightly different seeds using the

mutual information metric as described above.

All images were obtained using a 3 T scanner with typical acquisition parameters for

T1-weighted (TR = 487 ms, TE = 16 ms, 5 mm slice thickness), T2-weighted (TR = 3670

ms, TE = 93 ms, 5 mm slice thickness), and diffusion-weighted (TR = 4100 ms, TE =

95 ms, 4 mm slice thickness) sequences. Diffusion-weighted images were acquired over

64 distinct gradient directions at a b-value of 1000mm/s2 with 3 repeat acquisitions

which were averaged to maximize the signal-to-noise ratio. Following correction for eddy

current distortions and head motion, diffusion tensors were estimated from diffusion-

weightedMR images using the Diffusion Imaging Reconstruction and Analysis Collection

(Laboratory of Neuro Imaging, Los Angeles) [22]. Modeling of tumor progression was

performed using custom implementations written inMATLAB� (MathWorks�, Natick).

Equation 3 was solved using a finite difference schemewith a small discretization timestep

(�t = 1day) to maintain numerical stability. Registration was performed using the FNIRT

utility from FSL (Centre for Functional MRI of the Brain, Oxford) [23].

Results

Panels A and B of Fig. 2 represent post-contrast T1-weighted images, acquired 30 days

apart, from an adult male patient who later underwent surgical resection with final his-

tology confirming GBM. For the depicted tumor, we calculated proliferation parameter

ρ = 0.33/day and cell diffusivity D = 0.0825mm2/day. Given that the tumor already
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Fig. 2 Qualitative comparison of GBM progression models in reproducing tumor progression over 30 days.

a, b: observed tumor; c, d: isotropic cell diffusion, no necrosis; e, f: anisotropic cell diffusion, no necrosis; g, h:

anisotropic cell diffusion, with necrosis

exhibits necrosis at the t0 time point, we found that setting the necrosis threshold just

above the T1 detection threshold at τ = 0.85cm produced comparable behavior. Further-

more, we found that setting η = 0.9 produced a customized model that replicated the

observed thin (2–3 mm) rim of enhancing tumor.

We then attempted, using the proposed and several previously reported models, to

reproduce this observed tumor growth profile de novo using anatomical information from

MR imaging of a healthy adult volunteer. Panels C –H of Fig. 2 represent simulated tumor

evolution using these parameters overlaid upon fractional anisotropy maps derived from

our volunteer; red voxels indicate the highest tumor cell concentration, magenta the low-

est. Panels C and D display results, over a simulated 30 day interval, from a model that

treats tumor cell diffusion as isotropic and does not account for tumor necrosis [2]. Pan-

els E and F display results from a recently-described model that incorporates diffusion

anisotropy into tumor cell migration profiles, but does not incorporate a necrosis term

[13]. Finally, panels G and H display results over a 30 day interval from a simulation run

with our proposed model, which accounts for both anisotropic tumor cell diffusion and

central tumoral necrosis. The result produced by Eq. 3 demonstrates a marked qualitative

improvement in similarity with the actual tumor growth depicted in panels A and B. In

particular, we note that our proposed model is the only one that simulates the thin rim of

enhancement and centrally necrotic core observed in the true GBM lesion.

Table 1 summarizes the mutual information between the various models tested in Fig. 2

and the observed tumor at the t0 and t0 + 30day time points. The model allowing only

for isotropic cell diffusion and not accounting for necrosis provides the least information

about the contrast-enhanced T1 signal intensity in the observed tumor. The model allow-

ing for anisotropic cell diffusion but not accounting for necrosis generates a proliferation
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Table 1 Quantitative comparison of GBM progression models

Model MI (t = t0) MI (t = t0 + 30days)

Isotropic cell diffusion, no necrosis 3.1732 2.2624

Anisotropic cell diffusion, no necrosis 3.2107 2.3464

Anisotropic cell diffusion, with necrosis 3.2890 2.4569

The mutual information (MI) between the observed tumor (Fig. 2, panels A and B) and studied models (Fig. 2, panels C – H) is

computed at the two available time points

profile with intermediate mutual information with the true proliferation. Finally, we note

that our proposed model produces a tumor profile with the greatest mutual informa-

tion with the actual tumor proliferation. In addition, we see that for each model, mutual

information is greater at the t0 time point relative to 30 days later.

With regards to the robustness of the tumor profiles in relation to the placement of

the seed cells, we illustrate in Fig. 3 the result of choosing seed voxels adjoining the one

used to establish the preceding results. For this comparison, we utilized the full model,

accounting for anisotropic diffusion and tumoral necrosis, with parameters ρ, D, and

η fixed at the values chosen above, while simulating the profile at the t0 + 30day time

point. We see that displacing the seed point rightward, leftward, anteriorly, or posteriorly

produces qualitatively very similar, but perceivably different tumor profiles, as expected.

Given that the D term effectively ensures that tumor cells have spread to adjacent voxels

early in the simulation, these results are in keeping with our expectation that the model is

not overly robust to the initialization. The mutual information metrics between the origi-

nal profile (Fig. 3, center) and those produced by rightward, leftward, anterior, or posterior

seed displacement were 4.135, 4.337, 4.019, and 4.448, respectively. When viewed in light

of the values in Table 1, this quantitative comparison reinforces the notion that the model

is relatively insensitive to small variations in seed placement.

Fig. 3 Effects of slight variations in the choice of initial seed voxel. Left: Reference full model simulation profile

at the t0 + 30day time point. The green box highlights the region depicted in the panels on the right. Right:

Tumor profiles produced by shifting the seed voxel anteriorly (top), rightward (right), posteriorly (bottom), or

leftward (left). The seed voxel used for each profile is depicted in white, and the original seed voxel is

depicted in black for comparison; these overlap in the cropped version of the reference image (center)
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Discussion and conclusions

We have presented a model that generates tumor progression profiles that are qualita-

tively and quantitatively more representative of true GBM lesion growth, as compared to

prior methods. The qualitative improvement was largely expected by construction, given

that Eq. 3 represents the first GBM progression model to incorporate both anisotropic

spread of tumor along fiber pathways as well as central necrosis. The quantitative analysis

is interesting in that it reveals a progressive improvement in the accuracy of the simulated

result as critical features are added to the model. In addition, the quantitative analysis

suggests that for all models, the simulation accuracy decreases as the lesion progresses.

This reinforces the intuitive notion that small or early GBM lesions are more morpho-

logically similar and may even be well-represented by an isotropic growth model. As the

tumor progresses, however, more complex features of its propagation become apparent,

and these produce the main challenges for computational simulation, necessitating the

use of more complex models.

There is significant potential clinical utility in this development of an accurate model

for GBM progression that uniquely accounts for GBM necrosis. For example, the tumor

necrosis rate has been shown to be inversely related to patient prognosis, with greater

degrees of necrosis heralding worse clinical outcomes [15–17]. Others have presented evi-

dence suggesting that the fatal tumor burden is related to the absolute number of tumor

cells, a metric that clearly requires accurate modeling of central tumor cell death [5].

Beyond tumoral necrosis, the model parameters representing cell proliferation and dif-

fusionmay also have important clinical implications.We recall that, for the studied tumor,

we estimated proliferation parameter ρ = 0.33/day. However, a separate analysis of 32

GBM lesions revealed a mean ρ of 0.089/day (range 0.008–0.75), suggesting that the

tumor we present in panels A and B of Fig. 2 exhibits a higher than average rate of cell

division, a feature associated with poorer prognoses [5]. Furthermore, it has been shown

that the relative values of D and ρ contribute to the accurate prediction of survival of

GBM patients [3, 18, 19].

The primary limitation of the proposed technique is its reliance on the availability

of serial imaging. Currently, standard treatment for GBM involves urgent resection

and initiation of chemotherapy. Serial preoperative imaging is generally unavailable; the

opportunity afforded by the patient in this report is a rare occurrence. Even so, the lack of

a multidirectional diffusion-weighted sequence in our standard tumor imaging protocol

has necessitated the use of an age and gender matched volunteer for modeling purposes;

we would ideally establish these results in the same subject to eliminate all potential con-

founding effects of intersubject variability. Other similar efforts have reported the same

challenge [18]. One potential compromise involves simulating tumor progression from a

single imaging study using population average values for the model parameters; however,

this sacrifices the advantages gained by the image-driven, tumor-specific formulation.

Serial post-operative imaging is widely available, but tumor progression in these images

is almost invariably confounded by the effects of ongoing chemotherapy, radiation ther-

apy, and repeat resections. Each of these greatly complicate the understanding of the

progression of an individual cell population, which we provide the fundamental ground-

work for in the present work. The most practically useful models will of course need

to account for these ongoing treatment factors, one of which – radiation therapy – we

have modeled separately elsewhere [24]. Specifically, we note that we have considered D
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to be time-invariant, and ρ and η to be constant across both time and space. As with

all mathematical models, these assumptions represent simplifications of the underlying

biological state, as tumor growth has the potential to alter the local cell diffusion ten-

sor, and treatment, dedifferentiation, or tumor heterogeneity may alter the growth and

necrosis parameters across space and time. It may further be necessary to incorporate

information from additional modalities, such asMR spectroscopy and perfusion imaging,

to account for heterogeneity in genotype and physiology within the tumor, especially as

certain cell populations are differentially affected by treatment. Modeling GBM progres-

sion accurately over longer periods in patients actively undergoing treatment will thus

certainly require further refinement of the model presented here to account for these

characteristics.

Ultimately, we are also constrained by the limits of the underlying technologies, includ-

ing the finite voxel size and the resulting inevitable cell population averaging, as well as

the limits of diffusion tensor imaging in resolving complex and shallow-angle crossing

geometries which may result in difficulties when applying our method to tumors in cer-

tain brain areas. We expect that improvements in these fundamental elements, such as

those demonstrated by diffusion spectrum imaging and probabilistic tractography, will

translate into more accurate tumor progression models [25].

In conclusion, given the heterogeneity of patient outcomes and response to therapy

for GBM, we sought to construct an improved, lesion-specific model of tumor progres-

sion. In this report, we have developed a novel model with parameters that are driven

by the post-contrast T1-weighted, T2-weighted, and diffusion-weighted imaging charac-

teristics of each individual tumor. Finally, we have demonstrated both qualitatively and

quantitatively that this model describes observed GBM progression, including central

necrosis, more accurately than existing methods, with associated implications for clinical

prognostic and therapeutic utility.
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