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Abstract—We present iCluster, a fast and efficient algorithm that

clusters a set of images while co-registering them using a param-

eterized, nonlinear transformation model. The output of the algo-

rithm is a small number of template images that represent different

modes in a population. This is in contrast with traditional, hy-

pothesis-driven computational anatomy approaches that assume a

single template to construct an atlas. We derive the algorithm based

on a generative model of an image population as a mixture of de-

formable template images. We validate and explore our method in

four experiments. In the first experiment, we use synthetic data to

explore the behavior of the algorithm and inform a design choice

on parameter settings. In the second experiment, we demonstrate

the utility of having multiple atlases for the application of local-

izing temporal lobe brain structures in a pool of subjects that con-

tains healthy controls and schizophrenia patients. Next, we employ

iCluster to partition a data set of 415 whole brain MR volumes of

subjects aged 18 through 96 years into three anatomical subgroups.

Our analysis suggests that these subgroups mainly correspond to

age groups. The templates reveal significant structural differences

across these age groups that confirm previous findings in aging re-

search. In the final experiment, we run iCluster on a group of 15

patients with dementia and 15 age-matched healthy controls. The

algorithm produces two modes, one of which contains dementia pa-

tients only. These results suggest that the algorithm can be used to

discover subpopulations that correspond to interesting structural

or functional “modes.”

Index Terms—Clustering, computational anatomy, image regis-
tration, population analysis, segmentation.
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I. INTRODUCTION

T
ODAY, computational anatomy studies are mainly hy-

pothesis-driven, aiming to identify and characterize

structural or functional differences between, for instance a

group of patients with a specific disorder and control subjects.

This approach is based on two premises: accurate clinical

classification of subjects and spatial correspondence across

the images. In practice, achieving either can be challenging.

First, the complex spectrum of symptoms of neuro-degener-

ative disorders like schizophrenia and overlapping symptoms

across different types of dementia, such as Alzheimer’s dis-

ease, delirium and depression, make a diagnosis based on

standardized clinical tests difficult [22]. Second, establishing

across-subject correspondence in the images is a particularly

hard problem constrained by the specifics of the application. A

popular technique is to normalize all subjects into a standard

space, such as the so-called Talairach space [47], by registering

each image with a single, universal template image that rep-

resents an average brain [12]. However, the quality of such an

alignment is limited by the accuracy with which the universal

template represents the population in the study.

With the increasing availability of medical images, data-

driven algorithms offer the ability to probe a population and po-

tentially discover subgroups that may differ in unexpected ways.

In this paper, we propose and demonstrate an efficient proba-

bilistic clustering algorithm, called iCluster, that

1) computes a small number of templates that summarize a

given population of images;

2) simultaneously co-registers all the images using a non-

linear transformation model;

3) assigns each input image to a template that best describes

the image.

The templates are guaranteed to live in an affine-normalized

space, i.e., they are spatially aligned with respect to an affine

transformation model. A preliminary version of iCluster was

published at the International Conference on Medical Image

Computing and Computer Assisted Intervention [42]. This

paper expands the conference paper with a more detailed theo-

retical development and more extensive experimental work.

In our experiments, we demonstrate that the templates com-

puted by the proposed algorithm can be used for various pur-

poses, including constructing multiple atlases for improved seg-

mentation and discovering structural modes of a population. On

a data set of 50 brain MR images with manual labels for sev-

eral temporal lobe structures, we illustrate that the subpopula-

tions computed by iCluster manifest significantly improved av-

erage label alignment compared to the clinical subpopulations

and the whole population. This result suggests that a multi-
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template strategy will yield improved segmentation accuracy

in an atlas-based framework. In other experiments, we show

that the modes of the population discovered by iCluster cap-

ture known structural differences and similarities. On a popu-

lation of 415 brain magnetic resonance imaging (MRI) of sub-

jects aged 18–96 years, the algorithm computed three unique

templates that mainly comprised of young subjects (mean age

31), older middle aged subjects (mean age 69), and elderly sub-

jects (mean age 79). In another setting, we demonstrate that the

modes discovered by the algorithm reflect the two groups of sub-

jects (with mild dementia and healthy) in the population. These

results suggest that iCluster can be used to probe a population of

images to discover important structural or functional “modes.”

The remainder of the paper is organized as follows. Section II

includes an overview of the literature on atlas construction and

inter-subject registration. In Section III, we introduce the gen-

erative model and develop our algorithm. Section IV reports

experimental results. Section V discusses the advantages and

drawbacks of the proposed algorithm, while pointing to future

directions of research. Section VI concludes with a summary of

contributions.

II. BACKGROUND AND PRIOR WORK

In medical imaging, the term atlas usually refers to a (prob-

abilistic) model of a population of images, with the parameters

learned from a training data set [14], [51]. In its simplest form,

an atlas is a mean intensity image, which we call a template

[6], [12], [53], [54]. Richer statistics, such as intensity variance

or segmentation label counts, can also be included in the atlas

model [19]. Atlases are used for various purposes including nor-

malization of new subjects for structure and function localiza-

tion, segmentation, or parcellation of certain structures of in-

terest, and group analysis that aims to identify pathology-related

changes or developmental trends.

Atlas construction requires a dense correspondence across

subjects. Earlier techniques used a single image—either a

standard template [12], or an arbitrary subject from the training

data set [25]—to initially align images using a pairwise reg-

istration algorithm. Other methods focused on determining

the least biased template from the training set [31], [37]. A

single template approach faces substantial methodological

challenges when presented with a heterogeneous population,

such as patients and matched normal control subjects in clinical

studies. To circumvent this, more recent approaches co-register

the group of images simultaneously without computing a group

template [46], [58]. Even though these algorithms remove

the requirement of a single template, they do not attempt to

model the heterogeneity in the population. Recent work [9]

presented a method that automatically identified the modes

of a population using a mean-shift algorithm. This approach

solved pairwise registrations to compute each interimage

distance, which slowed down the algorithm substantially.

Furthermore, the multi-modality of the population was not

modeled explicitly, making it difficult to extract a representa-

tion of the heterogeneous population. An alternative strategy

to atlas-based segmentation is to use all training images as the

atlas [27]. A new subject is registered with each training image

and segmentation is based on a fusion of the manual labels in

the training data. This approach is not suitable for anatomical

variability studies, where a universal coordinate frame is nec-

essary to identify and characterize group differences and study

developmental and pathological trends.

There is a rich range of techniques used to characterize

similarities and differences across subpopulations defined by

attributes like gender, handedness and pathology. Volume-based

[11], [39], [44], voxel-based [4], [15], and deformation-based

[5] morphometry methods are commonly used to compare

anatomical MRI scans of two or more groups of subjects. Other

examples include statistical analysis of functional magnetic

resonance imaging (fMRI), positron emission tomography

(PET), and diffusion data to identify age and disease-related

changes in the functional and structural organization of the

brain [24], [33]. In these studies, intersubject correspondence is

typically achieved via one of the image registration algorithms

discussed above. When faced with a heterogeneous group of

healthy and pathological brains, however, establishing inter-

subject correspondence is an ambiguous and more challenging

problem due to dramatic structural changes associated with the

pathology. For instance, defining a similarity measure when

certain corresponding regions are missing or unclear, is not

straightforward.

Probabilistic atlases are powerful tools used commonly for

supervised segmentation [3], [13], [18], [55]. A probabilistic

atlas can provide statistics about the frequency of a certain label

at a particular location, and topological information like the fre-

quency of two different labels neighboring each other at a par-

ticular location and with a certain orientation. Moreover, it can

include information about the relationship between labels and

image intensities. Given a new image, intensity models, such

as a template image, are typically used for spatial normaliza-

tion. Automatic segmentation is then formulated as an infer-

ence problem. Recent joint registration and segmentation frame-

works [3], [38] integrate the two steps: spatial normalization is

updated based on the current segmentation and vice versa. Most

atlas-based segmentation approaches make a strong unimodal

assumption on the intensity distribution either when building

the atlas, or when segmenting the new image or at both stages.

In other words, they assume a homogeneous population, where

each subject can be modeled as a deformed and noisy version

of a universal template. However, there is growing evidence that

population-specific atlases can improve the quality of segmen-

tation [48], [57]. This, we believe, highlights the limitations of

a single-template atlas in segmentation applications and points

toward a multi-template atlas strategy.

In this paper, we develop a probabilistic framework for

joint registration of a set of images into a common coordinate

frame, while clustering them into a small number of groups,

each represented by a template image. We employ a mixture

of Gaussians model and a maximum likelihood framework

which we solve using the generalized expectation maximiza-

tion (GEM) algorithm. A similar approach was independently

developed in [1], which provides a rigorous analysis of the

maximum a posteriori estimate of the deformable templates

using a Gaussian kernel based deformation parametrization. In

[1] the application of the framework was limited to 2-D images

of handwritten digits. In contrast, we focus on high-resolution
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Fig. 1. Generative model that assumes two templates.

3-D medical data and employ a B-spline parametrization for the

nonlinear transformation, as previously demonstrated in [41].

Furthermore, we present approximate solutions to the template

estimation problem that yield fast algorithms applicable to large

data sets. Our algorithm can also be viewed as an extension of

the approach in [50], which solves the registration problem as

an initial, separate step. Our framework leads to a fast, scalable,

and flexible algorithm that removes the sensitivity of the re-

sulting atlas coordinate frame to the selected target. Moreover,

it provides a novel, data-driven way to probe the population

for different modes. Analyzing the discovered subpopulations

and their representative templates promises to advance our

understanding of dominant structural or functional changes due

to pathology or development.

III. MODEL AND ALGORITHM

We assume that the input images are generated from

a small number of templates , where is known and

fixed. Later, we will propose a strategy to automatically deter-

mine from the data. Thus, for each , there

exists such that

(1)

where is an admissible, invertible spatial warp,

such as a parameterized nonlinear transformation, denotes

its inverse, is a spatially independent, non-stationary

Gaussian noise field with zero mean and standard deviation

. The last term models imaging noise, and the independent

Gaussian assumption is a commonly used model in the liter-

ature [18]. We model the noise parameters in the coordinate

frame of the template. Fig. 1 illustrates this generative model

for two templates.

Let denote the conditional probability of

the image given that it is generated by the ’th template, and

with the fixed model parameters. This can be computed from (1)

(2)

where is the Gaussian density with mean and stan-

dard deviation .

Let denote the prior probabilities of the templates.

This distribution governs the initial random draw of templates

shown in Fig. 1 and models the possibly unbalanced sizes of the

clusters. Thus the parameters for the whole model include the

templates , template priors and standard deviation

image . The spatial transformations can be viewed as

hidden random variables, drawn independently for each image

from a prior distribution that favors smoother transformations,

for instance. In this paper, however, for simplicity we will treat

as model parameters. We use

to denote the pooled set of model parameters and spatial trans-

formations. Marginalizing over all possible template indices,

we obtain the probability of observing a particular image

(3)

A. Generalized EM for Atlas Construction

We formulate the problem of atlas construction as a maximum

likelihood estimation

(4)

where denotes the log-likelihood of the entire image set

evaluated for the parameter . We use a generalized expectation

maximization (GEM) algorithm to solve (4). For a fixed

, using Jensen’s inequality we form

a lower bound for

(5)

where is a constant that does not depend on and is

the posterior probability that the image was generated from

the template

(6)

Note that . The GEM algorithm iteratively

improves this lower bound. Let be the guess of at iteration

. Computing —or, equivalently —is the

E-step of iteration . The M-step updates to increase

. In our formulation, we use a coordinate ascent

strategy in the M-step and divide it into two substeps: the

T-step (“T” stands for template) where we compute the closed

form expressions of the template parameters

that maximize ; and the R-step (“R” stands for reg-

istration) where we numerically solve for the transformation

parameters . We will use to denote the Jaco-

bian field of a transformation with respect to the spatial

coordinates and will indicate the determinant of matrix

. Derivations for the T- and R-steps can be found in the

Appendix. Here we summarize the algorithm.

• E-step: Given the model parameters from iteration , the

algorithm updates the posterior cluster probabilities:

1) , where

is defined in (2).
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2) Normalize to sum to 1

(7)

These probabilities can be seen as “soft cluster member-

ships,” where indicates a “hard member-

ship” in cluster .

• T-step: Given the posterior probability estimates

and transformation parameters ,

the algorithm updates its estimates of the templates ,

template priors and standard deviation image , for

which we derive closed-form expressions

(8)

(9)

(10)

• R-step: Given the new template parameters

, standard deviation image , and

memberships the spatial transformations are

updated

(11)

(12)

where is the “effective

template” (i.e., target image in registration) for image at

iteration and is the weighted sum of square

differences (WSSD) objective function of the R-step. The

effective template is a weighted average of the current tem-

plates and the weights are membership probabilities. A

single, invertible transformation is estimated for each

image. Current membership probabilities determine which

template the image should be aligning with.

We employ a B-spline transformation model (on an 8 8 8

control point grid, unless specified otherwise) and a multireso-

lution strategy. In general, this transformation model does not

guarantee invertibility. In practice, the algorithm checks for

invertibility by monitoring the Jacobian terms and terminates

when there is a Jacobian determinant value below a certain

small positive threshold. Rather than solving the nonconvex

optimization problem of (11), we perform a single Brent’s

method line search [10] based on gradient directions. The line

search of each image is done in parallel, since the optimiza-

tion for one image does not depend on other images. This

strategy guarantees that the lower bound on the log-likelihood

is improved, if not maximized, at each step; hence the name

Generalized EM.

B. Initialization

The above GEM algorithm does not guarantee that the com-

puted template images are in alignment. To introduce a notion

of common coordinate frame, we use an initial affine normal-

ization step that coregisters all images using a single dynamic

mean image and an affine transformation model. This step is one

of the popular coregistration algorithms used in practice. After

affine normalization, the GEM algorithm starts with the E-step

by computing membership probabilities according to (7). We

initialize the template images as a random selection of dif-

ferent input images, where is the predetermined number of

templates. In our experiments, we explore various values for

and only report results for the values that produce robust re-

sults across multiple random initializations as discussed in Sec-

tion IV-A. The template priors are initially assigned to be ,

and the variance image is initialized to be the sample variance at

each voxel after affine normalization. Each R-step is initialized

with the transformation parameters from the previous iteration.

C. Gradient Re-Normalization

In group-wise registration, one needs to anchor the registra-

tion parameters to avoid global transformation drifts across sub-

jects [8], [46], [58]. A natural common coordinate frame can be

defined as the average of the population. This natural coordi-

nate frame is computed implicitly by constraining the sum of

all displacements across the subjects to be zero. We extend this

strategy to the multi-template setting by constraining each point

in the common coordinate frame to lie at the average location of

corresponding points across the images in each cluster. To im-

pose this constraint, we use the soft memberships

(13)

Equivalently

(14)

, and . Summing both sides of (14) over yields

(15)

which is the anchoring constraint used by other group-wise reg-

istration methods [8], [46], [58].

In a gradient descent optimization strategy, one way of im-

posing the constraint of (15) is to re-normalize the gradients of

the R-step objective function by subtracting the average gra-

dient from all the individual image gradients. Let

be a dimensional row vector that
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denotes the gradient of the R-step objective function with re-

spect to the transformation parameters of the image at itera-

tion . Then, before each update of the transformation pa-

rameters, one re-normalizes the gradients:

(16)

In the multi-template setting, we extend this re-normalization to

satisfy the constraint of (13). We stack all the gradient row vec-

tors to create an matrix and all the member-

ship probabilities to create an column vector

for each . First, using the Gram-Schmidt

process, we obtain at most orthonormal vectors from

. Using this orthonormal basis, we re-normalize all the

gradients as

(17)

where denotes the identity matrix, denotes

the th column of and denotes the transpose of . After

re-normalization each column of is orthogonal to for all

. In other words: .

D. Determining the Optimal Number of Templates

Determining the optimal number of clusters is a classical

problem in unsupervised machine learning, which unfortunately

has no universal solution [35], [49]. The problem can be viewed

as a specific case of model selection. In general, increasing the

number of clusters provides a better fit to the observed data, yet

this does not necessarily translate into improved generalization.

A standard approach to controlling the generalization ability of

the model is to penalize the model complexity. Bayesian infor-

mation criterion (BIC) is a widely-used technique that attempts

to achieve this balance [45]. In our setting, BIC (or equivalently

minimum description length) can be formulated as minimizing

the penalized negative log-likelihood

(18)

where is the maximum value of the likelihood in

(3) for a fixed number of templates and is the total

number of model parameters, which in our case is equal to

, where is the number of transformation

parameters and is the number of voxels.

Alternatively, one can use the stability of the resulting model

to quantitatively asses the structure in the clustered data, cf.

[7]. In practice, we found it useful to measure the stability of

the output against different random initializations. For example,

we observed that beyond a particular input , the computed

clustering is significantly less consistent across runs with dif-

ferent initializations. We quantify this consistency using a rela-

tive measure defined for each run as

(19)

Fig. 2. iCluster: Pseudo-code.

where denotes the membership probabilities

computed in run and is the average member-

ship probability over all remaining runs for a fixed input . To

handle the ambiguity in cluster indexing, we maximized (19)

over all permutations of indexing of the templates in all runs.

This procedure yields a relative consistency value for each run

with a fixed input . Based on the stability criterion, we propose

to pick the highest value of that yields a relatively high av-

erage consistency (e.g., the average over multiple runs exceeds

0.9).

We tested both BIC and the consistency criterion using syn-

thetic data where ground truth was known. Our experiments,

presented in Section IV-A, indicate that the consistency crite-

rion yields an accurate prediction of the optimal number of tem-

plates.

E. Complexity

Each iteration of the algorithm has a computational com-

plexity and memory requirement of , where is the

number of input images, is the number of templates and

is the number of voxels. We use multithreading in ITK [30]

to implement a parallelized version of iCluster. Similar to [2],

[58], we employ a stochastic subsampling strategy to speed up

the algorithm. At each iteration, a random sample of less than

1% of the voxels was used to compute the soft memberships,

templates, template priors, standard deviation image and to up-

date transformation parameters. In practice, we run the numer-

ical optimization of the R-step as a single line search for each

image, where the search directions are the normalized gradients.

The effect of stochastic subsampling is investigated using syn-

thetic data in Section IV-A. Selecting a stopping criterion is not

straightforward with the subsampling strategy, since a compar-

ison of the objective function values across iterations is not pos-

sible. Instead, one can monitor the change in the parameters.

In practice, the algorithm stops when the change in the class

memberships and registration parameters falls below a prede-

termined threshold. Fig. 2 summarizes the iCluster algorithm.

IV. EXPERIMENTS

We validate the algorithm and investigate its behavior in four

different experiments. In the first experiment, we use synthetic

data to inform a choice of parameter settings, including the

amount of subsampling. The availability of ground truth allows

us to quantify the quality of results objectively and perform

comparisons across different settings of parameters. The second

experiment demonstrates the use of iCluster for building a multi-
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Fig. 3. Top row: Axial slices of the original subject MRIs used to synthesize
data. Middle row: Axial slices of representative synthetic images. Bottom row:
Axial slices of the four templates computed by iCluster with� � � and 0.5%
sampling percentage.

template atlas for a segmentation application. In the third exper-

iment, we employ iCluster to compute multiple templates from

a large data set that contains 415 brain MRI volumes. Our re-

sults demonstrate that these templates correspond to different

age groups. In the last experiment, we use our algorithm on

a smaller population that contains patients with dementia and

healthy subjects. The results indicate that the templates com-

puted by the algorithm correspond to the two clinical groups.

We find the correlation between the image-based clustering and

demographic and clinical characteristics particularly intriguing,

given that iCluster does not have access to this information when

constructing the model of heterogeneity in the population.

A. Synthetic Experiments

In this experiment, we synthesized three data sets from four

whole brain MR images (obtained from the Oasis repository

[34], with an image resolution of 176 208 176 voxels and

voxel dimensions of 1 mm ). The subjects were warped by ap-

plying random transformations parameterized with a 8 8 8

B-spline model [41]. Each control point was displaced by an

amount sampled uniformly from a 20 mm box around its orig-

inal location. Furthermore, the warped images were corrupted

with i.i.d. zero mean Gaussian noise with a variance equal to

10% of the maximum intensity value. Axial slices of the orig-

inal images and representative synthetic images are shown in

Fig. 3. Table I summarizes the ground truth information for the

synthetic data.

1) Effect of Stochastic Subsampling: First, we analyze the

effect of stochastic subsampling on the quality of results. We

ran iCluster on synthetic Data Set 3, with input . The

four templates were initialized poorly as four different synthetic

TABLE I
SUMMARY OF GROUND TRUTH FOR THE SYNTHETIC DATA

Fig. 4. Output quality as a function of sampling percentage, i.e., the ratio of
the size of stochastic set of voxels used at each iteration to the total number of
voxels. Error bars indicate standard deviation.

subjects that were all generated from the original subject 1. The

quality of results was assessed using two measures: membership

accuracy and error in the template images.

To define membership accuracy, we used the inner product

between two membership probability matrices as a proxy for

similarity. Formally, let denote a set of output mem-

bership probabilities and denote ground truth mem-

bership probabilities, with 1 corresponding to the template that

generated the image and all remaining entries equal to zero. We

define membership accuracy as

(20)

where is the number of input images. To resolve the ambi-

guity in the cluster indices, we maximize (20) over all possible

permutations of the ground truth template indices. We use this

maximum value as a measurement of membership accuracy.

Let denote the output template images and de-

note the ground truth templates, i.e., original subject MRIs. We

define the average template error as

(21)

where is the number of voxels in is the number of tem-

plates and the template indexing is determined by maximizing

(20) for output memberships.

Fig. 4 shows both the membership accuracy and template

error values for a range of sampling percentages, where the sam-

pling percentage is the ratio of the size of the stochastic set

of voxels used at each iteration to the total number of voxels.

For each parameter setting, we performed 10 runs of iCluster

starting from the same poor initialization. Each run yielded a

different output due to stochastic subsampling. For sampling

percentage values larger than 0.1% membership accuracy was

perfect and the template error reached its minimum for all ten

runs. In practice, we chose 0.5% as the sampling percentage.
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Fig. 5. BIC: Penalized negative log-likelihood values for a range of input �
values. Error bars indicate standard error. (a) Synthetic Data 1. (b) Synthetic
Data 2. (c) Synthetic Data 3.

Fig. 6. Consistency Criterion: The consistency of output membership probabil-
ities for a range of input � values. Error bars indicate standard error. (a) Syn-
thetic Data 1. (b) Synthetic Data 2. (c) Synthetic Data 3.

This corresponds to using roughly 30 000 voxels at each itera-

tion. The bottom row of Fig. 3 shows the four templates com-

puted by iCluster with input and 0.5% sampling per-

centage. The output templates were computed using (8) on the

whole domain with the estimated model parameters.

2) Determining the Optimal Number of Templates: Here, we

compare two methods for automatically determining the op-

timal number of templates. We ran iCluster on the three syn-

thetic data sets with a range of input values. For each setting,

we ran the algorithm ten times with different random initializa-

tions to get a collection of outputs. Using (18), we computed

the negative penalized log-likelihood values for these outputs.

Fig. 5 plots these values as a function of input for the three

data sets. BIC determines the optimal number of templates as

the value of that minimizes the penalized log-likelihood of

the data under the estimated model. According to this criterion,

data sets 1,2, and 3 have at least 4, 5, and 4 underlying templates,

respectively. The optimal for data sets 1 and 2 should have

been 2 and 3, respectively.

Alternatively, we can look at the consistency of the resulting

model to determine the optimal number of templates. We quan-

tified the consistency of the model using the relative member-

ship consistency measure defined in (19). The average relative

membership consistency values for each input are shown in

Fig. 6. Based on the consistency criterion, we propose to se-

lect the highest value of that yields a relatively high average

consistency (e.g., the mean over multiple runs exceeds 0.9). Ac-

cording to this criterion, data sets 1, 2, and 3 have 2, 3, and 4

underlying templates, respectively, which agrees perfectly with

the ground truth. In the remaining experiments, we used the con-

sistency criterion to determine the optimal number of templates.

B. Segmentation Label Alignment

In atlas-based segmentation, one typically normalizes the

new subject by registering the image with a template. Seg-

mentation is then achieved by inferring labels based on the

Fig. 7. Mean images for each clinical population after affine normalization.
(a) Healthy controls. (b) Affective disorder. (c) Schizophrenia.

intensities of the new image and the training images that con-

tain manual labels. The training data is usually employed to

establish a prior for segmentation. To assess the quality of this

prior, one can measure its agreement with the ground truth label

of a new subject. In the following experiment, we measure this

agreement by quantifying the alignment between one (new)

subject and the remaining (training) subjects. In the case of

multiple atlases, this requires an assignment of the new subject

to one of the atlases. If these atlases are constructed through

an image-based clustering strategy, as the one proposed in

this paper, one can use the same framework to determine this

assignment. This means fixing the template images, noise vari-

ance image and template priors in the iCluster algorithm. The

assignment of the new subject can then be computed using the

same GEM algorithm, which iterates over the E and R-steps.

In this experiment, we used a data set of 50 whole brain

MR brain images that contained 16 patients with first episode

schizophrenia (SZ), 17 patients with first-episode affective

disorder (AFF), and 17 age-matched healthy subjects (CON).

The MRI volumes were obtained using a 1.5-T General Electric

scanner (GE Medical Systems, Milwaukee, WI). The acquisi-

tion protocol was a coronal series of contiguous images. The

imaging variables were as follows: ms,

ms, one repetition, 45 nutation angle, 24-cm field-of-view,

(number of excitations), matrix

(192 phase-encoding steps) . The voxel dimensions were

0.9375 0.9375 1.5 mm. First episode patients are relatively

free of chronicity-related confounds such as the long-term

effects of medication, thus any structural differences between

the three groups are subtle, local and difficult to identify in

individual scans. Fig. 7 shows coronal slices of the affine-nor-

malized mean images for each clinical population. A detailed

description of the data and related findings are reported in [28].

For these images, we also had manual delineations of eight

temporal lobe structures: the (left and right) superior temporal

gyrus (STG), hippocampus (HIP), amygdala (AMY), and

parahippocampal gyrus (PHG). Prior MRI studies of schizo-

phrenic patients revealed structural brain abnormalities, with

low volumes of gray matter in the left posterior superior tem-

poral gyrus and in medial temporal lobe structures. However,

the specificity to schizophrenia and the roles of chronic mor-

bidity and neuroleptic treatment in these abnormalities remain

under investigation [28], [29]. Accurate segmentation tools for

temporal lobe structures is thus important for schizophrenia

research. We used manual labels to explore label alignment

across subjects under different groupings: on the whole data
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Fig. 8. Consistency Criterion for the schizophrenia data set: The consistency
of output membership probabilities for input � � �� �� �. Error bars indicate
standard error.

TABLE II
CLINICAL COMPOSITION OF CLUSTERS FOR � � �

TABLE III
CLINICAL COMPOSITION OF CLUSTERS FOR � � �

set, on the clinical grouping, and on the image-based clustering

as determined by iCluster.

We ran iCluster on the 50 MR images for different values of

input . We emphasize that the algorithm did not have access

to the clinical and manual label data. Fig. 8 shows the iCluster

output membership consistency, as defined in Section III-D. We

ran the algorithm ten times for each value of input . Based on

our proposed consistency criterion, we determine as the

optimal number of templates. However, to provide a compar-

ison with the clinical grouping (where there are three groups:

SZ, AFF, and CON), we present results for as well. Ta-

bles II and III show the relationship between the clustering of the

algorithm and the clinical diagnosis. We observe that the clus-

tering computed by the algorithm demonstrates no correlation

with the clinical diagnosis. This result confirms the difficulty

of identifying structural differences between these first-episode

patients and control subjects on an individual basis. Fig. 9 shows

coronal views of the two templates discovered by iCluster and

the difference image between these two. There are subtle struc-

tural differences between the two templates, especially around

the cortical regions of the temporal lobes.

To measure the quality of alignment of a region of interest

in two subjects, we employed two measures: 1) the Dice score

which quantifies the overlap between the regions of interest in

two subjects [55] and 2) the modified Haussdorff distance [56],

which is defined as the average Euclidean distance (in millime-

ters) between a boundary point and the closest corresponding

boundary point in the other subject. The Dice score ranges be-

tween 0 and 1, where 1 indicates a perfect overlap. The Hauss-

dorff distance achieves zero at perfect alignment; higher values

indicate worse alignment.

Fig. 9. Two Templates computed by iCluster. In the difference image, gray is
zero, darker (lighter) values correspond to negative (positive) values. (a) Tem-
plate 1. (b) Template 1 minus Template 2. (c) Template 2.

We compared average label alignments for three strategies.

1) ALL: All subjects were coregistered with a single dynamic

average template. This was achieved using the iCluster al-

gorithm with and a 32 32 32 B-spline grid. The

average label alignment for each subject was then com-

puted by averaging all pairwise measures of label align-

ment with the remaining subjects.

2) CLIN: Each clinical group was coregistered separately

using iCluster with and a 32 32 32 B-spline

grid. The average label alignment for each subject was

then computed by averaging all pairwise measures of label

alignment with the remaining subjects with the same clin-

ical diagnosis.

3) iC2 and iC3: We ran iCluster on all subjects with input

and 3, and a 32 32 32 B-spline grid. For each

input value, we report label alignment results for the

run that yielded the highest relative consistency value as

defined in (19). The average label alignment for each sub-

ject was then computed by averaging all pairwise measures

of label alignment with the remaining subjects in the same

cluster.

Fig. 10 shows the average Dice scores and Hausdorff dis-

tances for the individual ROIs. These values were computed

in the atlas space, where the manual labels were interpolated

using the transformations obtained from the registrations and

the nearest neighbor interpolator. We performed a paired per-

mutation test comparison between the average label alignments

of the three scenarios. The p-values were computed by assessing

the average difference between two sets of paired measurements

based on a histogram of differences obtained by randomly shuf-

fling the order of pairings. The comparisons for the Haussdorff

distances are presented in Table IV. Dice score comparisons

yield similar results. In summary, iCluster with input

yields the best label alignment results, where 6 out of 8 ROIs

were significantly better aligned (with ) compared to

the first two strategies of co-registering all subjects (ALL) and

clinical groups separately (CLIN). This result provides further

evidence for the usefulness of the proposed consistency crite-

rion that determines the optimal number of templates. ALL and

CLIN yield statistically improved label alignment for only one

ROI: the right Superior Temporal Gyrus.

These results suggest that, on average, for most ROIs we

achieve a better agreement between the ground truth labels and

a prior obtained via iCluster, than a prior computed by co-reg-

istering all subjects or subjects within a clinical population.
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Fig. 10. Top row: Dice scores for each ROI. Bottom row: Haussdorff Distances in millimeters. Error bars indicate standard error.

TABLE IV
STATISTICAL COMPARISON OF AVERAGE LABEL ALIGNMENT. IMPROVEMENT: � � �� � ������ � � � ������� � ���.

EQUIVALENT: �. IMPAIRMENT: � � �� � ����. L AND R DENOTE LEFT AND RIGHT, RESPECTIVELY

Fig. 11. Consistency Criterion for the Oasis data set: The consistency of output
membership probabilities for a range of input� values. Error bars indicate stan-
dard error.

C. Age Groups in the OASIS Data Set

In this experiment, we used the OASIS data set [34] which

consists of 415 preprocessed (skull stripped and gain-field cor-

rected) brain MR images of subjects aged 18–96 years including

individuals with early-stage Alzheimer’s disease (AD). We ran

iCluster on the whole data set while varying the number of tem-

plates from 2 through 5. Each run took 4–8 h on a 16 pro-

cessor PC with 128 GB RAM. Fig. 11 shows the output consis-

tency against for different values of input . For and 5

the consistency values are significantly smaller than 0.9. We,

therefore, report our results for and . Figs. 12

and 13 show the two and three robust templates computed with

and , respectively. Fig. 14 shows typical in-

dividual subjects (in their native coordinates) corresponding to

each cluster computed with . These subjects were chosen

based on age, gender, and clinical condition, not image simi-

larity. Fig. 15 shows the age distributions determined via Parzen

Fig. 12. Two templates of the OASIS data. In the difference image, gray is zero,
darker (lighter) values correspond to negative (positive) values. (a) Template 1:
Young. (b) Template 1 minus Template 2. (c) Template 2: Old.

Fig. 13. Top Row: Three templates of the OASIS data. Bottom Row: Difference
images. Gray is zero, darker (lighter) values correspond to negative (positive)
values. (a) Template 1: Young. (b) Template 2: Older Middle Aged. (c) Template
3: Elderly. (d) Template 1 minus Template 2. (e) Template 2 minus Template 3.
(f) Template 1 minus Template 3.
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Fig. 14. Typical Subjects: (a) Group 1: 24-year-old, healthy female. (b) Group
2: 52-year-old, healthy female. (c) Group 3: 76-year-old male with very mild
dementia and probable AD.

window estimator based on a Gaussian kernel with a standard

deviation of four years.

It is easy to see that each template corresponds to a unique

age group: For , we identify a group of 268 young sub-

jects (aged years) and a group of 147 elderly sub-

jects (aged years). For the algorithm detected

201 young subjects (Group 1, aged years), an older

middle aged group of 127 subjects (Group 2, aged

years) and elderly 87 subjects (Group 3, aged years).

Fig. 15(b) illustrates the intersection between the middle aged

distribution of and the distributions of . This plot

reveals that the middle aged group for consists of two

subpopulations: 1) a younger group of subjects that are in the

young group for and 2) an older age group in the elderly

for . These results suggest that the dominant structural

modes in this large population are mainly due to aging. Ana-

lyzing the decomposition of the whole age distribution [shown

in black in Fig. 15(b)] indicates that iCluster does not simply

find the three major age modes. Specifically, the small middle

peak around 50 years is robustly included with the younger pop-

ulation in both and . With three modes, the algo-

rithm identifies an older middle aged group (Group 2) that has

a significant overlap in age with the elderly group (Group 3).

We further analyzed the clinical dementia rating (CDR) [36]

data to explore the differences across the image-based clusters.

Table V summarizes the results. Group 1 [Fig. 13(a)] has al-

most no subjects with positive CDR (an indication of probable

Alzheimer’s), whereas Group 2 [Fig. 13(b)] consists of 35% pa-

tients diagnosed with probable Alzheimer’s disease (AD) (i.e.,

has a CDR score of greater than zero), and 65% subjects with no

dementia. Group 3 [Fig. 13(c)] includes 69% patients with prob-

able AD and 31% healthy subjects with zero CDR. The differ-

ence between the patient percentage in each group is statistically

significant at as determined by a permutation test.

This result indicates that the old-middle aged group computed

by iCluster contains a majority of healthy individuals, whereas

the elderly group is dominated by probable AD patients.

An important question at this point is to what extent these

dementia profiles are correlated with the age data of the indi-

viduals, since it is known that the rate of incidence of dementia

increases with aging [21]. Moreover, we would like to explore

the influence of gender on these structural modes. One impor-

tant point to note is that approximately half of the subjects over

60 years old (100 subjects) were clinically diagnosed with de-

mentia, as summarized in Table VI. Examining this table reveals

a difference between the two genders: healthy females without

dementia are more likely to belong to Group 2 [Fig. 13(b)]. On

the other hand, males with positive CDR (i.e., with dementia)

are more likely to belong to Group 3 [Fig. 13(c)]. For the other

two groups, i.e., males without dementia and females with de-

mentia, there is no obvious relationship that these tables reveal.

To get a better insight into the characteristics of the discov-

ered structural modes, we performed a multinomial logistic re-

gression on the iCluster group memberships using age, gender

and clinical data1 as regressors. Table VII reports the regres-

sion coefficients, assuming Group 2 to be the reference cat-

egory. If we convert the estimated probabilities to group as-

signments, the total model achieves around 75% training ac-

curacy and a likelihood ratio test estimates the significance of

the full, fitted model at . The significance of each

coefficient was determined with a Wald test [17]. These re-

sults suggest that the most significant factor that determines

group assignment is age: with each year, the odds of a sub-

ject being assigned to the next, older group increases by ap-

proximately . Groups 2 and 3 are also dif-

ferentiated by the clinical score and gender (with less signifi-

cance). One point decrease in the MMSE score increases the

odds of a subject belonging to Group 3, rather than Group 2, by

. A female’s odds of belonging to Group

2 versus Group 3 is roughly 2.5-fold higher than a

male’s.

These results confirm that aging and dementia are both signif-

icant factors that influence major structural changes in the brain.

Moreover, our results indicate that these factors may have dif-

ferent effects for the two genders. These findings demonstrate

a qualitative similarity with the ones reported in [20], where

aging and dementia are shown to correlate with brain atrophy

in a similar manner. Furthermore, [20] reports that these effects

have a tendency to be different in the two genders: males tend

to demonstrate a higher rate of atrophy. The gender difference,

however, does not reach statistical significance in the analysis

of [20] and remains under debate in the literature [23], [32].

D. Patients With Dementia

In the fourth experiment, we used a set of 30 subjects (aged

between 65 and 84 years) from the OASIS data set. Fifteen of

these had a positive CDR, i.e., were diagnosed with very mild

to mild dementia and probable AD (aged years, with

education level of ), while the other 15 individuals were

controls (aged years, with education level of

) with no sign of clinical dementia at the time of scanning.

Fig. 16 shows the consistency of iCluster outputs over a range

of input K values. For , we observe that the membership

consistency is less than 0.9, thus we report results for :

Group 1 [Fig. 17(a)] consists of 25 subjects, 15 of which were

CDR zero. Group 2 [its template shown in Fig. 17(c)] consists

of five subjects, all of which have dementia.

We performed a multinomial logistic regression on the

iCluster assignments using age, education data (1: less than

high school, 2: high school, 3: some college, 4: college grad-

uate, 5: beyond college), clinical score and gender data as

regressors. Only the clinical score demonstrated significant

1Mini-Mental State Exam scores [40] that ranged from 14 (poor mental
health) to 30 (good mental health).
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Fig. 15. Age distributions of the OASIS data. (a) Age distributions for� � �, (b) the relationship between the ages of subjects in clusters identified for� � �

and for � � �, (c) Age distributions for � � �. (a)� � �, (b) from� � � to � � �, (c)� � �.

TABLE V
NUMBER (PERCENTAGE) OF SUBJECTS WITH RESPECT TO THEIR GENDER

AND CLINICAL DEMENTIA SCORE IN EACH GROUP COMPUTED BY

ICLUSTER WITH � � �

TABLE VI
NUMBER (PERCENTAGE) OF SUBJECTS AGED 60 AND OLDER WITH RESPECT

TO THEIR GENDER AND CLINICAL DEMENTIA SCORE DATA IN EACH

GROUP COMPUTED BY ICLUSTER WITH � � �

relevance to differentiate the two groups (see Table VIII): the

first group’s average MMSE score was , whereas

group two’s score was .

The fact that Group 2 comprised of dementia patients with

significantly low MMSE scores is intriguing. Yet, the more in-

teresting question is, what is special about the ten dementia pa-

tients assigned to Group 1? This clustering suggests that their

anatomies are more similar to healthy subjects in the same age

group. Clinical and demographic attributes of the patients in the

two groups are virtually identical: 1) age: versus

, 2) MMSE score: versus , and

3) education level: versus . Thus, based on the

data we have, this question remains open and requires further

investigation.

V. DISCUSSION

Our experiments demonstrate the use of iCluster in multiple

settings. The synthetic experiments served to asses the effect of

stochastic subsampling on the quality of results and informed

the design of the method that automatically determines the op-

timal number of templates. In the second experiment presented

in Section IV-B, we show that, using the proposed clustering

strategy, one can compute a multi-template atlas for a segmen-

tation application. Based on growing evidence that population-

specific atlases yield more accurate segmentation, we can em-

ploy iCluster to discover coherent subpopulations in a large

population of images and construct separate atlases for each

subpopulation. Our experiments suggest that a multi-template

atlas can improve segmentation quality. The proposed approach

promises significantly better segmentation than a disease-spe-

cific atlas, especially in the case of spectrum diseases such as

schizophrenia.

In another setting, we demonstrate the utility of an image-

driven approach for computational anatomy. This is in contrast

with today’s popular techniques that rely on a clinical or demo-

graphic classification of the subjects. Our experiments show that

iCluster can robustly identify structural modes in a population

that are mainly determined by age and dementia. This type of

analysis promises to provide insight into the major factors that

drive structural change and, more importantly, characterize sub-

types of a particular disorder.

In our experiments, enlarged ventricles are immediately ob-

vious in the older and dementia templates when compared to the

younger and healthy populations, respectively. Moreover, cor-

tical thinning and anterior white matter changes are visible in

the difference images shown in Fig. 13. These types of structural

changes due to aging and dementia have been well documented

in the literature [16], [26], [43]. Further analysis is required

to understand the structural differences between the discovered

modes. The intermediate group (the older middle aged in the

first experiment) and the mixture group in the dementia experi-

ment can provide interesting insights into structural changes due

to aging and dementia.

With a single template, i.e., input , iCluster can be seen

as an efficient unbiased template estimation algorithm, similar

to the ones proposed in [14], [31], [58]. Yet, the main point of

this paper is that a single template is not sufficient to summa-

rize the variability in a large and heterogenous population of

images. To that extent, iCluster is similar to the recent works on

atlas stratification [9] and deformable templates [1]. In the atlas

stratification framework of [9], the authors propose to use an

off-the-shelf clustering algorithm on images to identify under-

lying homogeneous subpopulations. The framework does not

explicitly model anatomical heterogeneity and yields a com-

putationally inefficient algorithm, where one needs to perform

pairwise registration instances to analyze input im-

ages. The generative model we developed in this paper is similar
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TABLE VII
LOGISTIC REGRESSION COEFFICIENTS ON ICLUSTER MEMBERSHIPS COMPUTED

FOR THE WHOLE OASIS DATASET AND � � �

TABLE VIII
LOGISTIC REGRESSION COEFFICIENTS ON ICLUSTER MEMBERSHIPS COMPUTER FOR THE 30 SUBJECT

DEMENTIA DATASET AND � � �

Fig. 16. Consistency criterion for the 30 subject dementia data set. The consis-
tency of output membership probabilities for a range of input � values. Error
bars indicate standard error.

Fig. 17. Two templates and their difference image for the 30 subject dementia
data set. (a) Mostly Healthy. (b) Difference Image. (c) Dementia Patients.

to the deformable templates model of [1]. Yet, in contrast with

[1], our main focus is to propose a computationally efficient al-

gorithm that can be employed on large collections of high res-

olution medical image data. Most importantly, however, we in-

clude a concrete demonstration of how an image-clustering ap-

proach can be used to construct multiple segmentation atlases

and study the effects of clinical and demographic factors on neu-

roanatomy.

The image-based clustering approach can also be extended

to descriptors of anatomical shape, such as volume [20] or sur-

face-based representations [52]. Various shape descriptors have

been used to study the effects of disease progression and aging

on anatomy. Based on similarity measures defined for these

different descriptors, one can potentially derive different shape

clustering algorithms. One such algorithm was proposed in [50].

The main drawback of such a shape-based approach is the need

for accurate segmentations, which limits the amount of data

such a strategy can be applied to. An image-based clustering

approach, on the other hand, has the advantage that it can be

used with large collections of raw images. Furthermore, image-

based clustering can potentially reveal modes in a population

that differ in unexpected regions.

We view iCluster as a first step towards a more comprehen-

sive image-driven population analysis framework. The current

algorithm suffers from several limitations. Notably, the simple

additive Gaussian noise model cannot handle significant inten-

sity variations across images. Thus, the current algorithm can

only be used with intensity corrected (e.g., histogram matched,

bias field corrected) images of the same modality. Moreover,

the algorithm constructs clusters based on a similarity measure

computed over whole images. This makes the method less sensi-

tive to subtle and local differences across groups of images. One

solution is to use a similarity measure computed over a region of

interest in the E-step of iCluster. In the following, we summa-

rize the possible directions one can explore to extend iCluster to

a broader set of problems.

1) Use an entropy-based similarity measure that is insensi-

tive to intensity variations to compute memberships in the

E-step and perform co-registration in the R-step.

2) Compute memberships within a region of interest or based

on a different type of information, e.g., connectivity from

diffusion data.

3) Use more sophisticated models of deformation, e.g., dif-

feomorphisms. Moreover, one can integrate a more so-

phisticated prior on the spatial transformations. Hence, the

memberships will be a function of both a similarity mea-

sure based on image intensities and the deformation cost.

4) Rather than using an additive noise model on intensities,

one could explicitly model the variance in warps which

would lead to a clustering strategy based on deformations.

VI. CONCLUSION

We presented a fast and efficient image clustering algorithm

for co-registering a group of images, computing multiple

templates that represent different modes in the population, and

determining template assignments. We demonstrated our algo-

rithm in several experiments, which illustrated a multi-template

atlas strategy for accurate image segmentation and revealed age

and disease-related modes in a population. Our results confirm

previous findings and lead to interesting insights that suggest

future research directions in computational anatomy.
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APPENDIX I

In this Appendix, we provide derivations for the update equa-

tions of the T- and R-steps of the iCluster algorithm presented

in Section III-A.

A. T-Step

Given the posterior probability estimates and

fixing the spatial transformations from the previous it-

eration, the template images , template priors , and

standard deviation image are updated to maximize the lower

bound of (5)

(22)

(23)

such that .

In (23) all the template priors can be optimized in-

dependently. We introduce a Lagrange multiplier for the con-

straint

(24)

differentiate (23) with respect to and set the derivative to

zero, obtaining

(25)

where .

We recall that

(26)

(27)

(28)

(29)

where denotes matrix determinant, is the Jacobian

matrix of that contains the partial derivatives of the warp

field with respect to the coordinates and is a continuous and

compact subset of that covers the discrete set . Equations

(27)–(29) assume a suitable interpolator for making and

spatially continuous. Equation (28) assumes the boundary

condition for all , where is the boundary

of and uses a change of variables with .

Substituting (29) into (23), we obtain

(30)

Differentiating the objective function in (30) with respect to

and setting the derivative to zero yields

(31)

which is independent of .

To determine , we substitute (29) into (23) and obtain

(32)

Differentiating the objective function of (32) with respect to

and setting the derivative to zero yields

(33)

B. R-Step

Fixing the model parameters computed in the previous T-step,

the R-step updates the transformations to improve the

lower bound of (5). Substituting (29) into (23) and

focusing on the terms that depend on yields

(34)
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(35)

(36)

where in (35) and (36) we dropped and added terms that do not

depend on .
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