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A new fractional two-dimensional triangle function combination discrete chaotic map (2D-TFCDM) with the discrete fractional
di�erence is proposed. We observe the bifurcation behaviors and draw the bifurcation diagrams, the largest Lyapunov exponent
plot, and the phase portraits of the proposed map, respectively. On the application side, we apply the proposed discrete fractional
map into image encryption with the secret keys ciphered by Menezes-Vanstone Elliptic Curve Cryptosystem (MVECC). Finally,
the image encryption algorithm is analysed in four main aspects that indicate the proposed algorithm is better than others.

1. Introduction

Nowadays, image encryption plays a signi	cant role with the
development of security technology in the areas of network,
communication, and cloud service. Multifarious chaos-based
image encryption algorithms have been developed up to now,
such as in [1–6]; however a few of them have referred to
the image encryption algorithm based on fractional discrete
chaotic map accompanied with Elliptic Curve Cryptography
(ECC).

�e theory of the fractional di�erence has been developed
for decades [7–13]. Recently, Wu et al. [14–16] made a
contribution to the application of the discrete fractional
calculus (DFC) on an arbitrary time scale, and the theories of
delta di�erence equations were utilized to reveal the discrete
chaos behavior.

ECC is a widely used technology in data security and
communication security; it can achieve the same level of
security with smaller key sizes and higher computational
e
ciency [17]. Many famous public-key algorithms, such as
Di
e-Hellman, EIGamal, and Schnorr, can be implemented

bymeans of elliptic curves over 	nite 	elds.MVECC is one of
the popular elliptic curve public-key cryptosystems [18] and
we adopt it in our cryptosystem.

Many encryptionmethods based on fractional derivatives
have been proposed in recent time, like fractional logistic
maps [19], fractional-order chaos systems [20], and fractional
form of hyperchaotic system [21].

In [22], a new image encryption algorithm based on one-
dimensional fractional chaotic time series within fractional-
order di�erence has been proposed; however, the two-
dimensional discrete chaotic map has seldom been used in
image encryption except [23, 24].

Ourmain purpose is to introduce a new two-dimensional
discrete chaoticmap based on fractional-order di�erence and
apply it in image encryption. �e rest of this paper is orga-
nized as follows. In Section 2, the de	nitions and the prop-
erties of the DFC are introduced. A�er that, the de	nitions
and operation of ECC are given. �en, the working principle
of MVECC is described in the next section. In Section 5,
we give the fractional 2D-TFCDM on time scales from the
discrete integral expression.�ebifurcation diagrams and the
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phase portraits of the map are presented while the di�erence
orders and the coe
cients are changing; the largest Lyapunov
exponent plots are also displayed. A�erwards, we apply
the proposed map into image encryption and show several
examples. In Section 7, the performance of the proposed
image encryption method is analysed systematically. Finally,
we have come to some conclusions.

2. Preliminaries

�e de	nitions of the fractional sum and di�erence are given
as follows. Let N� denote the isolated time scale and N� ={�, �+1, �+2, . . .} (� ∈ R 	xed).Within theDFC, the function�(�) is changed as a sequence �(�). �e di�erence operator Δ
is de	ned as Δ�(�) = �(� + 1) − �(�).
De�nition 1 (see [25]). Let �: N� → R and 0 < ] be given.
�e ]th fractional sum is de	ned by

Δ−]� � (�) fl 1
Γ (])
�−]∑
�=�
(� − � − 1)]−1 � (�) , � ∈ N�+]. (1)

Note that � is the starting point; �(]) is the falling function
de	ned as

�(]) = Γ (� + 1)
Γ (� + 1 − ]) . (2)

De�nition 2 (see [26]). For 0 < ], ] ∉ N, and �(�) de	ned on
N�, the ]-order Caputo fractional di�erence is de	ned by

�Δ]

�� (�) fl Δ−(�−])� Δ�� (�)
= 1
Γ (� − ])

�−(�−])∑
�=�

(� − � − 1)(�−]−1) Δ�� (�) ,
� ∈ N�+�−], � = []] + 1.

(3)

�eorem 3 (see [27]). For the delta fractional di�erence equa-
tion

�Δ]

�� (�) = � (� + ] − 1, � (� + ] − 1)) ,
Δ�� (�) = ��, � = []] + 1, � = 0, . . . , � − 1 (4)

the equivalent discrete integral equation is

� (�) = �0 (�) + 1
Γ (])

�−]∑
�=�+�−]

(� − � − 1)(]−1)

× � (� + ] − 1, � (� + ] − 1)) , � ∈ N�+�,
(5)

where

�0 (�) =
�−1∑
�=0

(� − �)(�)
�! Δ�� (�) . (6)

	e complex di�erence equation with long-term memory is
obtained here. It can reduce to the integer order one with the
di�erence order ] = 1 but the integer one does not hold the
discrete memory. From (3) to (5), the domain is shi�ed from
N�+�−] toN�+� and the function �(�) is preserved to be de�ned
on the isolated time scale N� in the fractional sums.

3. Introduction to Elliptic Curve

De�nition 4. An elliptic curve (EC) � over a prime 	eld ��
denoted by �(��) refers to the set of all points (�, �) that
satisfy the equation

� : �2 ≡ �3 + �� + � (mod�) , (7)

together with a special point � at in	nity, where �, � ∈ ��,� ̸= 2, 3 and 4�3 + 27�2 ̸= 0 [28, 29].
3.1. Elliptic Curve Operations. If � = (�1, �1), � = (�2, �2) ∈�(��); then if �1 = �2 but �1 ̸= �2, � + � = �; that is, � =−� = (�1, −�1) [29].

� + � = {{{
 = (�3, �3) , � ̸= −�,
�, � = −�, (8)

where

�3 ≡ (#2 − 2�1) (mod�) ,
�3 ≡ (# (�1 − �3) − �1) (mod�) ,

# =
{{{{{{{{{

(�2 − �1)(�2 − �1) , � ̸= �,
3�21 + �2�1 , � = �.

(9)

�e scalar multiplication over �(��) is de	ned by

�� = � + � + ⋅ ⋅ ⋅ + �⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
� times

, (10)

where � is an integer.

De�nition 5. �e order of an EC is de	ned by the number of
points that lie on the EC denoted by #� [29].

De�nition 6. Set � ∈ �(��), and then � is called a generator
point if ord(�) = #� (ord(�) is the smallest positive integer �
that makes �� = �) [29].
4. Menezes-Vanstone Elliptic Curve

Cryptosystem (MVECC)

MVECC is one of most signi	cant extensions of ECC; the
working principle of MVECC is as follows.

If Andy wants to encrypt and send themessage5 to Bob,
they should do the step as mentioned hereunder:(1)Andy and Bobmake an agreement on an elliptic curve�(��) and the base point 6.(2)Bob 	rstly selects a private key � to compute the public
key 8 = � ⋅ 6 (0 ≦ � < ord(6)).(3) If Andy wants to send a message5 = (�1, �2) ∈ Z∗� ×
Z∗� to Bob, he 	rstly chooses a random private key ; (0 ≦ ; <
ord(6)) and then computes his public key > = ; ⋅ 6. On the
other hand, Andy calculates the secret key (?1, ?2) by

(?1, ?2) = ; ⋅ 8 = ; ⋅ � ⋅ 6 = � ⋅ >. (11)
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Figure 1: �e bifurcation diagram of the 2D-TFCDM of variable �1
for ] = 1.

He should compute the ciphered message a�erwards by

�1 = �1 ∗ ?1 mod�,
�2 = �2 ∗ ?2 mod�. (12)

(4)�en the ciphertext {8, (�1, �2)} is sent to Bob. When
Bobwants to get the plaintext (�1, �2), 	rstly, he computes the
secret key (?1, ?2) = � ⋅ > = � ⋅ ; ⋅ 6, and then he computes5 = (�1, �2) by

�1 = �1 ∗ ?−11 mod�,
�2 = �2 ∗ ?−12 mod�, (13)

to get the plaintext [18].
Any adversary that only has > and 8 without the private

keys ; and � very di
cultly breaks the MVECC to get the
plaintext 5. What is more, if #� have only one big prime
divisor, the EC is called a safe EC [29]; then, the MVECC can
become an more e
cient and secure cryptosystem.

5. Fractional 2D-TFCDM

From [14–16], we notice the application of the DFC in frac-
tional generalizations of the discrete chaotic maps. Recently
[30], the following 2D-TFCDM was proposed:

�
+1 = �1 cos (�
 + �
) , �1 = 8,
�
+1 = �2 sin (�
 − �
) , �2 = 0.5. (14)

Now, consider the fractional generalization of �(�); the map
was also studied in [31]:

�Δ]

�� (�) = �1 cos (� (� + ]) + � (� + ])) − � (� + ]) ,
0 < ] < 1, � ∈ C�+1−],

�
+1 = �2 sin (�
 − �
) , �2 = 0.5.
(15)
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Figure 2: �e bifurcation diagram of the fractional 2D-TFCDM of
variable �1 for ] = 0.8.

From �eorem 3, we have the following equivalent discrete
numerical formula for the variable �1: (�2 = 0.5) with 0 <
] < 1:

� (�) = � (0) + 1
Γ (])


∑
�=1

Γ (� − D + ])
Γ (� − D + 1)

⋅ [�1 cos (� (D − 1) + � (D − 1)) − � (D − 1)] ,
� (�) = �2 sin (� (� − 1) − � (� − 1)) , �2 = 0.5.

(16)

Let ] = 1, �(0) = 0.19, �(0) = 0.06, � = 200, and �1
be 	xed. In what follows, Figure 1 is the bifurcation diagram
where the step size of �1 is 0.002. Figure 2 is the same
bifurcation diagram except for ] = 0.8.

In Figures 3 and 4, the largest Lyapunov exponent plots
are drawn by use of the Jacobian matrix algorithm proposed
in [32]. �e largest Lyapunov exponent LE is positive some-
where; it is corresponding to the chaotic intervals in Figures
1 and 2.

By choosing 101 di�erent initial values we can plot �(�)
versus �(�) in one 	gure. �e phase portraits of the integer
map are derived from Figure 5. �e cases of ] = 0.8 and ] =0.6 are plotted in Figures 6 and 7, respectively.

6. Applications

�e fractionalized chaotic map can be applied in image
encryption. Exploit (16) into an algorithm, and set the initial
values �0, �0, the order ], and the coe
cients �1, �2 of chaotic
system as keys. In this paper, we propose the encryption
algorithm and divide it into 3 parts.

6.1. Generation of New Keys Based on Elliptic Curve in a Finite
Field. Setting � = 1, � = 6, and � = 9996887 in (7), we
can get �(�9996887). Since #� = 10000721 is a prime number,
according to [29], �(�9996887) is a safe EC. Let 6 = (2, 4),
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randomly select ; = 9134417, � = 1269960 ∈ [1, #�]; then> = ;6 = (6020909, 7282175), 8 = �6 = (7495358, 7052635),
and (?1, ?2) = �> = (3049362, 3915118) = ;8. �e initial key

] = 0.6026331, �0 = 4.107532, ]01 = ] × 107 = 6026331, and�01 = �0 × 106 = 4107532.
Calculate

]


01 = ?1 ∗ ]01 mod� = 3049362 ⋅ 6026331 mod 9996887 = 7123456 mod 9996887,
�
01 = ?2 ⋅ �01 mod� = 3915118 ⋅ 4107532 mod 9996887 = 190000 mod 9996887. (17)

�en, the ciphertext is ((7495358, 7052635), 7123456, 190000),
the enciphered key is ]
 = ]



01/107 = 0.7123456, and �
0 =�
01/106 = 0.19.

Make �0 = 3.650991, �1 = 0.897029, and �2 = 0.434264,
and compute�01 = �0×106, �01 = �1×106, and �02 = �2×106;
then

�
01 = ?1 ⋅ �01 mod� = 3049362 ⋅ 3650991 mod 9996887 = 60000 mod 9996887,
�
01 = ?2 ⋅ �01 mod� = 3915118 ⋅ 897029 mod 9996887 = 8000000 mod 9996887,
�
02 = ?1 ⋅ �02 mod� = 3049362 ⋅ 434264 mod 9996887 = 500000 mod 9996887.

(18)

Set �
0 = �
01/106 = 0.06, �
1 = �
01/106 = 8, �
2 =�
02/106 = 0.5, and then �
0, �
0, ]
, �
1, �
2 are taken as the keys
of Section 6.2.

6.2. Permutation Procedure Based on Fractional 2D-TFCDM.
Taking advantage of (16) with the initial values �
0, �
0, ]
, �
1,
and �
2 generated in the last section, we can encrypt the image.
�e next step of encryption is permutation; it is subdivided
into 4 steps:(1) Set �
0 as �(1); iterate (16) for5C−1 times to generate
the one-dimensional real number chaotic sequence �(J), J =1, 2, . . . ,5C; here5 and C denote the length and width of
the original image K, respectively.(2) Reorder �(�) by the bubble sort and get �
(�), and
record the change of the subscript of �(�) as L(�).(3)Change5×C original imageK into 1×5C sequence
V(�), and rearrange V(�) according to L(�) to get the new
sequence V
(�).(4) Reshape V


(�) into 5 × C image as K
; K
 is the
permutated image we needed.

Reversing the above 4 steps, we can remove the e�ect of
permutation to get the original image.

6.3. Encryption Method Based on Fractional 2D-TFCDM. (1)
In Section 6.2 we get the chaotic sequence �(J) and imageK
.
Reshape5×C image K
 into 1 ×5C sequence �(J); that isJ = C(� − 1) + �, (� = 1, 2, . . . ,5, � = 1, 2, . . . , C). Another5 × C image is used as a key image (K-image). Change the
K-image also into 1 ×5C sequence M(J).(2) Set J = 0.(3) Round �(J) × 108 as �1(J), do modulus operation to�1(J) in (19), and get �2(J):

�2 (J) = mod (�1 (J) , 256) . (19)

(4) Do the following operation and get �
(J):
�
 (J) = � (J) ⊕mod (M (J) + �2 (J) , 256) , (20)

where ⊕ refers to the Xor operation, and �
(J) is the encrypted
pixel value.

�e inverse form of (20) is

� (J) = �
 (J) ⊕mod (M (J) + �2 (J) , 256) . (21)

(5) Compute the iteration times �(J) according to
� (J) = 1 +mod (�
 (J) , 256) . (22)

�en, iterate (16) for �(J) times to get �(J+1), circle from step(3) to step (5), until getting �(5C).(6) Change �
(J) into 5 × C image as K

, which is the
	nally encrypted 	gure we need.

�e decryption procedure is including 2 parts:(1) Do all steps in encryption process except (20) which
is replaced by (21).(2) Reverse the procedure in Section 6.2. �en the
decryption procedure is done.

Figure 8 shows the encryption process described in
Sections 6.2 and 6.3 in a �ow chart, and Figure 9 illustrates
the iteration procedure of S box.

�e original, encrypted, and decrypted images are shown
in Figures 10–18. �e proposed algorithm can encrypt any
rectangular image.

�e adopted cryptosystem in Section 6.1 is asymmetric;
however, the ones in Sections 6.2 and 6.3 are symmetric.

7. Analysis of Results in Applications

7.1. Key Space. In the proposed algorithm, the initial values�0, �0, the order ], and the coe
cients �1, �2 are taken as the
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Figure 6: �e phase portraits of the fractional 2D-TFCDM for �1 = 8, �2 = 0.5, and ] = 0.8.
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Figure 7: �e phase portraits of the fractional 2D-TFCDM for �1 = 8, �2 = 0.5, and ] = 0.6.
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(a) �e original 	gure (b) �e encrypted 	gure (c) �e decrypted 	gure

Figure 10: Cameraman.

(a) �e original 	gure (b) �e encrypted 	gure (c) �e decrypted 	gure

Figure 11: Lena.

secret keys; consequently there are 5 keys. Assume the preci-

sion of �0, �0, ], �1, and �2 are 10−16, 3 × 10−17, 10−16, 10−15,
and 10−16, respectively; then the key’s space is 1/3 × 1080 ≈1.12 × 2264. If the size of the plaintext is 512 × 512, then
the key space of K-image is also 512 × 512 × 28 =226. �e total key space of the proposed algorithm is 1.12×2290.

7.2. Statistics Analysis. �e quality against any statistical
attack is important for a well-designed encryption method;
it include 3 aspects as follows.

7.2.1. Correlation of the Plain- and Cipher-Images. In an ordi-
nary image, the adjacent pixels are related; therefore the cor-
relation coe
cient of adjacent pixels is usually high. A good
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(a) �e original 	gure (b) �e encrypted 	gure (c) �e decrypted 	gure

Figure 12: Peppers.

(a) �e original 	gure (b) �e encrypted 	gure (c) �e decrypted 	gure

Figure 13: Lake.

(a) �e original 	gure (b) �e encrypted 	gure (c) �e decrypted 	gure

Figure 14: Dollar.

(a) �e original 	gure (b) �e encrypted 	gure (c) �e decrypted 	gure

Figure 15: Columbia.



Discrete Dynamics in Nature and Society 9

(a) �e original 	gure (b) �e encrypted 	gure (c) �e decrypted 	gure

Figure 16: Lax.

(a) �e original 	gure (b) �e encrypted 	gure (c) �e decrypted 	gure

Figure 17: Boat.

(a) �e original 	gure (b) �e encrypted 	gure (c) �e decrypted 	gure

Figure 18: Aerial.

encryption algorithm should make the correlation coe
-
cients of encrypted image nearly equal to zero. �e closer to
zero the correlation coe
cients is, the better the encryption
algorithm is. Formulas (23) calculate the correlation coe
-
cient. �e correlations along the � direction of both original
and encrypted images are displayed in Figures 19–27 from
Cameraman to Aerial. �e correlation coe
cients are dis-
played in Table 1.

P�� =
QQQQcov (�, �)QQQQ

√S (�)√S (�)

cov (�, �) = 1
C
�∑
�=1
(�� − � (�)) (�� − � (�))

� (�) = 1
C
�∑
�=1
��

S (�) = 1
C
�∑
�=1
(�� − � (�))2 .

(23)
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Figure 19: Cameraman.
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(b) �e encrypted 	gure

Figure 20: Lena.
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Figure 21: Peppers.
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(b) �e encrypted 	gure

Figure 22: Lake.
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(b) �e encrypted 	gure

Figure 23: Dollar.

With the sharp contrast of data between original image
and encrypted image, Table 1 indicates that the encryption
process make pixels of the encrypted image almost indepen-
dentwith each other. Consequently, the encryption algorithm
is good at pixel value randomization.

Compared with other algorithm, we can observe that
most correlation coe
cients of encrypted image are nearer to
0 in Table 2. As a consequence of this, the proposed encryp-
tion algorithm is superior to others.

7.2.2.Histogram. Histogram re�ects the distribution of colors
inside the image. �e adversary can get some e�ective
information from the regularity of histogram. �erefore, a
well-designed image encryption method should make the
pixel value of encrypted image distribute uniformly. Fig-
ure 28 shows the histogram of Cameraman. Similarly, the

histograms of the other 8 cases are drawn in Figures 29–36. It
is illustrated that the proposed encryptionmethod has a good
e�ect on pixel value distribution uniformization.

7.2.3. Information Entropy. Information entropy de	nes the
randomness and the unpredictability of information in an
image. It is de	ned by

U(�) = 2
�−1∑
�=0
� (��) log2 1

� (��) . (24)

Here�(��) is the probability of��; � is the number of bits that
is required to represent the symbol ��. For the pixels values
of the image are 0∼255, according to (24) the information
entropy is 8 bits for an ideally random image. �erefore,
the closer to 8 bits the information entropy is, the better
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Figure 25: Lax.

Table 1: Correlation coe
cients of image.

Image
Original image Encrypted image

Horizontal Diagonal Vertical Horizontal Diagonal Vertical

Cameraman 0.9276 0.9120 0.9597 0.0119 −0.0021 −0.0025
Lena 0.9722 0.9527 0.9860 −0.0140 −0.0086 −0.0034
Peppers 0.9667 0.9382 0.9694 −0.0088 0.0080 −0.0054
Lake 0.9768 0.9544 0.9748 −0.0155 0.0101 −0.0088
Dollar 0.8035 0.6952 0.6938 0.0131 −0.0183 0.0263

Columbia 0.9727 0.9403 0.9705 0.0060 −0.0104 −0.0093
Lax 0.7889 0.7151 0.8483 −0.0107 0.0147 0.0107

Boat 0.9407 0.9158 0.9545 0.0169 −0.0074 −0.0077
Aerial 0.9135 0.7952 0.8677 0.0084 −0.0123 −0.0133
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Figure 27: Aerial.

the encryption algorithm is. �e information entropy of the
9 cases is gotten in Table 3; it indicates that the encrypted
images are very close to the random images.

From Table 4, we can observe that the information
entropy of proposed algorithm is nearer to 8 bits than other
algorithms.

7.3. Sensitivity Analysis. �e di�erent range between two
images is measured by two criteria: number of pixels change
rate (NPCR) and uni	ed average changing intensity (UACI).
�ey are de	ned as follows:

S(J, D) = {0, X1 (J, D) = X2 (J, D) ,1, X1 (J, D) ̸= X2 (J, D) ,

NPCR = ∑��=1∑��=1S(J, D)
Z × U × 100%

UACI = ∑��=1∑��=1 QQQQX1 (J, D) − X2 (J, D)QQQQ
255Z ×U × 100%.

(25)

HereZ andU are the width and the height of X1 and X2.
7.3.1. Key Sensitivity. We encrypt the image by the keys �0 =0.19, �0 = 0.06, ] = 0.7123456, �1 = 8, and �2 = 0.5.
Figure 37(a) is the decrypted image with the correct keys.

Figure 37(b) represents the decrypted image under 10−16
adding to �0 with other keys unchanged. Similarly, the secret
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Figure 28: Cameraman.

Table 2: Comparison of correlation coe
cients of image.

Algorithm Image
Original image Encrypted image

Horizontal Vertical Diagonal Horizontal Vertical Diagonal

Proposed Lena 0.9722 0.9527 0.9860 −0.0140 −0.0086 −0.0034
[1] Lena 0.9503 0.9755 0.9275 −0.0226 0.0041 0.0368

[2] Lena 0.927970 0.926331 0.839072 −0.010889 −0.018110 −0.006104
[5] Lena 0.946 0.973 0.921 −0.0055 −0.0075 0.0026

[6] Lena 0.9569 0.9236 0.9019 0.0042 −0.0043 0.0163

keys �0, ], �1, �2 are added as 3×10−17, 10−16, 10−15 and 10−16
to decrypt the images separately with other keys unchanged.
�e results are shown in Figures 37(c)–37(f).�e comparison
of key space is shown in Table 5 and the NPCR and UACI
between Figures 37(a) and 37(b)–37(f) are calculated in
Table 6.

In contrast with other algorithm, the key space of pro-
posed algorithm is larger than others.

Most NPCR are near to 99.61% and most of UACI are
higher than 30% in Table 6. We cannot recognize the man
inside from Figures 37(b)–37(f); therefore the encryption
method is sensitive to the keys.

7.3.2. Plaintext Sensitivity. By encrypting two same images
with only one pixel di�erence, the attackers can obtain
e�ective information by comparing the two encrypted
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Figure 29: Lena.

Table 3: Information entropy.

Image Original image Encrypted image

Cameraman 7.0097 7.9974

Peppers 7.5739 7.9976

Dollar 6.9785 7.9992

Lax 6.8272 7.9993

Aerial 6.9940 7.9992

Lena 7.2185 7.9993

Lake 7.4845 7.9993

Columbia 7.2736 7.9992

Boat 6.9391 7.9972

images. �erefore an encryption method designed against
di�erential attack should ensure that the two encrypted

Table 4: Comparison of information entropy.

Algorithm Image Original image Encrypted image

Proposed Lena 7.2185 7.9993

[1] Lena 7.2072 7.9973

[4] Lena Unde	ned 7.9972

[19] Lena Unde	ned 7.987918

[20] Lena 7.447144 7.988847

Table 5: Comparison of key spaces.

Algorithm Proposed [2] [4] [6]

Key spaces 2.23 × 1087(1.12 × 2290) 2128 ≈2273 2276

images are completely di�erent even if there is only a pixel
di�erence in the original image.
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Figure 30: Peppers.

Table 6: NPCR and UACI between Figures 37(a) and 37(b)–37(f).

Image
NPCR and UACI

NPCR (%) UACI (%)

Figure 37(b) 99.61 31.26

Figure 37(c) 97.02 30.23

Figure 37(d) 99.60 31.03

Figure 37(e) 99.61 31.01

Figure 37(f) 99.62 31.27

In Table 7, Figure 10(a)(�, �) is the same as Figure 10(a)
except for a pixel locating (�, �). A�er that, the 2 images
are encrypted with the same keys and the NPCR and UACI
between the 2 ciphertext images are calculated. Similarly, the
data of other 8 cases are obtained in Tables 8–15.

From Table 16, the NPCR and UACI of proposed algo-
rithm a�er 2-round encryption are nearer to the ideal values
99.61% and 33.46% [33] than others. �erefore the proposed
method is better.

7.4. Resistance to Known-Plaintext and Chosen-Plaintext
Attacks. In Section 6.3, the iteration times of the next round
are decided by the encrypted pixel value of present round.
In (20), �2(J), generated from the fractional 2D-TFCDM, is
dependent on �(J − 1) and determines �(J). �erefore, the
corresponding keystream is di�erent when di�erent plaintext
is encrypted. For the resultant information is related to the
chosen-images, the attacker cannot get useful information
a�er encrypting some special images. As a result, the attacks
proposed in [34–41] become ine�ective for our scheme. In
a word, the proposed scheme can primely resist the known-
plaintext and the chosen-plaintext attacks.
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Figure 31: Lake.

Table 7: NPCR and UACI between cipher-images with slightly di�erent plain-images.

Image
NPCR and UACI of Cameraman

NPCR (1-round %) UACI (1-round %) NPCR (2-round %) UACI (2-round %)

Figure 10(a)(30, 30) 4.84 1.64 99.57 33.61

Figure 10(a)(50, 50) 81.43 27.39 99.62 33.56

Figure 10(a)(80, 80) 80.87 27.19 99.59 33.51

Figure 10(a)(100, 100) 6.82 2.28 99.59 33.46

Table 8: NPCR and UACI between cipher-images with slightly di�erent plain-images.

Image
NPCR and UACI of Lena

NPCR (1-round %) UACI (1-round %) NPCR (2-round %) UACI (2-round %)

Figure 11(a)(30, 30) 1.21 0.41 99.59 33.39

Figure 11(a)(50, 50) 95.06 31.93 99.59 33.53

Figure 11(a)(80, 80) 94.90 31.93 99.60 33.48

Figure 11(a)(100, 100) 1.71 0.58 99.63 33.40
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Figure 32: Dollar.

Table 9: NPCR and UACI between cipher-images with slightly di�erent plain-images.

Image
NPCR and UACI of Peppers

NPCR (1-round %) UACI (1-round %) NPCR (2-round %) UACI (2-round %)

Figure 12(a)(30, 30) 4.83 1.64 99.56 33.44

Figure 12(a)(50, 50) 81.44 27.35 99.62 33.50

Figure 12(a)(80, 80) 6.12 2.03 99.57 33.42

Figure 12(a)(100, 100) 6.83 2.32 99.60 33.50

Table 10: NPCR and UACI between cipher-images with slightly di�erent plain-images.

Image
NPCR and UACI of Lake

NPCR (1-round %) UACI (1-round %) NPCR (2-round %) UACI (2-round %)

Figure 13(a)(30, 30) 1.21 0.41 99.61 33.46

Figure 13(a)(50, 50) 95.09 31.88 99.61 33.42

Figure 13(a)(80, 80) 94.92 31.89 99.60 33.46

Figure 13(a)(100, 100) 1.71 0.58 99.59 33.47
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Figure 33: Columbia.

Table 11: NPCR and UACI between cipher-images with slightly di�erent plain-images.

Image
NPCR and UACI of Dollar

NPCR (1-round %) UACI (1-round %) NPCR (2-round %) UACI (2-round %)

Figure 14(a)(30, 30) 1.21 0.41 99.64 33.42

Figure 14(a)(50, 50) 95.08 32.00 99.60 33.49

Figure 14(a)(80, 80) 94.90 31.93 99.61 33.48

Figure 14(a)(100, 100) 1.71 0.57 99.61 33.41

Table 12: NPCR and UACI between cipher-images with slightly di�erent plain-images.

Image
NPCR and UACI of Columbia

NPCR (1-round %) UACI (1-round %) NPCR (2-round %) UACI (2-round %)

Figure 15(a)(30, 30) 94.83 31.96 99.61 33.47

Figure 15(a)(50, 50) 93.48 31.40 99.48 33.36

Figure 15(a)(80, 80) 0.96 0.32 99.60 33.45

Figure 15(a)(100, 100) 1.11 0.38 99.61 33.51
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Figure 34: Lax.

Table 13: NPCR and UACI between cipher-images with slightly di�erent plain-images.

Image
NPCR and UACI of Lax

NPCR (1-round %) UACI (1-round %) NPCR (2-round %) UACI (2-round %)

Figure 16(a)(30, 30) 1.21 0.40 99.62 33.39

Figure 16(a)(50, 50) 95.06 31.99 99.61 33.49

Figure 16(a)(80, 80) 94.92 31.87 99.58 33.41

Figure 16(a)(100, 100) 1.70 0.58 99.62 33.48

Table 14: NPCR and UACI between cipher-images with slightly di�erent plain-images.

Image
NPCR and UACI of Boat

NPCR (1-round %) UACI (1-round %) NPCR (2-round %) UACI (2-round %)

Figure 17(a)(30, 30) 4.83 1.60 99.59 33.47

Figure 17(a)(50, 50) 81.46 27.45 99.62 33.59

Figure 17(a)(80, 80) 80.82 27.24 99.58 33.48

Figure 17(a)(100, 100) 6.82 2.32 99.62 33.61
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Figure 35: Boat.

Table 15: NPCR and UACI between cipher-images with slightly di�erent plain-images.

Image
NPCR and UACI of Aerial

NPCR (1-round %) UACI (1-round %) NPCR (2-round %) UACI (2-round %)

Figure 18(a)(30, 30) 1.21 0.41 99.61 33.49

Figure 18(a)(50, 50) 95.06 31.93 99.62 33.43

Figure 18(a)(80, 80) 94.91 31.88 99.61 33.53

Figure 18(a)(100, 100) 1.71 0.57 99.61 33.52

8. Conclusions

Fractional 2D-TFCDM is obtained from the 2D-TFCDM.
A�er that, we found new chaotic dynamics behaviors from
the fractionalized map. Moreover, the map can be converted
into image encryption algorithm as an application. Finally,
the encryption e�ect is analysed in 4 main aspects; we 	nd

the proposed scheme is superior to others almost anywhere
in comparison. As far as we know, the proposed image
encryption algorithm has never been reported before.
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Figure 36: Aerial.

(a) �e correct keys (b) �0 + 10−16 (c) �0 + 3 × 10−17

(d) V + 10−16 (e) �1 + 10−15 (f) �2 + 10−16

Figure 37: �e test of key sensitivity.
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Table 16: Comparison of NPCR and UACI of image.

Algorithm Image NPCR (%) UACI (%)

Proposed Lena 99.60 33.48

[1] Lena 99.61 33.53

[2] Lena 99.6429 33.3935

[3] Lena 99.6304 33.5989

[5] Lena 99.932 39.520

[19] Lena 75.62561 34.84288

[20] Lena 99.6091 33.5038

[21] Lena 99.6330 34.1319
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