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Abstract: According to the DNA encryption algorithm and the double-chaotic system which
contains the optical chaos and the coupled map lattice chaotic system, a novel image
encryption-then-transmission system is proposed. In the system, with identical chaotic in-
jection from a master laser with two optical feedbacks, two slave lasers (SL1 and SL2) can
output similar chaotic signals served as chaotic carrier to transmit image and used to gener-
ate the core part of the encryption scheme. A 128-b key is selected to generate the original
value of the double-chaotic system, which decides the DNA complementary rule, hence, the
key is hypersensitive in encryption and decryption process. The security analysis demon-
strates the effectiveness of the proposed encryption system. The simulation results verify
that the cryptosystem is enough against the traditional attacks, such as statistical attack,
differential attack, brute force attack, and entropy attack. Moreover, the encrypted image
can be the optical message and transmitted in 10 km single-mode fiber channel from SL1 to
SL2. In order to ensure the security, we use the chaos masking technique to modulate and
demodulate the optical message. Through numerical simulations of the cross-correlation
function, the chaos synchronization between SL1 and SL2 is desired. The Q-factor is 9.559
and the bit error rate is 5.771 × 10−22.

Index Terms: Image encryption-then-transmission system, double-chaotic system, optical
chaos, DNA encryption, semiconductor laser (SL).

1. Introduction

Image encryption based on chaos becomes an universally concernment increasingly. In virtue of the

complexity, ergodicity and sensitiveness, chaotic systems are suitable for the cryptography. Since

Matthews first put forward the chaos into cryptology in 1989 [1], a lot of chaotic systems are applied
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to image encryption at present [2]–[18], such as the Chen chaotic system, Lorentz chaotic system,

hyper-chaotic system, fractional-order chaotic system and multiple chaotic S-boxes. However, owing

to the low bandwidth and high electrical channels attenuation, the traditional electric chaos has great

restrictions.

Compared to the electrical chaos, optical chaos can overcome these disadvantages with very

large bandwidth, low attenuation, high security, more chaotic and faster [19], [20]. Therefore, optical

chaos has a great application prospect in the field of image encryption. A fast and secure symmetric

image encryption-then-transmission system using semiconductor lasers is proposed [21]. A master

laser (ML) and two slave lasers (SL1 and SL2) are used for generating chaotic signals served

as chaotic carrier to transmit image with small BER and high Q-factor. Meantime, the chaotic

signals are sampled and discretized to produce the core part of the encryption scheme. This

proposed scheme is effective and highly secure. Recently, a novel image encryption algorithm based

on synchronization of physical random bit generated in a cascade-coupled semiconductor ring

lasers (CCSRL) system is proposed [22]. The proposed algorithm demonstrates a good encryption

performance and is a promising candidate for secure image communication application. However,

we notice that there are few reports on image encryption using double chaotic system and DNA

encryption algorithm based on optical chaos.

In this paper, by introducing the double chaotic system and DNA encryption algorithm, we propose

a novel image encryption-then-transmission system based on optical chaos. The period of a low-

dimensional chaotic map is not large, to overcome the weakness, the double-chaotic system is

introduced. The distinctive double-chaotic system contains CML chaotic system [11] and optical

chaos, which is different from the previous methods of using multiple chaotic systems [23]–[25]. The

CML chaotic system and optical chaos are not applied in the processes of the image encryption or

decryption, but obtaining a higher-dimensional chaotic system through using the the CML chaotic

system to shuffle the position of optical chaotic sequence. Meanwhile, DNA encryption algorithm is

also exploited in our work to enhance the security [26]–[29]. The advantage is that the DNA algorithm

can store a large amount one-time pad, so it can effectively resist the chosen-plaintext attack. In

addition, it has the advantage of ultra low energy consumption [30]. Furthermore, we analyze the

security of the image encryption system. The tests (key space, key sensitivity, histogram, information

entropy and so on) prove that the proposed system is fabulous and can resist a variety of attacks.

The rest of the paper is organized as follows. The system scheme, methods and algorithm are

described in Section 2. The numerical simulation and analysis are drawn in Section 3. Security

analysis are presented in Section 4. Finally, the conclusion is given in Section 5.

2. System Model and Methods

The structure diagrams of our transmission system, encryption system and decryption system are

illustrated in Fig. 1. Fig. 1(a) shows that the output of ML is divided into two parts through a beam

splitter (BS), which are feedback to ML to ameliorate the complexity of its dynamics via two mirror

(M1 and M2). Then chaotic output of ML is through an optical isolator (OI) and a neutral density filter

(NDF), OI can make the output unidirectional and NDF can change rate of the injection. The optical

beam becomes two parts through a BS. They are transported by two fibers (F) and injected into SL1

and SL2. Because of the symmetry of our system, the parameters of SLs are same. The sender

encrypt the original image by using SL1 and encryption algorithm. The encrypted image transforms

the optical message and can be transmitted in 10 km single mode fiber (SMF) channel. The chaos

masking (CMS) technique [31] is adopted in order to improve the security during transmission.

The receiver can get the decode message through the chaos demodulation technique. Final, the

decrypted image can be obtained by using SL2 and decrypted algorithm. As depicted Fig. 1(b), a

128-bit key is used to generate the initial value of the CML chaotic system. Then, starting to iterate

the CML chaotic system to get the chaotic sequence. The encryption process is based on DNA

encryption, permutation process and diffusion process, all of these steps need the optical chaotic

sequence of SL1, which is shuffled by the CML chaotic system. The operations (decryption steps)

in the Fig. 1(c) is the reverse of the operations (encryption steps) in the Fig. 1(b).
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Fig. 1. The structure diagram of our proposed system. (a) Transmission system. (b) Encryption system.
(c) Decryption system.

2.1 The Rate Equations of Distributed Feedback (DFB) Lasers

The rate equations of ML are expressed as:
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The rate equations of SLs are expressed as:

dE 2,3

dt
=

1

2

[

G n (N 2,3 − N 0) −
1

τp

]

E 2,3

+
k i nj1,2

τi n

E 1(t − τ3,4)cos(�(t)) (4)

dφ2,3

dt
=

1

2
α

[

G n (N 2,3 − N 0) −
1

τp

]

−
k i nj1,2

τi n

E 1(t − τ3,4)

E 2,3

si n(�(t)) (5)

dN 2,3

dt
=

J

ed
−

N 2,3

τs

− G n (N 2,3 − N 0)|E 2,3|
2 (6)

where E 1 is the ML amplitude of optical field, E 2,3 is the SLs amplitude of optical field P = |E |2 is the

density of photons. φ1 is the phase of ML. φ2,3 is the phase of SLs. N 1 is the ML density of carrier.

N 2,3 is the SLs density of carrier. G n = vgαg/αN is the differential gain coefficient (vg is the group

velocity of light and g is the semiconductor medium gain). N 0 is the carrier number at transparency.

τp is the photon lifetimes. η1 is the optical feedback intensity of M1. η2 is the optical feedback

intensity of M2. k i nj1,2
is the SLs variable injection coefficient. τi n = 2L /C is the propagation delay

times in the lasers (L is the cavity length and c is the speed of light). τ1,2 the optical feedback delay

time of ML. τ3,4 is the optical feedback delay time of the SLs. �(t) = φ(t) − �ωt is phase difference

(�ω is the detuning angular frequency between the lasers). J is the density of bias current. e is the

electronic charge. d is thickness of the activation layer. τp is the carrier lifetime.

2.2 The Double-chaotic System

Coupled Map Lattice: One CML system is described by:

x1(i + 1) = (1 − B ) × f (x1(i )) + B × f (x2(i )) (7)

x2(i + 1) = B × f (x1(i )) + (1 − B ) × f (x2(i )) (8)

where i = 1, 2, 3, . . . , n is the lattice state index, B ∈ (0, 1) is a constant. In this paper, B is chosen

as 0.75. f (x) is a chaotic map, the logistic map is chosen, it is given by: f (x) = A × x(1 − x), A is a

parameters and selected as 4. x1 and x2 are generated by XOR operation of sixteen 8-bit binary

sequences (a1, a2, a3, . . . a16). They are obtained by the following formulas:

b1 = a1 ⊕ a13 b2 = a2 ⊕ a13

b3 = a1 ⊕ a13 b4 = a4 ⊕ a14

b5 = a5 ⊕ a14 b6 = a6 ⊕ a14

b7 = a7 ⊕ a15 b8 = a8 ⊕ a15

b9 = a9 ⊕ a15 b10 = a10 ⊕ a16

b11 = a11 ⊕ a16 b12 = a12 ⊕ a16 (9)
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TABLE 1

The Chaotic Sequence of CML and Optical Chaos

c1 = b1 × 100 + b2 × 10 + b3

c2 = b4 × 100 + b5 × 10 + b6

c3 = b7 × 100 + b8 × 10 + b9

c4 = b10 × 100 + b11 × 10 + b12

c5 = b12 × 100 + b11 × 10 + b10

c6 = b9 × 100 + b8 × 10 + b7

c7 = b6 × 100 + b5 × 10 + b4

c8 = b3 × 100 + b2 × 10 + b1 (10)

x1 = ((c1 ⊕ c2 ⊕ c3 ⊕ c4) mod 256) + 0.1/256

x2 = ((c5 ⊕ c6 ⊕ c7 ⊕ c8) mod 256) + 0.1/256 (11)

where ⊕ is the XOR operation, b1, b2, . . . , b12 and c1, c2, . . . , c8 are the intermediate variable. We

iterate the CML for 200 times to get rid of the transient effect. Then, a large chaotic sequence can

be obtained by CML chaotic system.

Optical chaos: The output of ML separates into two parts through OI, NDF and BS, which are

sent to SL1 and SL2, then SL1 and SL2 can output the similar chaotic signal synchronously. On the

hand, we use the chaotic signal to modulate the optical message in the transmission, on the other

hand, the chaotic signal can transform the digital signal to be the chaotic sequence. The equations

of lasers have been given in Section 2.1.

The double-chaotic system: As listed by Table 1, column A stands for the chaotic sequence

of the CML chaotic system; column B stands for the chaotic sequence of the optical chaos;

column C stands for the chaotic sequence of the CML chaotic system after shuffling; column D

stands for the chaotic sequence of the optical chaos after shuffling. The A column elements corre-

spond to the B column elements from left to right. A column elements are rearranged in ascending

order to get the column C. Because of the correspondence between column A and column B, the

position of the B column elements are changed to get the column D. We use the D column elements

(shuffled chaotic sequence of optical chaos) in the encryption/decryption process.
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TABLE 2

DNA Coding Rules

TABLE 3

DNA Complementary Rules

2.3 DNA Encryption

The digital image is transformed into a plane of DNA. There are two steps that convert digital

images into a plane of DNA and the detail is described as follows:

Step 1: the digital image becomes the bit-plane [32]. It is according to the following operation:

G (x, y) = b(7) × 27 + b(6) × 26 + · · · + b(0) × 20 (12)

where G (x, y) is the value of the pixel at position (x, y) in the image. b(i ) is a binary number, only two

possible values (0 and 1) for it. Thus the value can be represented by a 8-bit binary. For instance,

the value of a pixel is 117, it can be represented by 01110101. From this, digital images can be

converted into bit-plane.

Step 2: the bit-plane becomes the DNA-plane. It defines that 0 and 1 are complementary in

the binary. Naturally, 00 and 11 are complementary, 10 and 01 are complementary. We use an

alphabetic coding for the 2-bit binary. In this paper, we define that 00 is “A”, 01 is “G”, 10 is “C”, 11

is “T”, thus, “A” and “T” are complementary, “C” and “G” are complementary. It’s liking adenine (A)

and thymine (T) are complementary, cytosine (C) and guanine (G) are complementary in biological

DNA. There are 24 kinds of alphabetic coding. However, we can only use 8 kinds of alphabetic

coding which are satisfying the Watson-Crick complement rule [28] as illustrated by Table 2. For

example, 01110101 can be represented by “GTGG”. Final, the DNA-plane can be obtained.

There are just 6 kinds of DNA complementary rules [28], as listed in Table 3. Because they should

satisfy two equations:

x �= B (x) �= B (B (x)) �= B (B (B (x))) (13)

x = B (B (B (B (x)))) (14)

where B (x) is the pairing of the x .

Vol. 10, No. 3, June 2018 3900515



IEEE Photonics Journal Image Encryption-Then-Transmission

Fig. 2. The four sections of the image.

2.4 The Masking Process.

In order to improve the resistance about the chosen-plaintext attack, we use a masking process that

the parts of image are XOR-operated. Through this operation, the sensitivity of the encrypted image

to the original pixels is improved and a little change in the original image can cause a significant

difference in the encrypted image.

Selecting the left-most column, making XOR-operate of the left-most column and the ith column

(i = 1, 2, 3, . . . n) in turn (the number of the column about the part is n). We can get a horizontal-

XOR column, then, copying the horizontal-XOR column n times. The horizontal-XOR part (n × n)

is obtained [32]. It’s marked as Sei H (1 ≤ i ≤ 4).

Selecting the last row, making XOR-operate of the last row and the ith row (i = 1, 2, 3, . . . n) in

turn (the number of the row about the part is n). We can get a horizontal-XOR row. After this,

copying the horizontal-XOR row n times. The vertical-XOR part (n × n) is obtained [32]. It’s marked

as Sei V (1 ≤ i ≤ 4).

The steps to get the XOR-image as follow:

Step 1: Dividing the original image into four parts equally (Se1, Se2, Se3 and Se4), they are

marked as Seold
1 , Seold

2 , Seold
3 and Seold

4 . It is shown as Fig. 2. If the number of rows (columns) are odd,

copying the last row (right-most column) to make sure that the rows (columns) are even.

Step 2: Getting the new Se1, new Se2, new Se3 and new Se4, they are marked as Senew 1
1 , Senew 1

2 ,

Senew 1
3 and Senew 1

4 . The equations are as follow:

Senew 1
2 = Seold

1 H ⊕ Seold
1 V ⊕ Seold

2

Senew 1
1 = Senew 1

2 H ⊕ Senew 1
2 V ⊕ Seold

1

Senew 1
3 = Senew 1

2 H ⊕ Senew 1
2 V ⊕ Seold

3

Senew 1
4 = Senew 1

3 H ⊕ Senew 1
3 V ⊕ Seold

4 (15)

Step 3: Getting the new Se1, new Se2, new Se3 and new Se4 again, they are marked as Senew 2
1 ,

Senew 2
2 , Senew 2

3 and Senew 2
4 . The equations are as follow:

Senew 2
2 = Senew 1

3 H ⊕ Senew 1
3 V ⊕ Senew 1

2

Senew 2
3 = Senew 1

4 H ⊕ Senew 1
4 V ⊕ Senew 1

3

Senew 2
4 = Senew 1

1 H ⊕ Senew 1
1 V ⊕ Senew 1

4

Senew 2
1 = Senew 2

4 H ⊕ Senew 2
4 V ⊕ Senew 1

1 (16)
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where ⊕ is the XOR operation.

Step 4: Finally, combining the Senew 2
1 , Senew 2

2 , Senew 2
3 and Senew 2

4 into a new image.

2.5 Encryption and Decryption Algorithms

The details of encryption algorithm are described as follows:

Step 1: Selecting the sixteen 8-bit key (a1, a2, a3, . . . a16) and generating the initial value of the

CML.

Step 2: Obtaining a lot of sequence by iterating the CML chaotic system to shuffle the sequence

of optical chaos. Details are shown in Section 2.2. In this paper, we need a sequence of 36 × M × N

numbers.

Step 3: The digital image is transformed into a plane of DNA. Firstly, we separate three compo-

nents (Red, Green and Blue) from the digital image. We make the R, G and B components become

the bit-plane, the details are shown in Section 2.3. We select the first and the second bit of every

pixel to make the first DNA-plane, the third and the fourth bit to make the second DNA-plane, the

fifth and sixth bit to make the third DNA-plane and the seventh and eighth bit to make the fourth

DNA-plane. In order to improve the key sensitivity and the resistance of the brute-force attack, we

use b i and b i+1 (1 ≤ i ≤ 11) in the formula (3) to decide that one of the 8 kinds of alphabetic coding

in Table 2.

w i = (b i ⊕ b i+1) mod 8 + 1 (17)

where w i is the one of the alphabetic coding. From this, the R, G and B components become twelve

DNA-planes.

Step 4: Generating the twelve new DNA-planes by the 6 kinds of the DNA complementary rules.

We select the sequence x1, x2, x3, . . . , x12×M ×N from the optical chaotic sequence. The equation for

describing the selection of DNA pairing rules as follows:

zi = (f loor (100 × x i )) mod 6 + 1 (18)

where x i represents the optical chaotic sequence. f loor (x) is the largest integer that don’t more than

the x . zi represents the six different DNA complementary rules in Table 3. So we can get twelve

new DNA-planes.

Step 5: A big DNA-plane can be obtained by connecting the four DNA-planes in turn. We can get

three big DNA-planes from the twelve new DNA-planes.

Step 6: Permutation process. In the same way in Section 2.2, x12×M ×N +1, x12×M ×N +2, . . . , x24×M ×N

is selected to shuffle the position of the new big DNA-planes in ascending order.

Step 7: Diffusion process. The diffusion process of DNA encryption is different from the conven-

tional diffusion process, due to the DNA-plane is composed of letters. We define 16 new equations,

they are shown as followed:

A
⊗

A = A A
⊗

G = G A
⊗

C = C A
⊗

T = T

G
⊗

A = A G
⊗

G = C G
⊗

T = C G
⊗

C = T

C
⊗

A = C C
⊗

G = T C
⊗

C = A C
⊗

T = G

T
⊗

A = T T
⊗

G = A T
⊗

C = C T
⊗

T = C (19)

As the matter of fact, there are 412 kinds of equations about it. We just select one of them to encrypt

image. It is the same as the step 3, we selected the sequence x24×M ×N +1, x24×M ×N +2, . . . , x36×M ×N

to generate the 12 × M × N positive integers, which can be expressed as h1, h2, . . . , h12×M ×N . The
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TABLE 4

Parameters of ML and SLS

equations of the diffusion are detailed below:

C(1) = B h1(P (4 × M × N ))
⊗

P (1) (20)

C(i ) = B h i (C(i − 1))
⊗

P (i ) (21)

P (1) is the first element of the big DNA-plane, P (4 × M × N ) is the last element of the big DNA-plane.

P (i ) is the i-th element of the big DNA-plane. C(1) is the first output element of cipher DNA-plane.

C(i ) is the i-th element of cipher DNA-plane. B h i is the one of 6 kinds of the pairing rules in Table 3.

Step 8: The DNA-plane transforms to the digital image. The order is the reversed with the step 2.

Step 9: Display or store the cipher-image.

The decryption process is the reverse operation of the encryption.

3. Numerical Simulation and Analysis

3.1 The Chaotic Lasers

The fourth-order Runge-Kutta algorithm is selected to numerically solve the equation (1) to (6). The

internal parameters of lasers are given in the Table 4 [35], [36].

In addition, e = 1.6 × 10−19 C , d = 0.2 µm, η1 = 0.03, η2 = 0.04, k i nj1 = k i nj2 = 0.05, τ1 = τ2 =

3 ns and τ3 = τ4 = 4.5 ns. The dynamic characteristics (times series, power spectra and phase

portraits) of ML, SL1 and SL2 are shown in Fig. 3. From the simulation results, the arbitrary

intensity pulses of the time series is similar to the intensity fluctuation noise, the power spectra is

parallel to the noise background and the dots are randomly distributed in the phase portraits. All the

features are the typical features of chaos. The chaotic output of SL1 and SL2 can be used as the

carrier to modulate the message in the communication process. Beyond that, the optical chaotic

output can also be exploited to encrypt/decrypt the original/encrypted image.

3.2 Chaos Synchronization

As shown in Fig. 3, the variation properties between SL1 and SL2 are similar, which represents

the perfect chaos synchronization. To verity the chaos synchronization between SL1 and SL2 more

accurately, the expression of the normalized cross correlation coefficient as follows [35]:

C a,b(�t) =
〈[Pa(t) − 〈Pa(t)〉][Pb(t + �t) − 〈Pb(t)〉]〉

√

〈|Pa(t) − 〈Pa(t)〉|2〉〈|Pb(t + �t) − 〈Pb(t)〉|2〉
(22)

where 〈 〉 denotes temporal average, the a and b represent SL1 and SL2, P = |E |2 presents

the output intensity of laser and �t is the time shift. |C | is value range of the normalized cross

correlation coefficient, which is between 0 and 1. Apparently, the value is more closer to 1, the
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Fig. 3. Numerically simulated time series, power spectra, and phase portraits of lasers in chaotic state:
(a) ML. (b) SL1. (c) SL2.

Fig. 4. Cross correlation coefficients between SL1 and SL2.

chaos synchronization is better. Ideally, the value is equal to 1 at �t = 0 ns. From the Fig. 4,

the value is infinite approaching to 1 at �t = 0 ns. The simulation result proves the perfect chaos

synchronization.

3.3 Transmission Process

The Fig. 5 depicts the transmission of propagating 10 km in the single mode fiber (SMF) channel

and the parameters of transmission are given in Table 5. Furthermore, the modulation depth is

2% and the transmission rate is 10 Gbit/s. Fig. 5 displays that the optical message and decoded

message are similar and the eye diagram is wide-open and clear, which reflects the transmission is

executable and safe and the encoded optical message can be deciphered after transmitted 10 km.

Furthermore, the Q-factor [38] and the bit error rate (BER) can inspection the quality of transmission.
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Fig. 5. The results of transmission on optical communication. (a) Optical message. (b) Decoded mes-
sage. (c) Eye diagram of decoded message.

TABLE 5

Parameters of 10 Km SMF

The Q-factor is evaluated as:

Q =
P1 − P2

σ1 − σ2

(23)

P is the mean power and σ is the corresponding standard deviations. The result is that Q-factor

is 9.559 and the BER is 5.771 × 10−22, which proves the outstanding quality of the 10 km SFM

transmission.

4. Security Analysis

4.1 Key Space

The key space is the measure of whether the cryptosystem is good. In this paper, The key space

of the proposed cryptosystem is equal to 2128 ≈ 3.403 × 1038. The space is large enough to resist

brute-force attack.

4.2 The Key Sensitivity

A perfect cryptosystem is hypersensitive to the key. A slight change of the key will cause significant

difference about the image. So two tests are carried out about the key with one bit difference from

123456890123456 to 1234567890123457. They are shown as Figs. 6 and 7.

Test 1: Setting the 1234567890123456 and 1234567890123457 to encryption the image sepa-

rately. The difference between the two encrypted image is 99.31%.

Test 2: Setting the 1234567890123456 to encrypt the image and setting the 1234567890123457

to decrypt the image. The difference between the two decrypted image is 99.3%.

Result: They have proved that the key is hypersensitive in the encryption and decryption process.

4.3 Histogram and Correlation Analysis

The histograms of the original R component, G component and B component are shown in

Fig. 8(a)–(c). As we can see from Fig. 8(a)–(c) , the gray-scale distribution is very nonuniform. The
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Fig. 6. Encryption key sensitivity analysis: (a) Original image. (b) Encrypted image: key =

1234567890123456. (c) Encrypted image: key = 1234567890123457.

Fig. 7. Decryption key sensitivity analysis: (a) Encrypted image: key = 1234567890 123456. (b) De-
crypted image: key = 1234567890123456. (c) Decrypted image: key = 1234567890123457.

Fig. 8. Histograms of the original/encrypted image. (a) The histogram of R component about original
image. (b) The histogram of G component about original image. (c) The histogram of B component
about original image. (d) The histogram of R component about encrypted image. (e) The histogram of
G component about encrypted image. (f) The histogram of B component about encrypted image.

characteristic peaks are clear and the most of image information can be obtained effortlessly.

Fig. 8(e) and (f) display the histograms of the encrypted R component, G component and B com-

ponent. It can be seen that the histograms are uniform enough. It proves the excellent property of

resisting the statistical attack and the cipher-only attack [39] in our encryption algorithm.

The correlation of the pixels represents the randomness of the gray level. The correlation of

the encrypted image and original image are shown in the Table 6. The correlations of the original
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TABLE 6

Correlation Coefficient Between Original and Encrypted Images

TABLE 7

NPCR and UACI of a Color Image

R component, the original G component and the original B component are high and close to 1.

In contrast, the correlations of the encrypted R component, the encrypted G component and the

encrypted B component are low and close to 0, which indicates that encrypted pixels are distributed

randomly.

4.4 Information Entropy

The information entropy is the significant feature of randomness [40]. The entropy H (s) of a source

s can be calculated by the following formula:

H (s) = −

2N −1
∑

i=0

P (si ) log2 (P (si )) (24)

where P (si ) represents the probability of si . In this paper, the gray level of the image is 0 from 255

and 2N − 1 = 255. Ideally, the probability of si is equal and H (s) = 8. If the information entropy is

closer to 8, the randomness is better. The entropy of the plain-image is 7.4767 and the entropy of

the encrypted image is 7.9998, which proves that cryptosystem is secure against entropy attack.

4.5 Differential Analysis

The attacker can get the useful information by changing some pixels of the image. The resistance of

encrypted image to differential attacks is usually measured by two indicators: the number of pixels

change rate (NPCR) and unified average changing intensity (UACI). In a good cryptosystem, the

NPCR should be more closer to 100% and the UACI should be more than 30%. And the NPCR and

UACI are given by the following equations:

N PCR =

∑

i ,j D (i , j)

W × H
× 100% (25)

UA CI =

∑

i ,j
C1(i ,j) − C2(i , j)

255

W × H
× 100% (26)

C1(i , j) and C2(i , j) are the gray value of two image, if C1(i , j) is equal to C2(i , j), D (i , j) = 1; else

D (i , j) = 0. The Table 7 shows that the NPCR and UACI are more than 99% and 33%. The results in
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Table 7 indicate that a slight change in original image will result significant difference in encrypted

image and the algorithm is effective to resist the differential analysis.

5. Conclusion

Due to the complex dynamics of lasers, the lasers can output chaotic signal, which can be adopted

in image encryption and transmission. In order to improve the property of the optical chaos, we

introduce the CML chaotic system to shuffle the optical chaotic sequence. In addition, the Q-factor

is 9.599, BER is 5.771 × 10−22 in the 10 km SMF transmission and the eye diagram is wide-open,

which proves that the quality of transmission is commendable. The result of security analysis show

the encryption algorithm is effective, such as the key space is large, the key is hypersensitive,

histograms are mean distributed after encrypting, and correlation between the adjacent pixel is

infinitesimal. Furthermore, the NPCR is closer to 100%, the UACI is more than 30% and entropy

is approximately equal to 8. The decrypted image is the same as the original image, which proves

the cryptosystem is executable. Therefore, the proposed system is safe and effective, we hope it

can be helpful for later researches.
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