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Abstract 

Optical technologies have been widely used in information security owing to its parallel and high-speed processing 
capability. However, the most critical problem with current optical encryption techniques is that the cyphertext is 
linearly related with the plaintext, leading to the possibility that one can crack the system by solving a set of linear 
equations with only two cyphertext from the same encryption machine. Many efforts have been taken in the last 
decade to resolve the linearity issue, but none of these offers a true nonlinear solution. Inspired by the recent advance 
in spatial nonlinear optics, here we demonstrate a true nonlinear optical encryption technique. We show that, owing 
to the self-phase modulation effect of the photorefractive crystal, the proposed nonlinear optical image encryption 
technique is robust against the known plaintext attack based on phase retrieval. This opens up a new avenue for opti-
cal encryption in the spatial nonlinear domain.
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1  Introduction
Light, as a carrier of information, poccesses a number of 
unique features that can be processed to secure informa-
tion. For example, the diffraction and temporal spectrum 
of light can be incooperated with optical variable devices, 
providing important security features for the anti-coun-
terfeit of valuable documents and credit cards [1]. The 
scattering of light by a volumetric random material can 
form a unique fingerprint that may be used as a physi-
cal unclonable function [2, 3]. On another level, one can 
engineer the phase of the light field in a random manner 
by using a random phase mask (or, key), scrambling the 
information it carries in both the spatial and the spatial 
frequency domains by using a coherent optical infor-
mation system. With a proper way to compensate the 
scrambling introduced to the phase, one can recover the 
information carried by the light. Based on this principle 
and taking the advantage of the ultra-high bandwidth and 

capability of coherent optical systems [4], researchers 
have developed various optical systems for security veri-
fication authentication [5, 6] and image encryption [7–9]. 
Owing to the ultra-large key space, it is unlikely to find 
the random phase mask using brute force attack within 
a reasonable time, making it promising for secure optical 
storage [10–13] and many others [14, 15].

Under the framework of the classical double random-
phase encoding, the cyphertext g(x,  y) is related to the 
plaintext f(x,  y) as g(x, y) = [f (x, y)R1(x, y)] ⊗ h(x, y) , 
where h(x,  y) is the impulse response in the form of 
h(x, y) = F{R2(µ, ν)}(x, y) , where R1(x, y) and R2(µ, ν) 
stand for the random phase masks located at the input 
plane and the Fourier plane of the coherent 4f system, 
respectively, and F  denotes the Fourier transform. It has 
been strictly proved [7] that the cyphertext g(x, y) is sta-
tionary white noise provided that R1(x, y) and R2(µ, ν) 
are statistically independent uniform distributions in 
[0, 2π ] . Therefore it is robust against blind deconvolution. 
However, recent studies have shown that such phase-
encoding modality has certain security issues [16–21]. In 
particular, when someone manages to obtain information 
about the cyphertext and the corresponding plaintext, 

Open Access

Official Journal of CIOMP
elight.springeropen.com

*Correspondence:  ghsitu@siom.ac.cn
1 Shanghai Institute of Optics and Fine Mechanics, Chinese Academy 
of Sciences, 201800 Shanghai, China
Full list of author information is available at the end of the article

http://orcid.org/0000-0002-9276-3288
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s43593-021-00010-y&domain=pdf
elight.springeropen.com


Page 2 of 10Hou and Situ ﻿eLight             (2022) 2:3 

the cryptanalysis is reduced to nothing more than a phase 
retrieval problem, which can be solved by using, for 
example, projection-based optimization algorithms [22]. 
Although the presence of phase singularities prohibits 
the retrieval of the random phase key precisely, feasible 
solutions to the problem are sufficient to reveal informa-
tion about the plaintext encrypted by the same set of keys 
[17–21]. It has been pointed out that this security issue 
stems from the linearity of the encryption modelity [18]. 
Thus, many efforts have been taken recently to resolve 
the linearity issue. Examples include the introduction of 
polarization encoding [23], photon-counting technique 
[24], computational ghost imaging (CGI) [25], coherence 
effect [26], and the bilinearity of phase-space distribution 
functions [27]. These methods rely on the increment of 
computation complexity, yet fail to offer a true nonlinear 
solution. As a consequence, they are also vulnerable to 
cryptanalysis. Indeed, recent studies have demonstrated 
the crypanalysis to the polarization [28] and CGI-based 
[29] encoding.

Thus, an essential revolution that is based on nonline-
arlity should be called for in order to address the security 
issue from the ground. Indeed, nonlinear optical effects 
have great potential in information security applications. 
For example, in the temporal domain, it has been dem-
onstrated that the intensity fluctuation from a chaotic 
semiconductor laser can be adopted to generate random 
numbers in ultra-high speed [30, 31]. Unfortunately, this 
nonlinear technique cannot apply to image encryption 
in the spatial domain directly, although chaotic maps 
have been used for random phase encryption, mostly 
as keys to permuting [32] the plaintext. Thus it is both 
intuitively and practically important to develop spatial-
nonlinear-optics-based image encryption techniques. 

Here we demonstrate one of such schemes. In the pro-
posed scheme, the spatial nonlinearity is provided by 
using a Kerr-like crystal. Unlike security storage [10–13] 
where the nonlinear crystal is solely used to record the 
interference patterns, what it matters here is the screened 
photorefractive effect that offers a mechanism to mix 
the modes of the plaintext image when they propagate 
through the crystal. This is the most distinguishing fea-
ture of the proposed scheme in comparison to all the 
linear ones, in which the modes of the image propagate 
independently from the input to the output. As a conse-
quence, the linear relation between the cyphertext and 
the plaintext is broken, making the proposed scheme 
resistant to all the existing optical cryptanalysis tech-
niques in principle.

2 � Results and discussion
2.1 � Experimental setup
The basic experimental set-up is schematically shown 
in Fig.  1a. The plaintext image, f (x0, y0) , where (x0, y0) 
denotes the coordinates of the input plane, was displayed 
on an amplitude-only spatial light modulator (SLM-A). A 
4-f imaging system was then used to project the plaintext 
image displaced on SLM-A to the input of the proposed 
encryption engine, which is depicted in Fig.  1b. The 
engine has a cascaded structure, each of which is com-
posed of a phase-only SLM (SLM-P) and a photorefrac-
tive crystal [which was a Sr0.61Ba0.39Nb2O6  (SBN:61) in 
this study]. In our experiments, the first phase-only SLM 
(SLM-P1 ) was placed on the conjugation plane of SLM-A 
so as to introduce a random phase, R 0 = exp[jφ(x0, y0)] , 
to the plaintext image, resulting in a random-phase-
encoded image ψ0(x0, y0) = f (x0, y0) exp[jφ(x0, y0)] , 
where the subscript 0 in ψ stands for the axial position 

Fig. 1  a Schematic illustration of the optical experimental set-up. b Detailed illustration of the proposed nonlinear encryption engine
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z = 0 . This random-phase-encoded image ψ0(x0, y0) was 
then projected to the front surface of a SBN:61 crys-
tal whose crystalline c-axis was perpendicular to the 
beam propagation direction. The complex wave field 
at the back surface of the SBN:61 crystal was then pro-
jected to SLM-P2 , the other phase-only SLM that was 
used to random-phase encode the incoming light field 
by R 1 = exp[jϕ(x1, y1)] displaced on it. The resulting 
complex image is called the cyphertext image, written as 
g(x,  y) for convenience. This complex cyphertext image 
was recorded holographically by interfering with an addi-
tional reference beam, usually a plane wave with a known 
carrier frequency, as shown in Fig. 1a. For the SBN crys-
tal, we used the self-defocusing nonlinearity, which is 
evoked by applying an external negative electric field E 
along the c-axis. Technically, this responses to the change 
of refractive index of δn ∝ r33EĪ/(1+ Ī) , where Ī is the 
input intensity |ψ0(x, y)|

2 measured relative to a back-
ground (dark current) intensity [33], and r33 = 255 pm/V 
is the electro-optic coefficient relative to the applied field 
E and the c-axis [34].

2.2 � Theory and experimental results
In the experimental demonstration, we used a binary 
image shown in Fig.  2a as the plaintext for simplicity. 
The direct image of it through our experimental set-up is 
shown in Fig. 2b. It was taken by the camera when dis-
playing the binary image shown in Fig. 2a on the SLM-A 
while the other two SLMs-P and the external electric 
field E switching off. The distortion exhibits in the image 
was mainly due to the imperfection of the crystal and the 
aberration of the imaging optic. More careful alignment 
of the optic did not make significant improvement in our 
experiments. Nevertheless, we take it as the ground truth 
plaintext image in our proof-of-principle demonstration. 
To encrypt the plaintext image, we displayed two statisti-
cally independent random phases on the two phase-only 
SLMs, and turned on the nonlinearity. Mathematically, 
this nonlinear encryption process can be written as

where the transform T {·} is defined as the nonlinear 
Schrödinger transform whose integral form is given by 
[35]

(1)

g(x, y) = T {exp[jϕ(x1, y1)]ψz1(x1, y1); z2}

= T {exp[jϕ(x1, y1)]T {ψ0(x0, y0); z1}; z2},

(2)ψz(x, y) = FST{ψ0(x0, y0); z} − j

∫ z

0
U(z − z′)δn(|ψz′(x

′, y′)|2)ψz′(x
′, y′)dz′,

Fig. 2  Main experimental results. a the plaintext and b its direct image, which serves as the ground truth. The cyphertext images at E = 0 Vcm−1 
(c), −500 Vcm−1 (e), −1000 Vcm−1 (g) and −2000 Vcm−1 (i), and d, f, h, j the corresponding decrypted image with the correct keys. All the images are 
normalized and plotted with the colormap hot
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where FST{ψ0(x0, y0); z} denotes the linear propaga-
tion of ψ0(x0, y0) within the crystal with the length 
of z, U(z) is the free Schrödinger operator given by 
U(z) ∝ exp[ik�/z] , where k is the wave vector and � 
denotes the transverse Laplacian, and δn(|ψz′(x

′, y′)|2) 
is the index of refraction induced by the nonlinearity of 
the crystal at the plane z′ . The nonlinear term in Eq. (2) 
suggests that the original changes to the beam will be 
accumulatively augmented upon propagation. As a con-
sequence, the spatial modes of the beam evolve in a cou-
pled manner even with the generation of new ones owing 
to the wave mixing process [36], rather than propagating 
independently as in a linear system [7, 8] that all the cur-
rent techniques for optical image encryption are oper-
ating on. It is in this way that the proposed scheme can 
break the linearity.

As mentioned above, the cyphertext obtained in this 
way is a complex-valued image [the intensity of which is 
shown in Fig. 2c]. It should be recorded using interferom-
etry-based techniques like digital holography [37]. This 
allows the encryption as the process described by Eq. (1) 
to be reversible provided that the nonlinear medium is 
fully characterized and the amplitude and phase of the 
cyphertext image g(x,  y) are known [36, 38]. Thus the 
plaintext can be reconstructed from the digital hologram 
of the cyphertext numerically, with the conjugations of 
the two random phase keys presented in the first places, 
respectively, to demodulate the random phase

The decrypted image with the correct keys is shown in 
Fig. 2d. This demonstrates that the numerical decryption 
can reverse the wave-mixing process and demodulate 
the random phase. Here the external voltage that applied 
across the c-axis of the SBN crystal was E = −500 Vcm−1 , 
and the geometric parameters z1 = 9.7  mm and 
z2 = 8 mm. We need to mention that only the first non-
linear transform was performed optically since only one 
SBN:61 crystal (with the size of 4.4 × 4.4 × 9.7 mm3 ) was 
used in this experiment because there is only one such 
crystal at hand. The second nonlinear transform was per-
formed numerically. Note that various algorithms have 
been proposed for the numerical solution of the nonlin-
ear Schrödinger equation [39]. Here we simply employed 
the split-step Fourier propagation method, which has 
been intensively used in the studies in nonlinear optics 
[34, 36, 40].

In the extreme case that the nonlinearity reduces 
to zero (no applied voltage across the crystal), i.e., the 
second term in Eq.  (2) is absent, the system becomes a 
Fresnel-based system [8], except that it propagates in 
the crystal other than in free space. The intensities of the 

(3)f (x0, y0) = exp[−jφ(x0, y0)]T {exp[−jϕ(x1, y1)]T {g(x, y);−z2};−z1}

cyphertext and the decrypted image are plotted in Fig. 2c 
and d, respectively. One can see that the plaintext image 
can be recovered in the linear case is comparable to that 
in the nonlinear case shown in Fig.  2f. Both these two 
images are lightly distorted in comparison to the ground 
truth as the optics were not perfectly aligned in our 
proof-of-principle experiments, or the numerical recon-
struction algorithm did not take the imperfection of the 
crystal into account. Further calibration of the algorith-
mic with respect to the experimental setting will help 
improve the reconstructed results [36]. Comparing to the 
linear counterpart, the nonlinearly encrypted cyphertext 
image is more obliterated by virtue to the nonlinear self-
defocusing and light-induced scattering that arises from 
the augment of the beam scattered by the imperfection 
of the crystal [41]. Such difference in the intensity pat-
terns has been observed in the case even without random 
phase modulation [36], and thus has the potential to add 
additional physical security features.

The plaintext image can be recovered even when the 
nonlinearity was further increased. However, it can be 
more seriously distorted because the light-induced scat-
tering effect is stronger in this case. In Fig.  2h, we plot 
the reconstructed plaintext image when the external volt-
age was tuned to E = −1000 Vcm−1 . It is clearly seen that 
the noise is augmented as the nonlinearity increases, and 
thus the recovered image is distorted. It becomes severely 
when the external voltage goes up to −2000  Vcm−1 

(Fig.  2j), even all the keys are correctly presented. It is 
quite challenging to get rid of the light-induced scattering 
effect in the numerical decryption algorithm because it 
can be invoked by the imperfection anywhere inside the 
crystal [42] or even on its surface [43]. In addition, the 
actual nonlinear effects can be even more intriguing [44]. 
For example, wave-mixing in the self-defocusing crys-
tal can induce focusing as well [45, 46]. But the numeri-
cal decryption algorithm at the current stage does not 
take them into account. Fortunately, these effects can be 
ignored when the nonliearity strength is not too strong as 
in our study. The experimental results confirms that the 
proposed encryption system works well at small nonlin-
earity as the light-induced scattering can be very weak 
in this case [47]. Indeed, in numerical simulation, the 
recovered plaintext images are perfectly identical with 
the ground truth regardless of the nonlinearity strength. 
Details can be found in the Appendix.

2.3 � Toleration analysis
For an optical encryption system, it is important to 
analyze how the misalignment of the keys affects the 
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performance of decryption since it explicitly relies on 
the reversibility of the system. It is expectable that the 
decryption is sensitive to the alignment as otherwise the 
modulation cannot be feasibly undone. However, a cer-
tain level of toleration against misalignment is desirable 
for the sake of practice.

As described in Eq.  (1), there are several keys to the 
proposed system: the random phases R 0 and R 1 , their 
geometric positions in the system, and the nonlinear-
ity. To perform the toleration analysis, we should make 
an assumption that the correct random phases R 0 and 
R 1 should be presented. Otherwise it is not possible to 
recover any meaningful image. This has been well studied 
in the linear counterpart [7]. One can expect that it will 
not become better in the nonlinear case. Thus we focus 
on the toleration to the misalignment of the random 
phases along the transverse and longitudinal directions 
and to the change of nonlinearity strength for decryption 
with respect to that for encryption. And we will examine 
these factors independently.

First, we analyze the toleration to the displacement of 
the random phase key along a transverse direction. To 
perform the analysis, one can first calculate the com-
plex conjugation of a cyphertext image g∗(x, y) , and 
then numerically reverse the second nonlinear trans-
form in Eq.  1a. The resulting complex disturbance 
can be written as exp[−jϕ(x1, y1)]T {ψ∗

0 (x0, y0);−z1} . 
If R 1 is not placed at its original position, but trans-
versely translated over a distance �x1 along the 
x-axis, the demodulated image can be written as 
exp[jϕ(x1 −�x1, y1)] exp[−jϕ(x1, y1)]T {ψ∗

0 (x0, y0);−z1} . 
This means that the random phase cannot be demodu-
lated completely in this case. The residual phase distor-
tion exp{j[ϕ(x1 − δx1, y1)− ϕ(x1, y1)]} invokes speckle 

noise, which is accumulatively augmented upon the 
nonlinear propagation through the crystal [42, 47]. As 
a result, the recovered plaintext image is corrupted by 
noise, the quaility of which can be evaluated by using 
some standard criterion indicator such as the normal-
ized mean-squared error  (NMSE). One can expect that 
the NMSE value monotonously increases along with 
�x1 from 0 to lx , the correlation length of R 1 . Indeed, 
we observed a linear relation between them as shown 
in Fig.  3a. In comparison with the linear counterpart 
[48], the proposed nonlinear encryption engine is more 
sensitive to the transverse translation of R 2 , as one can 
see from the inset in Fig. 3a that the position mismatch 
of lx/2 is sufficient to make the decrypted image totally 
corrupted.

The response to the axial translation of R 1 can be clearly 
seen by writing the decrypted image f̂ (x0, y0) = exp

[−jφ(x0, y0)]T {exp[−jϕ(x1, y1)]T {g(x, y);−z2 −�z};−z1} 
according to Eq. (3). The noise comes from the mismatch 
�z , and is further augmented by the second nonlinear 
transform in the decryption process. Thus it is expected 
that the level of noise increases as �z increases either in 
the + or − direction, as evidenced by the experimental 
results shown in Fig.  3b. But the NMSE value increases 
quickly from 0 to about 0.5 as |�z| increases from 0 to 
4 mm, and then become steady as |�z| increases further. 
One can clearly see that the proposed engine is more 
tolerant to the misalignment of R 1 in the longitudinal 
direction in comparison to the transverse one. This is 
reasonable because the latter one is due to an effectively 
wrong random phase key.

The analysis of the toleration to the misalignment of 
R 0 is straightforward. The transverse misalignment of R 0 
does not have any effect to the decrypted image when the 
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Fig. 3  Toleration to the misalignment of the random phase keys in the transverse (a) and longitudinal (b) directions
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plaintext image f (x0, y0) is real, as in our study. However, 
if R 0 is misaligned in the longitudinal direction, there will 
be residual random phase and give rise to noise effect. 
Because of the absence of further amplification, the 
decryption is more tolerant to R 0 than R 1 , as depicted by 
Fig. 3b.

Next we examine the robustness to additive noise of 
the decrypted image. This is done by adding zero-mean 
Gaussian white noise to the cyphertext image so that 
g ′(x, y) = g∗(x, y)+ αn(x, y) , where α is a weighting fac-
tor that specifies the strength of the noise with respect to 
the signal, and n(x, y) ∼ N (0, σ) , where σ is the standard 
deviation. Owing to the nonlinearity, the additive noise 
n(x,  y) is coupled with the signal term g∗(x, y) on the 
way that g ′(x, y) is propagating back to the original input 
plane. The resulting noise on the recovered plaintext f̂ ′ 
then is not additive anymore. The other immediate con-
sequence of the nonlinear coupling is that the strength 
of the noise on f̂ ′ is not linearly proportional to n(x, y). 
Indeed, it has been reported that a portion of the noise 
power can be transferred to the signal [49]. As a result, 
the proposed nonlinear encryption technique should be 
more robust to noise, although the PSNR of f̂ ′ should be 
a nonlinear function of SNR = −10 log10 |g

∗|2/(α|n|)2 
of g ′ . Indeed, we observed such a nonlinear dependence 
in our experiment (Fig.  4). The NMSE value decreases 
nonlinearly as the strength of n(x,  y) linearly increases. 
As an example, we plot in Fig. 4a–d the recovered plain-
text when the SNR of g ′(x, y) is 10, 0, −10 , and −20 dB, 
respectively. It is clearly seen that the detail of the plain-
text retains even the SNR of g ′(x, y) is 0 dB. In contrast, 
linear dependence is expected in its linear counterpart 
[50] as additive noise on g∗ is transformed to additive 
noise on f̂ ′ , and the power of noise conserved due to the 
canonical nature of this linear encryption system [51].

We also examined how the decrypted image is affected 
by the deviation of the strength of nonlinearity (denoted 
by Q) alone for decryption with respect to that for 
encryption (denoted by q). Specifically, this can be seen 
by the change of the NMSE value with respect to Q/q. 
The result is plotted in Fig. 5. It suggests that the decryp-
tion is quite robust to the change of nonlinearity. The 
NMSE value is less than 0.1 when Q/q = 2 , and is about 
0.4 even when Q/q = 5 . Even when the decryption is 
carried out with Q = 0 , one can obtain a plaintext with 
acceptable quality ( NMSE ≈ 0.15 ) if the two random 
phase masks and the length of the crystals are known. 
This is reasonable because of the fact that the nonlinear 
refractive index δn is four orders of magnitude smaller 
than the linear one [34, 36]. However, this does not mean 
the introduction of spatial nonlinearity is trivial. In fact, 
the nonlinearity does not mean to use in this way. It is 

Fig. 4  Robustness to additive noise
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used to protect the system from cryptalaysis when the 
random phase keys are unknown. We will show in Sect.   
that it has a significant impact to the enhancement of the 
security.

2.4 � Security analysis
Most of the cryptanalysis techniques [17–20] rely on 
Kerckhoffs’s principle [52] that an intruder is assumed 
to have full access to the cyphertext image g(x, y) and/or 
the corresponding plaintext image f (x0, y0) . Thus, one 
more transform of g(x, y) does not add significant intrin-
sic security. This is in particular true for a linear system, 
in which one can easily calculate the Fourier spectrum of 
the cyphertext g(x, y) and subsequently recover the plain-
text image by using phase retrieval algorithms owing 
to the memory effect [20]. Here we show that the pro-
posed nonlinear encryption technique is immune to such 
phase-retrieval-based known-plaintext attack (KPA).

According to Kerckhoffs’s principle [52], we are 
assumed to know M pairs of cyphertext–plaintext 
images, i.e., [gm(x, y), fm(x0, y0)] , where m = 1, . . . ,M . 
To examine the KPA, we also assume that the strength 
of nonlinearity and the length of the crystal z1 and z2 
are known as well. It is straightforward to calculate 
ψz1,m(x1, y1) exp[jϕ(x1, y1)] from gm(x, y) using non-
linear digital holography [36]. Since the random phase 
R1 = exp[jϕ(x1, y1)] is unknown, it is not possible to 
directly use digital holography to reconstruct fm(x0, y0) 
from ψz1,m(x1, y1) exp[jϕ(x1, y1)] . Note that the random 
phase R 1 does not change the magnitude |ψz1,m(x1, y1)| . 
Thus an alternative approach is to retrieve the unknown 
phases ϕ(x1, y1) and therefore, φ(x0, y0) , from fm(x0, y0) 
and |ψz1,m(x1, y1)| . In contrast to the linear counterpart, 
a nonlinear phase retrieval algorithm is needed in this 
case [53, 54]. If such KPA successes, the retrieved phase, 
denoted as ϕ̂(x1, y1) , should be used to decrypt any other 
cyphertext image, gt(x, y) , encrypted by the same system 
and the same set of keys. For the cryptanalysis of a linear 
double random-phase encoding [7, 8], the multiple-phase 
retrieval algorithm [19] has been demonstrated to be 
implicitly feasible. Here we adopt the routine of this algo-
rithm but replacing the linear canonical transform in [19] 
with the nonlinear Schrödinger transform to perform the 
attack.

Apparently, if nothing but a noise-like pattern is recov-
ered, we can conclude that the proposed nonlinear 
encryption method is immune to the phase-retrieval-
based KPA. This can be verified on experimental data. 
However, one may argue that this may attribute to the 
defect of the crystal or noise in the system as this may 
break the reversibility of the system [55]. Thus, we 
endeavor to examine the security via numerical experi-
ments, which can be regarded as a fundamental baseline.

In the numerical study, we used M = 4 pairs of cypher-
text-plaintext images to perform the aforementioned 
KPA. The 4 plaintext images are shown in Fig.  6a–d, 
and the corresponding cyphertext images are shown in 
Fig.  6e–h, respectively. The KPA algorithm attempts to 
recover the random phase ϕ(x1, y1) and uses it to decode 
the cyphertext of an unknown plaintext image shown 
in Fig.  6i. The recovered random phase key ϕ̂(x1, y1) 
is shown in Fig.  6j. The difference between it and the 
original phase ϕ(x1, y1) is shown in Fig. 6k. Its random-
like distribution implies that the KPA algorithm [19], 
although has been demonstrated to be very efficient to 
attack a linear encryption system, is not able to retrieve 
the phase key of the proposed nonlinear encryption sys-
tem. Indeed, nothing about the image to be analyzed 
(Fig.  6i) is revealed in the recovered image (Fig.  6l). 
Instead, it is some information about the known plain-
text images that is revealed. In the specific case shown in 
Fig. 6l, it is a clear ‘S’ together with a dimmed ‘M’ against 
a noisy background that is recovered with ϕ̂(x1, y1) . With 
a close look at the positions of S and M, it is not diffi-
cult to see that they appear at their original positions as 
in Fig. 6a, d as if they were memorized by the retrieved 
phase key ϕ̂(x1, y1) . This exotic phenomenon is mainly 
due to the fact that phase evolution in a nonlinear optical 
system is significantly dependent on intensity-induced 
refractive index changes [36]. Although nonlinear refrac-
tive index is small comparing to the base one, it does have 
a significant impact to the enhancement of the security 
level, protecting it from the powerful KPA analysis. The 
appearance of which known plaintext image in the recov-
ered image is determined by where the KPA algorithm 
stops. In the case of Fig. 6l, the KPA algorithm stops after 
the use of the known plaintext image ‘S’ (Fig.  6a) itera-
tively compute the phase key ϕ̂(x1, y1) . And thus ϕ̂(x1, y1) 
memorizes clearly the information of the image ‘S’. One 
iteration previous to this is the use of the image ‘M’. And 
thus ϕ̂(x1, y1) still has a little memory of it. This phenom-
enon has never been observed in the linear counterparts 
[16–20] or in phase retrieval using nonlinear diversity 
[53, 54].

3 � Conclusion
In conclusion, we have experimentally demonstrated for 
the first time a true nonlinear optical encryption method. 
In comparison with the conventional linear counterpart 
[7, 8] that relates the cyphertext and plaintext by using 
linear canonical transforms, the unique feature of the 
proposed method is the employment of the nonlinear 
Schrödinger transform. Thus it offers a way to resolve the 
security vulnerability mainly owing to the linearity [16–
20]. Indeed, we have demonstrated that the proposed 
method is resistant to a phase-retrieval-based KPA, a 
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class of cryptanalysis methods that has been shown to be 
powerful to crack the conventional linear optical encryp-
tion engines [16–20]. This opens up a new avenue for 
optical image encryption in the spatial nonlinear domain.

One may argue that with the growing power of machine 
learning, the proposed nonlinear encryption method 
should be vulnerable to it. Indeed, we have demonstrated 
that the conventional double random-phase encryption 
is vulnerable to a deep-learning-based attack [21]. How-
ever, we believe that the proposed nonlinear encryption 
method is robust to it. A deep neural net requires a large 
set of plaintext–ciphertext pairs from the same system to 
train. But owing to the self-defocusing effect, the poten-
tial induced inside the crystal is plaintext-dependent (as 
manifested in Fig. 6). As a result, even though the plain-
text-ciphertext pairs in the training set might have been 
obtained through the same crystal, the induced poten-
tial was effectively different for different plaintext in the 
training set. Thus one can imagine that different pairs of 
plaintext-ciphertext are associated with a different setting 
of the crystal so that it is infeasible to learn a common 
mapping function among them.

Appendix
In the simulation, the virtual nonlinear image encryp-
tion system is composed of two SBN:75 crystals with the 
length of z1 = 9.7  cm and z2 = 8  cm, respectively, as in 
our experimental counterpart. A plaintext image (as the 
one shown in Fig. 2a) together with a random phase key 
(implemented as a 2D array, each element of which is a 
pure phase that obeys a uniformed distribution between 
0 and 2 π ) is virtually placed at the front surface of the 
first crystal. At the back surface, we virtually place the 
other random phase key that obey the same distribution 
function, but is statistically independent with respect to 
the first one. Because it is a virtual system, the second 
crystal can be placed immediately behind the second 
random phase key. We assume that the system is illumi-
nated by a coherent plane wave with the wavelength of 
� = 532  nm. The size of the images is 256× 256 pixels. 
The nonlinear propagation of the laser beam is imple-
mented by the split-step Fourier propagation method [36, 
40]. The defects of the crystal and the noise of the image 
sensor are neglected in our simulation. The results are 
plotted in Fig. 7.

Fig. 6  Robustness against KPA. a–d The four known plaintext images and e–h the corresponding cyphertext images, i the plaintext image the KPA 
attempts to reveal, j the retrieved R 2 , k the difference between the retrieved R 2 and the original one, and l the result of the KPA. One can clearly 
seen that the recovered image does not resemble the original plaintext at all



Page 9 of 10Hou and Situ ﻿eLight             (2022) 2:3 	

Acknowledgements
We’d like to thank Prof. Xinzheng Zhang with Nankai University for helpful 
discussion and the use of the SBN crystal.

Authors’ contributions
GS conceives the concept; JH performed the experiments. JH and GS analyzed 
the data and contributed to the writing of the manuscript. GS supervised the 
project. All authors read and approved the final manuscript.

Funding
This work was supported by the National Natural Science Foundation of China 
(61991452, 62061136005) and the Sino-German Center (GZ1391).

Availability of data and materials
The datasets used and/or analysed during the current study are available from 
the corresponding author on reasonable request.

Declarations

Competing interests
The authors declare no conflict of interest.

Author details
1 Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sci-
ences, 201800 Shanghai, China. 2 Hangzhou Institute for Advanced Study, 
University of Chinese Academy of Sciences, 310024 Hangzhou, China. 

Received: 7 April 2021   Revised: 4 December 2021   Accepted: 7 December 
2021

References
	1.	 R.L. Renesse, Optical Document Security (Artech House, New York, 2004)
	2.	 R. Pappu, B. Recht, J. Taylor, N. Gershenfeld, Physical one-way functions. 

Science 297, 2026–2030 (2002)
	3.	 S.A. Goorden, M. Horstmann, A.P. Mosk, B. Škorić, P.W.H. Pinks, Quantum-

secure authentication of a physical unclonable key. Optica 1, 421–424 
(2014)

	4.	 D. Psaltis, Coherent optical information systems. Science 298, 1359–1363 
(2002)

	5.	 B. Javidi, J.L. Horner, Optical pattern recognition for validation and secu-
rity verification. Opt. Eng. 33, 1752–1756 (1994)

	6.	 B.L. Volodin, B. Kippelen, K. Meerholz, B. Javidi, N. Peyghambarian, A poly-
meric optical pattern-recognition system for security verification. Nature 
383, 58–60 (1996)

	7.	 P. Refregier, B. Javidi, Optical image encryption based on input plane and 
Fourier plane random encoding. Optics Lett. 20, 767–769 (1995)

	8.	 G. Situ, J. Zhang, Double random-phase encoding in the Fresnel domain. 
Opt. Lett. 29, 1584–1586 (2004)

	9.	 X. Li, T.-H. Lan, C.-H. Tien, M. Gu, Three-dimensional orientation-unlim-
ited polarization encryption by a single optically configured vectorial 
beam. Nat. Commun. 3, 988–993 (2012)

	10.	 O. Matoba, B. Javidi, Encrypted optical memory system using three 
dimensional keys in the Fresnel domain. Opt. Lett. 24, 762–764 (1999)

	11.	 O. Matoba, B. Javidi, Encrypted optical storage with wavelength key 
and random codes. Appl. Optics 38, 6785–6790 (1999)

	12.	 O. Matoba, B. Javidi, Encrypted optical storage with angular multiplex-
ing. Appl. Optics 38, 7288–7293 (1999)

	13.	 X. Tan, O. Matoba, T. Shimura, K. Kuroda, B. Javidi, Secure optical storage 
using fully phase encryption. Appl. Optics 39, 6689–6694 (2000)

	14.	 B. Javidi, A. Carnicer, M. Yamaguchi, T. Nomura, E. Pérez-Cabré, M.S. Mil-
lán, N.K. Nishchal, R. Torroba, J.F. Barrera, W. He, X. Peng, A. Stern, Y. Riv-
enson, A. Alfalou, C. Brosseau, C. Guo, J.T. Sheridan, G. Situ, M. Naruse, 
T. Matsumoto, I. Juvells, E. Tajahuerce, J. Lancis, W. Chen, X. Chen, P.W.H. 
Pinkse, A.P. Mosk, A. Markman, Roadmap on optical security. J. Opt. 18, 
083001 (2016)

	15.	 O. Matoba, T. Nomura, E. Perez-Cabre, M.S. Millan, B. Javidi, Optical 
techniques for information security. Proc. IEEE 97, 1128–1148 (2009)

	16.	 A. Carnicer, M. Montes-Usategui, S. Arcos, I. Juvells, Vulnerability to 
chosen-cyphertext attacks of optical encryption schemes based on 
double random phase keys. Optics Lett. 30, 1644–1646 (2005)

	17.	 X. Peng, P. Zhang, H. Wei, B. Yu, Known-plaintext attack on optical 
encryption based on double random phase keys. Optics Lett. 31, 
1044–1046 (2006)

	18.	 Y. Frauel, A. Castro, T.J. Naughton, B. Javidi, Resistance of the double 
random phase encryption against various attacks. Optics Express 15, 
10253–10265 (2007)

	19.	 G. Situ, U. Gopinathan, D.S. Monaghan, J.T. Sheridan, Cryptanalysis of 
optical security systems with significant output images. Appl. Opt. 46, 
5257–5262 (2007)

	20.	 G. Li, W. Yang, D. Li, G. Situ, Cyphertext-only attack on the double 
random-phase encryption: Experimental demonstration. Opt. Express 
25(8), 8690–8697 (2017). https://​doi.​org/​10.​1364/​oe.​25.​008690

Fig. 7  Simulation results. The cyphertext image at a E = 0 , b −500 V cm−1 , c −1000 Vcm−1 , d −1500 Vcm−1 and e −2000 Vcm−1 , and f–j, the 
corresponding decrypted image when all the keys are correct

https://doi.org/10.1364/oe.25.008690


Page 10 of 10Hou and Situ ﻿eLight             (2022) 2:3 

	21.	 M. Liao, S. Zheng, S. Pan, D. Lu, W. He, G. Situ, X. Peng, Deep-learning-
based ciphertext-only attack on optical double random phase encryp-
tion. Opto-Electr. Adv. 4, 200016 (2021)

	22.	 Y. Shechtman, Y.C. Eldar, O. Cohen, H.N. Chapman, J. Miao, M. Segev, 
Phase retrieval with application to optical imaging: A contemporary 
overview. IEEE Signal Processing Magazine 32(3), 87–109 (2015). 
https://​doi.​org/​10.​1109/​msp.​2014.​23526​73

	23.	 A. Alfalou, C. Brosseau, Dual encryption scheme of images using polar-
ized light. Optics Lett. 35, 2185–2187 (2010)

	24.	 M. Cho, B. Javidi, Three-dimensional photon counting double-random-
phase encryption. Optics Lett. 38, 3198–3201 (2013)

	25.	 W. Chen, X. Chen, Ghost imaging for three-dimensional optical security. 
Appl. Phys. Lett. 103, 221106 (2013)

	26.	 D. Peng, Z. Huang, Y. Liu, Y. Chen, F. Wang, S.A. Ponomarenko, Y. Cai, Opti-
cal coherence encryption with structured random light. PhotoniX 2, 6 
(2021)

	27.	 J. Liu, X. Xu, Q. Wu, J.T. Sheridan, G. Situ, Information encryption in phase 
space. Opt. Lett. 40, 859–862 (2015)

	28.	 L. Wang, Q. Wu, G. Situ, Chosen-plaintext attack on the double random 
polarization encryption. Opt. Express 27, 32158–32167 (2019)

	29.	 S. Yuan, L. Wang, X. Liu, X. Zhou, Forgery attack on optical encryption 
based on computational ghost imaging. Optics Lett. 45, 3917–3920 
(2020)

	30.	 A. Uchida, K. Amano, M. Inoue, K. Hirano, S. Naito, H. Someya, I. Oowada, 
T. Kurashige, M. Shiki, S. Yoshimori, K. Yoshimura, P. Davis, Fast physical 
random bit generation with chaotic semiconductor lasers. Nat. Photonics 
2, 728–732 (2008)

	31.	 I. Kanter, Y. Aviad, I. Reidler, E. Cohen, M. Rosenbluh, An optical ultrafast 
random bit generator. Nat. Photonics 4, 58–61 (2010)

	32.	 A.M. Elshamy, A.N.Z. Rashed, A.E.A. Mohamed, O.S. Faragalla, L. Mu, S.A. 
Alshebeili, F..E.. Abd El-Samie, Optical image encryption based on chaotic 
baker map and double random phase encoding. J. Lightwave Technol. 
31, 2533–2539 (2013)

	33.	 M. Segev, B. Crosignani, P.D. Porto, A. Yariv, G. Duree, G. Salamo, E. Sharp, 
Stability of photorefractive spatial solitons. Optics Lett. 19, 1296–1298 
(1994)

	34.	 G. Situ, J.W. Fleischer, Dynamics of the Berezinskii-Kosterlitz-Thouless 
transition in a photon fluid. Nat. Photon. 14, 517–522 (2020)

	35.	 J. Ginibre, G. Velo, On a class of nonlinear Schrödinger equations. I. the 
Cauchy problem, general case. J Funct. Anal. 32, 1–32 (1979)

	36.	 C. Barsi, W. Wan, J.W. Fleischer, Imaging through nonlinear media using 
digital holography. Nat. Photonics 3, 211–215 (2009)

	37.	 U. Schnars, W. Jüptner, Digital Holography (Springer, Heidelberg, 2005)
	38.	 M. Tsang, D. Psaltis, F.G. Omenetto, Reverse propagation of femtosecond 

pulses in optical fibers. Optics Lett. 28, 1873–1875 (2003)

	39.	 G. Arora, V. Joshi, R.C. Mittal, Numerical simulation of nonlinear 
Schrödinger equation in one and two dimensions. Math. Models Com-
puter Simulat. 11, 634–648 (2019)

	40.	 E. Figueiras, D. Olivieri, A. Paredes, H. Michinel, An open source virtual 
laboratory for the Schrödinger equation. Eur. J. Phys. 39, 055802 (2018)

	41.	 V.V. Voronov, Photo-induced light scattering in cesium doped variant 
strotnium niobate crystals. Soviet J. Quant. Electr. 10, 1346 (1980)

	42.	 Q.W. Song, C.-P. Zhang, P.J. Talbot, Self-defocusing, self-focusing, and 
speckle in LiNbO3 and LiNbO3 : Fe crystals. Appl. Optics 32, 7266–7271 
(1993)

	43.	 G. Zhang, Q.X. Li, P.P. Ho, S. Liu, Z.K. Wu, R.B. Alfano, Dependence of 
specklon size on the laser beam size via photo-induced light scattering in 
LiNbO3:Fe. Appl. Optics 25, 2955–2959 (1986)

	44.	 C. Denz, M. Schwab, C. Weilnau, Transfers-Pattern Formation in Photorefrac-
tive Optics (Springer, New York, 2003)

	45.	 G.P. Agrawal, Induced focusing of optical beams in self-defocusing non-
linear media. Phys. Rev. Lett. 64, 2487–2490 (1990)

	46.	 J.M. Hickmann, A.S.L. Gomes, C.B. de Araújo, Observation of spatial cross-
phase modulation effects in a self-defocusing nonlinear medium. Phys. 
Rev. Lett. 68, 3547–3550 (1992)

	47.	 G. Zhang, G. Tian, S. Liu, J. Xu, G. Zhang, Q. Sun, Noise amplification 
mechanism in LiNbO3 : Fe crystal sheets. J. Opt. Soc. Am. Opt. Phys. 14, 
2823–2830 (1997)

	48.	 B. Wang, C.C. Sun, W.S. Su, A.E.T. Chiou, Shift-tolerance property of an opti-
cal double-random phase-encoding encryption system. Appl. Optics 39, 
4788–4793 (2000)

	49.	 D.V. Dylov, J.W. Fleischer, Nonlinear self-filtering of noisy images via 
dynamical stochastic resonance. Nat. Photon. 4, 323–328 (2010)

	50.	 B. Javidi, A. Sergent, G. Zhang, L. Guibert, Fault tolerance properties of a 
double phase encoding encryption technique. Opt. Eng. 32, 992–998 
(1997)

	51.	 J.J. Healy, M.A. Kutay, J.T. Sheridan, Linear Canonical Transforms: Theory and 
Applications (Springer, New York, 2016)

	52.	 W. Stallings, Cryptography and Network Security (Prentice Hall, Englewood 
Cliffs, NJ, 2004)

	53.	 M. Puida, F. Ivanauskas, Light beam phase retrieval in nonlinear media: a 
computer simulation. Liet. Matem. Rink. 45, 504 (2005)

	54.	 C.-H. Lu, C. Barsi, M.O. Williams, J.N. Kutz, J.W. Fleischer, Phase retrieval 
using nonlinear diversity. Appl. Optics 52, 92–96 (2013)

	55.	 A. Sagiv, A. Ditkowski, R.H. Goodman, G. Fibich, Loss of physical revers-
ibility in reversible systems. Physica D 410, 132515 (2020)

https://doi.org/10.1109/msp.2014.2352673

	Image encryption using spatial nonlinear optics
	Abstract 
	1 Introduction
	2 Results and discussion
	2.1 Experimental setup
	2.2 Theory and experimental results
	2.3 Toleration analysis
	2.4 Security analysis

	3 Conclusion
	Acknowledgements
	References




