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sidered. If S is included in a grid of square bins, a plausible estimator of S is defined as the
union of the “marked” bins (those containing a sample point). We obtain convergence rates
for this estimator and study its performance in the approximation of the border of S. The
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1 Introduction

Given a dot pattern Xi,...,X, on the real plane R? or, more generally, in R?, one interesting
problem is to extract the “essential” external shape or border of the pattern. When the pattern is
a sample that has been drawn from a compactly supported probability distribution F' with support
S C R?, this external shape approximates that of the original set S. Thus, if S were a black
image defined over a white background, the border of the sample would provide the boundary for a
binary image estimator. This easy-to-state problem has application in several areas of research apart
from image analysis such as astronomy, quality control, biomedical imaging, wildlife radiotracking,
forestry or geophysical statistics.

The estimation of the support S has been extensively studied in the literature (see, e.g., Cuevas

and Rodriguez-Casal 2003 for a review). When S is convex the natural estimator is the convex
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hull of the sample (see Rényi and Sulanke 1963, 1964; Schneider 1988; Korostelev and Tsybakov
1993,...). When this restrictive assumption fails (as is most likely in image analysis) there is no
unique, totally satisfactory and computationally convenient way of recovering S, and least of all
as the dimension d increases. Devroye and Wise (1980) proposed a simple estimator of S: a union
of balls centered at the sample points (see also Baillo, Cuevas and Justel 2000). Although this
estimator has obvious computational advantages and does not impose any geometrical restriction
on S, it produces a “rough” approximation to the original image. Hall, Park and Turlach (2002)
and Rodriguez-Casal (2003) have considered a generalization of the convexity assumption: the
so-called r-convexity, under which a ball of radius r > 0 is allowed to roll along the exterior of S.
In the present work we will mainly focus on recovering the binary image S through the analysis of
a sample of points randomly drawn from S. In more precise terms, we want to approximate S by an
estimator S, based on this sample. The performance of this estimator will be evaluated by checking
that the “distance in measure” between S, and S (i.e., the measure of the non-common part in
S, U S) is small. We are also interested in estimating the “shape” of S, as given by its boundary
0S. We will use a computationally efficient set-estimation method studied by Ray Chaudhuri,
Chaudhuri and Parui (1997) and Ray Chaudhuri et al. (1999): a histogram type estimator of S
whose bins are marked as 1 (black) or 0 (white) depending on whether they contain sample points
or not (see also a related approach in Klemeld 2004). The main theoretical results are included
in Section 2, which is devoted to study the asymptotic properties of this estimator (called the
H-shape). Section 3 focuses on the more general problem of identifying homogeneous regions in a
colour or gray-scale image from a sample of (colour-marked) random points (X;, Z(X;)) extracted
from the image. In Section 4 we construct a more refined piecewise constant image estimator, the
ASH-shape, a gray-scale image approximating the original black-and-white one, and it is applied
to a set of real data. Finally Section 5 displays the performance of the H- and ASH-shape over

some simulated samples.

2 Estimation of a Binary Image. The H-Shape

Let Xi,...,X, be a random sample of i.i.d. observations from a distribution F defined on R?,
which is absolutely continuous with respect to the Lebesgue measure Leb and whose support is
a compact set S. Assume without loss of generality that S C [0,1]%, the unit cube in R?. Let f
denote the density of F. Consider a sequence of cubic partitions P, = {4,,;,7 =1,2,...} of [0, 1]¢,
n=1,2,... Let each element A,; of P, be a bin given by H?Zl[kih, (k; + 1)h), where the k;’s are
integers and h = h(n) is the bin width. The point (k1h, ..., kqh) is the origin of the bin A,; and the
bin origin given by k; = ... = ks = 0 will be considered the grid origin. In this case the grid origin
coincides with the coordinate origin, but later on (in Section 4) we will consider the possibility of

shifting the partitions P,,.



Ray Chaudhuri et al. (1999) define the following estimator of the set S
Sn:U{Anj €eP,: X;€A,jforsomei=1,...,n}. (1)

As the closure of S,, coincides with the support of the histogram density estimator defined on the
partition P,, we will call S,, the H-shape. We denote by B,, the union of the elements A,; of the
partition P, intersecting 0S and by I, the union of the A,; contained in the interior of S.

As a measure of discrepancy between the set S and its estimator S,, consider the following

pseudodistance between them
d,(Sn, S) == p(SpAS) = p(S, N S) + p(S, NS),

where 11 is a positive o-finite measure on R? (typically 4 = Leb), whose restriction to S is absolutely
continuous with respect to F.

It can be observed that S, and S can be quite close in d, and still the shapes of both sets be
quite different. This is why we are also concerned with the accurate estimation of the shape of S,
measured in terms of the “visual distance” between the boundaries dg(0S,,, dS), where dg denotes

the well-known Hausdorff metric between compact sets, defined by
dp(S,T) =1inf{e > 0: S C B(T,e¢), T C B(S,¢)},

where B(T'€) := |, B(z,€), for any set T'.

2.1 Shape restrictions

Throughout this work we will use some shape conditions on the set S. For ease of understanding

we list them below before stating any result:
(B1) The number of bins in P, intersecting the boundary of S, #{A,; C B,}, is O(h~(¢1).

This can be seen as a “thinness” condition imposed on the boundary of S. In particular, it is
satisfied if Leb(B(0S,€)) = O(e) as € — 0. To see this observe that, for n sufficiently large,

h'{A,; C By} = Leb(B,) < Leb(B(dS, Vdh)) = O(h).
(B2) The bounded set S is partly expandable if there exist constants r > 0 and C'(S) > 1 such that

dy(0S,0B(S,¢)) < C(S)e, 0<e<r

(B3) The bounded set S C R is standard (with respect to a measure p) if for every A > 0 there
exists § € (0,1) such that

pu(B(z,e)NS) > dLeb(B(z,¢€)), forallze S, 0<e<A



Conditions (B2) and (B3) have already appeared in the context of set estimation (see Baillo,
Cuevas and Justel 2000, Cuevas and Rodriguez-Casal 2004). Basically, they have been used to
exclude the presence in S of too sharp outward and inward peaks respectively. For example, if a
ball of radius 7 > 0 rolls inside and outside S, then the set S satisfies (B1), (B2) and (B3) (see,
e.g., Walther 1997 and Cuevas and Rodriguez-Casal 2004). We will also see that expandability is
related to the following well-known shape restriction that has been extensively used, for instance,
in Partial Differential Equations (see, e.g., Gilbarg and Trudinger 1983).

(B4) S satisfies a (uniform) outer cone condition if, for some constants L > R > 0 and all x € 05,
there exists y € 0B(x, L) such that ¥, NS = {z}, where

U, :={(1—-0)x+d2,0€[0,1],2z € B(y,R)NOB(x,L)}.
S is said to fulfil a (uniform) interior cone condition if S¢ satisfies the exterior cone condition.

Under (B4) the set S is a sort of “watchtower” where every point = in dS can “observe” a cone
U, (outside S) of fixed width and height. If S is convex then the exterior cone condition is satisfied
for any L = R > 0. If S is star-shaped and its kernel contains a ball of positive radius, then (B4)
also holds. It is easy to see that if S satisfies the (uniform) interior cone condition then it fulfills
the standardness condition (B3), with respect to the Lebesgue measure.

Note also that the cone property (B4) is a sufficient condition for the expandability assumption
(B2). To see this we just have to check that, if a set S satisfies condition (B4), then there exists
some r > 0 such that

dy(0S,0B(S,€)) = max( max d(z,0S), maxd(x,0B(S,¢)) < C(S)e, 0<e<r.
2€DB(S,e) z€dS
Indeed, it is clear that d(z,0S) < € for all x € OB(S,¢). On the other hand, if x € 9S and
0 < € < R, using notation in condition (B4), there exists a point p along the segment joining x
and y and at distance a < 2ey/1+ (L/R)? from =, such that B(p,e) C int(¥,) C S° and thus
p ¢ B(S,¢€). This implies that d(z,0B(S,¢)) < a for all x € JS.

2.2 Rates of convergence: the general case

For dimension d = 2, let A\, denote the Lebesgue measure of the minimum rectangle, with sides
parallel to the coordinate axes, containing all the sample points X;. Ray Chaudhuri et al. (1999)
prove that, if F' is the uniform distribution on S, p = Leb, and h = n=°y/),,, where 0 < § < 1/2,
then dp (S, S) = Op(n~?) as n — co. In Theorem 1 we obtain rates of convergence of d,(S,, S) to
0. Concretely, in (b) the above mentioned result of Ray Chaudhuri et al. (1999) is generalized to
any dimension d and distributions F' other than the uniform. We will see that the convergence rates

are faster for those measures I’ decaying faster (larger v) to zero as they approach the boundary



of S. This result is reminiscent of the minus-sampling solution to the well-known problem of edge-
effects in spatial statistics (see Stoyan, Kendall and Mecke 1995, pg. 133). Observe that the aim
in both contexts is to reduce the bias term (in our case u(S, N .S¢)).

Part (c) in Theorem 1 focuses on estimation of “digital” images, defined as a union of square
pixels with sides parallel to the coordinate axes. The structure of the H-shape estimator looks
especially well-suited for approximating this kind of images. In fact, we will see that in this case,
stronger approximation results can be obtained. The mathematical tools in Theorem 1 (c) are
different from those in (a) and (b) and rely on the use of Vapnik-Chervonenkis (VC) theory for
empirical processes. Let us briefly recall some key concepts in this theory to be used below (see
Devroye, Gyorfi and Lugosi (1996), ch. 12 and 13 for a review of the VC theory).

Given a class A of sets in R? and a finite set {zy,...,7,} C R%, we define the shatter coefficient
associated with X, = {x1,...,2,} (denoted by s(A,A,)) as the maximum number of different
subsets of A}, which can be obtained by intersecting A, with all the members of the class A.
The shatter coefficient of the class A, denoted by s(A,n), is the maximum of s(A, X,) when
X,, ranges over all the possible subsets of R? with cardinality n. Of course, s(A,n) < 2". The
Vapnik-Chervonenkis dimension of A, V4, is the largest (possibly infinite) value of n such that
s(A,n) = 2™ The value of V4 quantifies in some sense the complexity of the class A. The central
core of Vapnik-Chervonenkis theory is an exponential bound (useful when V4 is finite), which will
be the basic tool for the proof of Theorem 1 (c).

Theorem 1:
a) If h = 0 and nh® — 0o as n — oo, then d,(S,,S) — 0 a.s.

b) Assume S satisfies condition (B1). Assume also that f is bounded and there exists v > 0 such
that

(P;) There exists a constant m > 0 such that F(B(z,€)) > me’™, for every ball B(z,€) C ini(S)
with € > 0.

and

(P,) There exist constants M > 0 and ¢g > 0 such that, for all 0 < € < €y, if v € OS then
w(B(x,e)) < Mertd,

If h=n"° for some 0 <§ < 1/(d+7), then d,(Sn,S) = Op(h7*1).

c) Assume that F is uniform on S and that S € A, where A denotes a collection of sets which are
unions of bins of the type H?Zl[ki/K, (k; + 1)/K) and the k;’s are integers ranging from 0 to
K — 1. Take p = Leb. Let

hy, =1/(c, K), (2)



with {c,} a nondecreasing sequence of positive integers. If ¢, = O(n’) for some 0 < § < 1/d,
then dy o},(Sn, S) = Op(en) for any €, — 0 such that €, = o(n®=1/2),

Proof: a) Recall that

du(Sn, S) = p(S; N S) + p(Sn N 5). (3)
With probability one u(S, N S¢) < u(B(S,Vdh) N S¢), which converges to zero as n — oo by
the Lebesgue dominated convergence theorem. On the other hand, F/(St N S) < .J,, where .J, :=
[ |fs — f| is the L' error of the histogram estimator, f,(z) := (nh%)™'S°" I{X; € A,;}, and I,
or I(A) denotes the indicator function on the set A. Under the assumptions in (a) the error .J,
converges to zero a.s. (see, e.g., Devroye and Gyorfi 1985). Then, as the restriction of p to S is

absolutely continuous with respect to I, we have that (S5 N.S) converges to zero a.s. too.

b) The first term in the right-hand side of (3) may be split in the following way
p(S, NS) = p(S; N 1n) +p(S; N SN By). (4)

On the one hand, for the first term on the right-hand side of (4) we have

E(SenL)]  =E [ Y pwA){X; ¢ Apjii=1,...,n}
Anjcln
< Clhd Z P{XZ Q:L Anj,i = ]_, .. .,n} < 02 eXp(—CgTLhd—i—’y), (5)
Anjcln

for some constants C; > 0. The first inequality above follows from the fact that f is bounded and
the restriction of p to S is absolutely continuous with respect to F'. In the second one we have used
#{A, C I,} = O(h™?) together with (P;) and the inequality (1 — z)" < exp(—nz) for = € (0,1).
On the other hand, using condition (P,) we can bound E[u(SS N S N B,)] + E[u(S, N S¢)] by
Cih"™{A,; C B,}, which is O(h7*!) under (B1). Thus the distance d,(S,,S) is also O(h?*)
since the exponential bound given in (5) for the other term goes to zero faster than any power of
h.
¢) Due to the choice h, = 1/(¢,K), we have S,, C S and thus

Leb(S,AS) = Leb(S¢ N S) = Leb(S) [1 _ M]

Leb(S5)
= Leb(S) [Fu(Sn) — F(S,)] < |Fu(Sn) — F(S,)]
< sup |F,(4) — F(A)] (6)

where A,, denotes the collection of all possible unions of bins A,; € P,. Notice that the shatter
coefficient s(A,,n) of this class is bounded by min(2", 2(KC”)d), which is equal to 2" for n large.

Using VC inequality (see e.g., Devroye, Gyorfi and Lugosi, p. 197-198) on (6) yields
P{Leb(S,AS) > e} < 8- 25" exp[—c?(—log 2 + nc;, %¢?/8)].
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This, together with the assumptions made on ¢, and h,, gives the desired result.

O

By imposing further restrictions on the class A of possible images the VC approach can be used to
obtain faster rates. For example, convexity is a quite natural condition. However, as every set in A
is a union of square pixels, the only convex sets in A are rectangles and this additional assumption

would be too restrictive. We could instead consider the following weaker condition.

(B5) A set S C R? is marginally conver if its intersection with every line parallel to any coordinate

axis is at most one interval.

Let now A, be the class of all possible marginally-convex unions of bins A,; € P,, and S, be the
smallest set in A4, containing all the sample points. If we choose h as in (2), then inequality (6)
still holds. It can be shown that the VC dimension of A, is V4, = 2(¢,K)?!. The n-th shatter
coefficient of this class can be bounded by s(Ay,n) < (n4 1)%» < (n 4 1)2«K)*™" (see Devroye,
Gyorfi and Lugosi (1996, p. 218). Using VC inequality now yields

P{Leb(S,AS) > ¢} <8 exp(2K* ¢ log(n + 1) — ne?/8),

which implies that, for ¢, chosen as in Theorem 1(c), we have d,(S,,S) = Op(e,) for any ¢, — 0
such that ! = o(n@=D=Y/2]ogn), a slightly faster rate than that obtained in the theorem. It is
interesting, thus, to note that, under appropriate shape conditions, the reduction in the complexity

of the class of possible estimators redounds to an increase in the convergence rate.

As a consequence of Theorem 1 (b) we can also consider the case of automatic (data driven)
choice of the bin width h,. Generalizing the idea in Ray Chaudhuri et al. (1999), we may take

\L/d

50 (7)

hn, =
no

where 0 < § < 1/d and A, is the Lebesgue measure of the smallest rectangle with sides parallel to

the coordinates axes and containing all the sample points X1, ..., X,,. This choice of the bin width

provides the same convergence rates as those obtained in Theorem 1 (b) for the case v = 0.

Corollary: Let S satisfy condition (B1) and contain a ball of positive radius. Let also f be bounded
away from zero on S. If the bin width is chosen as in (7) and pu = Leb, then d,(S,,S) = Op(n~?).

Proof: The steps are the same as in Theorem 1 (b), that is, use expressions (3) and (4) and bound
the resulting terms. This bounding is simplified by the fact that ; = Leb (so P, is fulfilled and f
does not have to be bounded), f is bounded away from zero on S (then Py is also fulfilled) and A

7



is enclosed between two non-random sequences of order n~%. To check this last statement remark
that, as S C [0, 1]¢, with probability one, ), is upper bounded by 1, so h, < n~° a.s. On the other
hand, there exists a ball B, of radius r > 0 in the interior of set S. Thus, with probability one for n
large, the smallest rectangle containing the whole sample contains also B, and then \,, > Leb(B,)

a.s.

2.3 Shape estimation

The next result establishes rates of convergence to 0 of dg(0S, 0S,,), the Hausdorff distance between
the boundaries of S,, and S. Choosing an adequate bin width A the border of the H-shape will

approximate the unknown border of .S, which is the natural aim in image analysis.

Theorem 2: Let S satisfy conditions (B2) and (B3) with = F. Take

1/d 1/d
h, =C <logn> for some C > <i> ,

n dwy

where wy denotes the Lebesque measure of the unit ball in RE. Then, with probability 1,

dg(8S,0S,) < Vdmax{1+d/?,C(S)} h, eventually.

Proof: Denote by S,(h) the H-shape with bin width A, and define the following estimator of S
Su(e) = JB(Xiye), >0 (8)

(see, e.g., Devroye and Wise 1980). We want to bound

dy(0Sy,(hy),0S) = max{megré::én) d(xz,09), Eé%’éd(‘”’ S, (hn))}-

If x € 0S,,(h,) then there exists an X; such that d(x, X;) < V/dh,,. Thus, for every z € S, (hy),
we have d(z,0S) < d(z, X;) + d(X;,0S) < Vdhy, + dy(R,, 0S), where 8, = {X;,..., X,}. Then,
by Theorem 3 in Cuevas and Rodriguez-Casal (2004), with probability 1,

max d(z,0S) < (Vd+1)h, eventually.
2€ASn (hn)

On the other hand, if z € SN S.(hy,), let X; be the sample point nearest to . As X; € Sy, (hy,)
there must be a point y € 95, (h,,) in the segment joining « with X;. Thus, for every x € dSNSE (hy,),
we have that d(x,0S,(h,)) < d(z, X;) < dyg(R,,0S) < h, eventually almost surely.



Finally, if 2 € S N S, (h,) then z € S N S, (V/dh,). By Theorem 4 in Cuevas and Rodriguez-
Casal (2004), with probability 1,

max  d(z,0S,(h,)) <  max  d(z,d5,(Vdh,)) < C(S)Vdh, eventually.

£€ASNSy (k) £€dSNS(Vdhy)

O

Observe that the rates of convergence obtained in Theorem 2 for the H-shape are the same as
those obtained by Cuevas and Rodriguez-Casal (2004) for the set estimator in (8). Both estimators
have a non-smooth border. As we will see (Sections 4 and 5) in the case of the H-shape a smoother

version can be obtained by averaging several shifted versions of the original estimator.

3 Estimation of a Gray-Scale Image: Generalizing the H-

Shape

We can model data sampled from a colour or gray-scale image (defined on the unit cube) in the
following way:
(X1, Z(X1)), (X2, Z(X3)), . . ., (Xn, Z(Xa)),

where the X; € [0,1]¢ are random variables representing the data location (usually d = 2) and
Z(X;) represent the colour, the gray intensity or, in general, the mark associated to observation
X;. In the case of colour images, Z(X;) is a three-dimensional vector in [0,1]* specifying the
amount of red, blue and green that determine the colour, while for gray-scale images Z(X;) only
takes values in [0, 1]. Since this fact greatly simplifies notation, the images considered from now on
are just gray-scale, but we note that the proposed image estimator can be generalized straightaway
to the coloured case.

We will assume that there exists a fixed image 2(z) (a measurable function from [0, 1] to [0, 1])
which we want to estimate from its values, z(X1),...,2(X,), on a sample of independent points
X1,..., X, taken uniformly into [0, 1]¢. In other situations, though, it might be interesting to model
the observed mark as z(X;) +¢;, where z(-) is a fixed function and ¢; is some noise. Then the mark
Z(X;)|X; is a random variable in [0, 1], as in the general setting of marked point processes.

In order to estimate the image z, define a cubic partition P,, n = 1,2,..., of the unit cube

[0,1]¢ as in the previous section

d
Po={An,j=12,...} where Ay =][]lkih, (ki+1)h), k €L
i=1

Assume that
o0

h, -0 asn — oo and Zexp(—nhd) < 0. 9)

n=1



By Borel-Cantelli lemma, with probability one, for n sufficiently large at least one sample point
X, falls into every A,,; € P,, whose intersection with the unit cube has positive Lebesgue measure.

Then we can define a piecewise constant estimator Z of z as follows. For every = € int(A4,,),

£(@) = Sy 1= G (1/2),

where G,; denotes the empirical distribution of {z(X;) : X; € A,;} and, for any distribution G
and any 0 < p < 1, G™'(p) := min{z : G(x) > p} denotes the p-quantile of G. For z € A,; define
Z(x) in such a way that Z is upper semicontinuous (USC), that is, if x € 0A,; N 0A,; with j # j'
then 2(z) = max(Z,;, Znj).

We would like to know if Z is a consistent estimator of z. We will restrict ourselves to the
simplest case, a polychotomous image, that is, a finite union of constant-coloured pieces. Thus z is

a piecewise constant USC function

M
ZZ ]Is(k) (]‘0)

k=1

where the positive integer M denotes the maximum number of different colours, (1, ..., z(M) ¢
[0, 1], appearing in the image and S®) denotes the set {z € [0,1]? : z(z) = 2™}, k =1,..., M.
From now on it is assumed that Leb(S®)) > 0 and that cl(int(S®))) = cI(S®), forall k = 1,..., M,

where cl(A) denotes the closure of a set A. We can express Z in a way analogous to (10):

ZZ sm(@ (11)

k=1

where S®) = {z € [0,1]¢ : 3(z) = 2™} and m(< M) is the number of different colours observed
in the sample X7,..., X,,. It is easy to see that, with probability one, there exists an n from which
on m = M. Therefore we will assume, from now on, that a sample point has fallen into the interior
of every A,; intersecting the unit cube, that all M colours have been observed (so that m in (11)
is equal to M) and that [0,1]% = [JI, S®.

As a measure of the discrepancy between the estimated image Z and the real one z we can use

the Hausdorff distance between the boundaries of their hypographs
dH* (2, Z) = dH(aHZA, aHz),

where H, = {(z,y) € [0,1]*"! : z € [0,1]%,0 < y < z(x)} denotes the hypograph of function 2.
This distance is properly defined since z and z are USC. The reason for using dy- (instead of, say,
the supremum metric) is that dg- is a “visual” distance which characterizes well the “physical”
proximity between two images and allows this proximity to be checked in any direction apart from

the vertical one (see, e.g., Cuevas and Fraiman 1998).
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The following result analyses the rates of convergence of dg-(Z,2). In particular if h =
C(logn/n)'/? for any C' > 1 (in order to fulfill condition (9)) then dg-(2,2) = O(logn/n) a.s.,
which means that the order of convergence appearing in Theorem 2 for binary images is still pre-

served for the coloured ones.

Theorem 3: If S satisfies an interior cone condition, for all k = 1,..., M, and h satisfies
(9) then dg- (2, 2) < Ch eventually a.s., where C is a constant which depends only on d and on the

cone condition constants.

Proof: Observe that
dy-(%,2) < max dg(cl(S®), cl(S*)))

k=1,....M

and

d (cl(S®)), cl(S®)) = max{ sup d(z,cl(S®)), sup d(z,cl(S®))}.
€S zeSk)

If € S® then there exists A,; € Py such that = € cl(A4,;) and there is at least one sample
point X; € A,; with z(X;) = 2%, that is, X; € A,; N S®). Thus, for all z € S*), we have that
d(z,cl(S®)) < Vdh as.

On the other hand, if z € S® N [S®)¢ then & € S*) ﬂ S®) for some k' # k. This implies that
there exists A,; € P, such that ¥ € cl(4,;) and A,;NS*) = () and thus d(z,dS® NaS*)) < \/dh.
Consequently for every z, € S®) N [S®]° we have that

d(zg, cl(S®))) < Vdh + max d(z, cl(SM)).
The final step in the proof will be to show that, as S*) satisfies the interior cone condition, then if
n is sufficiently large we have that max, ygum d(z, cl(S®)) < Ch.

The reasoning is done for d = 2 (see Figure 1) but it is generalizable to any dimension. Using
notation in condition (B4), take the point z; on the segment Ty joining = and y, such that the
intersection of ¥, with the straight line [(2;) passing through z; and orthogonal to Ty has length
2/2h. Similarly take the point z; such that the length is 4v/2h. Observe that, due to the uniform
cone condition, these points z; exist for n suficiently large and not dependent on z. Also the
Euclidean distance from z to z;, ||z — 2|, is C;h where C; > 0, i = 1,2, are constants not
dependent on x either. Then the ring section given by U, N [B(x,Cyh)\B(x, C1h)] necessarily
contains an A,; € P, such that A,y C S® and thus, with probability 1, A,; € S%). As
z € [S®]¢ this implies that d(z,dS*)) < Cyh and, as the n from which on this holds or the C; do

not depend on z, in general we have that max, gu~ga)e d(z, DSk )) < Cyh eventually a.s.
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Figure 1: S satisfies an interior cone condition

4 Averaged Shifted H-Shapes. A Real Data Example

In spite of its computational advantages, the H-shape has a rough boundary which hides some
of the features suggested by the original data at first sight. For instance, in Figure 2a we can
see several locations of drumlins in Northern Ireland (Upton and Fingleton 1985). Drumlins are
elongated wave-shaped hills formed by glacial action and whose axis is parallel to the movement of
the ice. In Geology it is interesting to determine the outline of drumlin fields or clusters, since they
indicate continental ice sheet glaciation. The H-shape of these data depicted in Figure 2c is not
very informative regarding the outline or orientation of drumlin fields. It has very sharp edges and
also displays a large number of “holes”, though some of these are usually swept away (Figure 2d) by
the simple morphological operations of “opening” and “closing” the estimator with a structuring
element (see, e.g., Serra 1982).

Following the lines described in Scott (1992, Ch. 5) for the averaged shifted histograms, we may
define a gray-scale image 2 to estimate the original binary image z determined by the indicator
function on S, z(z) = Ig(x) for all x € [0,1]%. This estimator 2, which we will call ASH-shape,
is the result of averaging several of the H-shapes with the same bin width h, but differing grid
origins. The ASH-shape is intended to retain the computational efficiency of the H-shape, but at
the same time produce a “smoother” image, in the sense that, the further a bin is from the sample,
the lighter gray it is assigned.

Consider a collection of H-shapes, as defined in (1), each with bin width A, but with grid origins
differing only in coordinate shifts that are multiples of § = h/m, where m is a positive integer.
These origins are given by t; = di = (410,429, ...,940), where i = (i1,42,...,44) and the i;’s are

integers between 1 — m and 0. Observe that the total number of shifted H-shapes is m?. We will

12
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Figure 2: (a) Drumlin locations in Northern Ireland; (b) Map of the area
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denote by S; and by P; respectively the H-shape and the partition of [0, 1]? with grid origin in #;:
d
Pr={A =t + [ [lkjh, (k; + 1)h), AN[0,1]* £ 0,k € Z}, i€{l—m,... 0}
j=1

gi:U{AEPi: X; € Aforsomej=1,....,n}, i€ {l—-m,...,0}"

Let % be the indicator function of S; in [0,1]¢. Then the ASH-shape can be expressed in the

following way

2(1‘):%2%(1}):%-2 Z Is(z), = €][0,1]%,

i1 m i m

and its support is given by

0 0
5’201( J ..U s)
i1=1-m ig=1—m

In particular, in the two-dimensional case the ASH-shape 2 is piecewise constant over the bins
B; = [i1d, (ir + 1)8) x [iad, (is + 1)8), 1= (ir,42) € Z*.

For example, the height of the ASH-shape in bin By is the average of the indicators of the m?
shifted H-shapes, each of bin width h = md, over bin By:

0 0
. 1
2(r) = 3 Z Z Ltt10,1)2 (X}, for some k), x € By.

i1=1l—mio=1—m
Figure 3 displays the resulting ASH estimators and their closings for the drumlin data. Observe

the diagonal orientation of the drumlin field which agrees with the fact that the glacial ice sheet

moved into Ireland from the Northeast end into the Southwest direction.

5 Implementation of the Set Estimators. Simulations

In order to check the performance of the H- and ASH-shape we have implemented both in digital
domain. In our simulations we have considered the foreground (the class of object or black pixels)
of a certain digital image as the original set S. For example, in Figure 4a the unit square has
121 x 137 = 16577 pixels and the foreground has a butterfly shape with 6812 object pixels. We
have drawn uniformly distributed samples of size n = 100, n = 300 and n = 1000 from the
foreground (see Figures 4b, 4c and 4d).

The choice of the bin width A is crucial. Ray Chaudhuri, Chaudhuri and Parui (1997) proposed
the following iterative method to select h. Let the grid origin be fixed throughout the whole
procedure. The initial value h,,; is given by (7) and the subsequent bin widths are defined by

hn,i = \/Leb(Sn,i_l)/n if i > 1.

14



i ! i ! i L i ! i ! i L
0 200 400 600 800 1000 1200 1400 0 200 400 600 800 1000 1200 1400

2200 b 2200 4
2000 b 2000
1800 g 1800
1600 b 1600
1400 1 1400
1200

4 1200

1000 1 1000

i i i L i i i i i i L
800 1000 1200 1400 600 800 1000 1200 1400

Figure 3: Drumlin data. (a) ASH estimator for M = 2; (b) Closing of ASH estimator for M = 2;
(c)ASH estimator for M = 3; (d) Closing of ASH estimator for M = 3.
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Figure 4: (a) Original binary digital image. Samples of size (b) n = 100, (¢) n = 300 and (d)
n = 1000.
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where S, ; denotes the H-shape determined by bin width h,, ;. For a fixed € > 0 let the e-measure
of dispersion be defined by h,,;; = max{hy; : |hni-1 — hnit1]| < €hy;}. Ray Chaudhuri, Chaudhuri
and Parui (1997) used the bin width given by the e-measure of dispersion for € = 0.4. However, our
simulations have shown that, in general, € = 0.4 produces a small h,, ;,. Actually the e-measure of
dispersion is not sufficiently sensitive to variation of €, which means that finding an “appropriate”,
data-driven € might not be an easy task. This is the reason why we have gone one step further and

chosen, from the grid of decreasing bin widths {hn,i}éozl, the following one. For a fixed p € (0,1)

compute
. max{i € {1,....io} 1 4{j: X; € SV} Zp-n} if2{j: X; €S9} >0
1= ’ ’
1 ift{j: X; €SV =0

where S,(fz denotes the H-shape with bin width A, ; and constructed from the sample X;,..., X;_,
Xjt1,...,Xp. Thus hy, ;- approximates the smallest bin width such that the corresponding H-shape
intersects at least an area p of S. In the simulations we have taken ¢ = 0.4 and p = 0.7.

In Figures 5, 7 and 6 the resulting ASH-shape for the butterfly samples is displayed for m =1, 2
and 3. As the images point out, the choice m = 2 or m = 3 already offers a remarkable improvement
over the original H-shape. The foreground of these estimators was also morphologically operated
by a “binary closing” (as indicated in Ray Chaudhuri et al. 1999), where the structuring element
was 2 X 2 and had all entries equal to 1. This means that we merged into the estimator those bins
which were not a part of a 2 x 2 lattice of pixels completely contained in the background (the class
of white pixels) of the image. The mark 2 associated to this new bin A was obviously 1 in the case
of M = 1 and the mean of the non-zero marks in the eight pixels surrounding A in the case of
M >1.

6 Concluding Remarks

In this work we aim at highlighting some of the advantages associated to the use of a simple
set estimator such as the H-shape. For instance, the fact that it can incorporate intuitive and
(digitally reasonable) shape restrictions make it attractive from the theoretical point of view, since
this controls the VC dimension of the class of possible estimators and thus opens the door to
using empirical process theory (Section 2). Under very general geometrical conditions we have
also obtained (nonparametric) rates of convergence of the boundary of the H-shape to that of the
original image (Section 2). The rough border of this histogram-type estimator may thus serve as
a first orientative (but asymptotically efficient) approximation to extracting a more elaborate and
smoother description of the dot pattern shape.

From a more practical viewpoint we have seen (Sections 4 and 5) that the lack of smoothness
of the H-shape can be overcome, to a large extent, by a softer gray-scale image, the ASH-shape.

This estimator, which averages several shifted H-shapes, clearly profits from (and retains) the
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Figure 5: ASH estimator for n = 100 and (a) M =
estimator for n = 100 and (b) M =1, (d) M = 2, (f)
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Figure 6: ASH estimator for n = 300 and (a) M =
estimator for n = 300 and (b) M =1, (d) M = 2, (f)

19



Figure 7: ASH estimator for n = 1000 and (a) M =1, (¢) M = 2, (e) M = 3. Closing of ASH
estimator for n = 1000 and (b) M =1, (d) M =2, (f) M = 3.
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computational simplicity of the H-shape. One further advantage of the H-shape as an image
estimator is that it can be adapted to approximate colour images (Section 3). The resulting marked-
bin estimator preserves both the computational efficiency of the H-shape and the convergence rates

to the boundaries separating different colours.
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