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Image features such as step
edges, lines, and Mach bands
all give rise to points where
the Fourier components of the
image are maximally in phase.
The use of phase congruency for
marking features has significant
advantages over gradient-based
methods. Phase congruency is
a dimensionless quantity that is
invariant to changes in image
brightness or contrast; hence,
it provides an absolute measure
of the significance of feature
points, thus allowing the use
of universal threshold values
that can be applied over wide
classes of images. This paper
presents a new measure of phase
congruency and shows how it
can be calculated through the
use of wavelets. The existing
theory that has been developed
for 1-D signals is extended to
allow the calculation of phase
congruency in 2-D images. It is
shown that, for good localization,
it is important to consider the
spread of frequencies present at
a point of phase congruency. An
effective method for identifying
and compensating for the level of
noise in an image is presented.
Finally, it is argued that high-
pass filtering should be used
to obtain image information
at different scales. With this
approach, the choice of scale
affects only the relative significance
of features without degrading their
localization.

Keywords: phase congruency,
feature detection, low-level
invariance, log Gabor wavelets,
noise compensation

Image Features from Phase Congruency
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1 Introduction
In searching for parameters to describe the significance of image features
such as edges, we should be looking for dimensionless quantities—in
particular, measures that are invariant with respect to image illumina-
tion and magnification. Such quantities would provide an absolute mea-
sure of the significance of feature points that could be universally applied
to any image irrespective of image illumination and magnification.

Gradient-based edge-detection methods such as those developed by
Sobel [30], Marr and Hildreth [20], Canny [2, 3], and others are sensi-
tive to variations in image illumination, blurring, and magnification. The
image gradient values that correspond to significant edges are usually
determined empirically, although a limited number of efforts have been
made to determine threshold values automatically. In his thesis, Canny
sets his thresholds on the basis of local estimates of image noise obtained
via Weiner filtering. However, the details of setting thresholds on this
basis and the effectiveness of this approach are not reported. Canny also
introduced the idea of thresholding hysteresis which has proved to be
a useful heuristic. Kundu and Pal [18] devised a method of threshold-
ing based on human psychophysical data in which contrast sensitivity
varies with overall illumination levels. However, it is hard to provide
any concrete guide to the fitting of a model of contrast sensitivity relative
to a digitized gray scale of 0–255. More recently, Fleck [7, 8] suggests
setting thresholds at some multiple (typically 3 to 5) of the expected
standard deviation of the operator output when applied to camera noise.
This approach of course requires detailed a priori knowledge of the noise
characteristics of any camera used to take an image.

A model of feature perception called the Local Energy Model has
been developed by Morrone et al. [26] and Morrone and Owens [25].
This model postulates that features are perceived at points in an image
where the Fourier components are maximally in phase. Other work on
this model of feature perception can be found in Morrone and Burr
[23], Owens et al. [28], Venkatesh and Owens [37], Kovesi [14, 15,
16], Owens [27], Morrone, et al. [24], and Robbins and Owens [31]. A
wide range of feature types give rise to points of high phase congruency.
These include step edges, line and roof edges, and Mach bands. Morrone
and Burr [23] show that this model successfully explains a number of
psychophysical effects in human feature perception.

Almost all work done so far has concentrated on finding points of
maximal phase congruency by looking for maxima in local energy. How-
ever, local energy is a dimensional quantity that depends on local con-
trast. One is unable to specify beforehand what level of local energy
corresponds to a significant feature. Here, we concentrate on the issues
in calculating phase congruency itself, a dimensionless measure. Values
of phase congruency vary from a maximum of 1 (indicating a very sig-
nificant feature) down to 0 (indicating no significance). This allows one
to specify a threshold to pick out features before an image is seen.
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However, so far, phase congruency has not been used successfully for
feature detection for the following reasons:

1. The calculation of phase congruency is ill conditioned if all the
Fourier components of the signal are very small, or if there is only
one (or nearly only one) frequency component present in the signal.

2. Being a normalized quantity, phase congruency is highly sensitive to
noise.

3. The existing measure of phase congruency does not provide good
localization of features.

This paper addresses these problems and is organized as follows. The
existing theory behind the calculation of phase congruency in one-
dimensional signals is introduced. It is then shown how phase con-
gruency can be calculated from log Gabor wavelets. The paper then
considers the effect of noise in the calculation of phase congruency and
develops an effective method for identifying and compensating for these
effects. It is shown that, for good localization, it is important to consider
the spread of frequencies present at a point of phase congruency. Prob-
lems in the localization of blurred features are addressed by developing
a new and more sensitive measure of phase congruency. This is followed
by the issues involved in extending this theory to 2-D images. The issue
of analysis at different scales is then considered, and it is argued that
high-pass filtering should be used to obtain image information at differ-
ent scales instead of the more usually applied low-pass filtering. Finally,
some results and the conclusion are presented.

2 Local Energy and Phase Congruency
The local energy model of feature detection postulates that features are
perceived at points of maximum phase congruency in an image. For
example, when one looks at the Fourier series that makes up a square
wave, all the Fourier components are sine waves that are exactly in
phase at the point of the step at an angle of 0 or 180 deg. depending
on whether the step is upward or downward. At all other points in the
square wave, phase congruency is low. Similarly, one finds that phase
congruency is a maximum at the peaks of a triangular wave (at an angle
of 90 or 270 deg.).

Congruency of phase at any angle produces a clearly perceived fea-
ture. Figure 2 shows a grating constructed from the series

s(x)=

n
∑

0

1

(2n+ 1)
sin[(2n+ 1)x + φ]

where φ, the offset at which congruence of phase occurs, is varied from
0 to π/2.

Figure 1. Construction of square

and triangular waveforms from their

Fourier series. In both diagrams,

the first few terms of the respective

Fourier series are plotted with broken

lines; the sum of these terms is the

solid line. Notice how the Fourier

components are all in phase at the

point of the step in the square wave,

and at the peaks and troughs of the

triangular wave.
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Figure 2. Interpolation of a step fea-

ture to a line feature by continuously

varying the angle of congruence of

phase from 0 at the top to π/2 at the

bottom. Profiles of this grating corre-

sponding to congruence of phase at

0, π/6, π/3, and π/2 are shown on

the right.

Morrone and Owens define the phase congruency function in terms
of the Fourier series expansion of a signal at some location x as

PC(x)=max
φ(x)∈[0,2π]

∑

n An cos(φn(x)− φ(x))
∑

n An
(1)

where An represents the amplitude of the nth Fourier component, and
φn(x) represents the local phase of the Fourier component at position
x. The value of φ(x) that maximizes this equation is the amplitude
weighted mean local phase angle of all the Fourier terms at the point
being considered. Taking the cosine of the difference between the actual
phase angle of a frequency component and this weighted mean, φ(x),
generates a quantity approximately equal to one minus half this differ-
ence squared (the Taylor expansion of cos(x) ≈ 1 − x2/2 for small x).
Thus, finding where phase congruency is a maximum is approximately
equivalent to finding where the weighted variance of local phase angles,
relative to the weighted average local phase, is a minimum.

As it stands, phase congruency is a rather awkward quantity to calcu-
late. As an alternative, Venkatesh and Owens [38] show that points of
maximum phase congruency can be calculated equivalently by search-
ing for peaks in the local energy function. The local energy function is
defined for a one-dimensional luminance profile, I (x), as

E(x)=
√

F 2(x)+H 2(x),

where F(x) is the signal I (x) with its DC component removed, and H(x)
is the Hilbert transform of F(x) (a 90 deg. phase shift of F(x)). Typically,
approximations to the components F(x) and H(x) are obtained by con-
volving the signal with a quadrature pair of filters. Venkatesh and Owens
show that energy is equal to phase congruency scaled by the sum of the
Fourier amplitudes; that is,

E(x)= PC(x)
∑

n

An.

Thus, the local energy function is directly proportional to the phase
congruency function, so peaks in local energy will correspond to peaks
in phase congruency.

The relationship between phase congruency, energy, and the sum of
the Fourier amplitudes can be seen geometrically in Figure 3. The local
Fourier components are plotted as complex vectors adding head to tail.
The sum of these components projected onto the real axis represent
F(x), the original signal with DC component removed; the projection
onto the imaginary axis represents H(x), the Hilbert transform. The
magnitude of the vector from the origin to the end point is the total
energy, E(x). One can see that E(x) is equal to

∑

n Ancos(φn(x)− φ(x)).
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Figure 3. Polar diagram showing

the Fourier components at a location

in the signal plotted head to tail.

This arrangement illustrates the

construction of energy, the sum

of the Fourier amplitudes, and

phase congruency from the Fourier

components of a signal.
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Phase congruency is the ratio of E(x) to the overall path length taken by
the local Fourier components in reaching the end point. Thus, one can
clearly see that the degree of phase congruency is independent of the
overall magnitude of the signal. This provides invariance to variations
in image illumination and/or contrast.

The calculation of energy from spatial filters in quadrature pairs has
been central to many models of human visual perception (for example,
those proposed by Heeger [11, 12, 13] and Adelson and Bergen [1]).
Other researchers who have studied the use of local energy for feature
detection are Perona and Malik [29], Freeman [9], and Ronse [32, 33].
Rosenthaler et al. [34] make a comprehensive study of the behavior of
local energy at 2-D image feature points. Wang and Jenkin [39] use
complex Gabor filters to detect edges and bars in images. They recognize
that step edges and bars have specific local phase properties that can be
detected using filters in quadrature; however, they do not connect the
significance of high local energy with the concept of phase congruency. It
should also be noted that Grossman [10] recognized that wavelets could
be used for the detection of discontinuities. He recognized the fact that
discontinuities have no intrinsic scale, and this is reflected in the wavelet
coefficient values. However, here too the connection with the concept of
phase congruency was not made.

While the use of the local energy function to find peaks in phase
congruency is computationally convenient, it does not provide a dimen-
sionless measure of feature significance as it is weighted by the sum of
the Fourier component amplitudes, which have units lumens. Accord-
ingly, this paper argues that it is phase congruency that we should be
computing.

3 Calculating Phase Congruency via Wavelets
In this work, the wavelet transform is used to obtain frequency infor-
mation local to a point in a signal. We are interested in calculating
local frequency and, in particular, phase information in signals. To pre-
serve phase information, linear-phase filters must be used; that is, we
must use nonorthogonal wavelets that are in symmetric/antisymmetric
quadrature pairs. Here we will follow the approach of Morlet et al. [22],
but, rather than using Gabor filters, we prefer to use logarithmic Gabor

VIDERE 1:3 Image Features from Phase Congruency 5



functions as suggested by Field [6]. (These are filters having a Gaussian
transfer function when viewed on the logarithmic frequency scale. Log
Gabor filters allow arbitrarily large bandwidth filters to be constructed
while still maintaining a zero DC component in the even-symmetric fil-
ter. (A zero DC value cannot be maintained in Gabor functions for band-
widths over one octave.) On the linear frequency scale, the log Gabor
function has a transfer function of the form

G(ω)= e
−(log(ω/ωo))

2

2(log(κ/ωo))2 ,

where ωo is the filter’s center frequency. To obtain constant-shape ra-
tio filters1 the term κ/ωo must also be held constant for varying ωo. For
example, a κ/ωo value of 0.75 will result in a filter bandwidth of ap-
proximately one octave and a value of 0.55 will result in a two-octave
bandwidth.

If we let I denote the signal and Me
n and Mo

n denote the even-
symmetric (cosine) and odd-symmetric (sine) wavelets at a scale n, we
can think of the responses of each quadrature pair of filters as forming a
response vector,

[en(x), on(x)] = [I (x) ∗Me
n, I (x) ∗Mo

n].

The amplitude of the transform at a given wavelet scale is given by

An(x)=
√

en(x)2 + on(x)2,

and the phase is given by

φn(x)= atan2(en(x), on(x)).

At each point x in a signal, we will have an array of these response
vectors, one vector for each scale of filter.2 These response vectors form
the basis of our localized representation of the signal, and they can be
used in exactly the same way as Fourier components can be used to
calculate phase congruency. This is shown in Figure 4.

The design of the wavelet filter bank needs to be such that the transfer
function of each filter overlaps sufficiently with its neighbors so that the
sum of all the transfer functions forms a relatively uniform coverage of
the spectrum. Note that we wish to retain a broad range of frequencies
in our signal, because phase congruency is of interest only if it occurs
over a wide range of frequencies.

Referring to Figure 4, we can see that an estimate of F(x) can be
formed by summing the even filter convolutions. Similarly, H(x) can be
estimated from the odd filter convolutions.

F(x)≃
∑

n

en(x),

H(x)≃
∑

n

on(x), and

∑

n

An(x)≃
∑

n

√

en(x)2 + on(x)2. (2)

With these three components we are able to calculate phase congruency.

1. That is, filters that are all geometric scalings of some reference filter.

2. Note that, from now on, n will be used to refer to wavelet scale. (Previously n denoted

frequency in the Fourier series of a signal.)
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Figure 4. Calculation of phase

congruency from convolution of

the signal with quadrature pairs

of filters. The convolution output

from each quadrature pair of filters

at a location in the signal can be

considered to represent a response

vector having length An and phase

angle φn. When the response vectors

are plotted head to tail, phase

congruency can be seen to be the

ratio of the length of the sum of

the vectors to the total path length

taken by the response vectors in

reaching the end point. The noise

circle represents the level of E(x)

one can expect just from the noise in

the signal.
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However, there are some problems in the calculation of phase congru-
ency. Referring to Figure 4, one can see the following:

1. The calculation of phase congruency becomes ill conditioned if all
the Fourier amplitudes are very small.

2. If the value of E(x) falls within the noise circle (shown in the
bottom-right diagram of Figure 4), values of phase congruency lose
all significance.

3. If there is only one (or nearly only one) frequency component
present in the signal, phase congruency is always one (

∑

n An =

E(x)).

4. The definition of phase congruency as provided by Equation (1)
does not provide good localization as this function only varies with
the cosine of phase deviation, rather than, say, phase deviation itself.

The problem of phase congruency becoming ill conditioned if all the
Fourier amplitudes are very small can be addressed by adding a small
positive constant, ε, to the denominator of the expression for phase
congruency. Thus,

PC(x)=
E(x)

∑

n An(x)+ ε
,

where E(x)=
√

F(x)2 +H(x)2. The appropriate value of ε depends on
the precision with which we are able to perform convolutions and other
operations on our signal; it does not depend on the signal itself.

The other problems in the calculation of phase congruency outlined
above are addressed in the following sections.
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Figure 5. Phase congruency of a step

function with and without noise.
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4 Noise
A difficulty with phase congruency is its response to noise. Figure 5
illustrates the phase congruency of a step function with and without
noise. In the vicinity of the step, phase congruency is high only at the
point of the step. However, away from the step, the fluctuations due to
noise are considered to be significant relative to the surrounding signal
(which is noise). This will occur no matter how small the noise level is.
This is the price one pays for using a normalized measure such as phase
congruency.

If one chooses to calculate local energy rather than phase congruency,
one can follow the approach of Morrone, et al. [24], in which the filter
scale is varied in an adaptive manner so as to keep the signal-to-noise
ratio at some specified value. This approach cannot be applied here as,
by definition, it results in information from only one filter scale being
available at any point in the signal. The calculation of phase congruency
requires the integration and normalization of information over many
scales. We must identify the level of noise in the signal and remove its
influence in the calculation of phase congruency.

It is possible to estimate the influence of noise in the calculation
of E(x) if we make the following three assumptions: image noise is
additive, the noise power spectrum is constant, and features (such as
edges) occur only at isolated locations in an image.3

In the following discussion, we shall use the following expression for
energy

E =

√

√

√

√

(

∑

n

en

)2

+

(

∑

n

on

)2

,

where en and on are the outputs of the even and odd symmetric filters at
scale n. Energy is the magnitude of a vector sum. If our noise is Gaussian
with random phase, each vector in this sum will be composed of two
independent normally distributed variables. Thus, the distribution of the
position of each vector will be a 2-D Gaussian centered on the origin.

3. While these assumptions may be considered simplistic, given the limited (and sometimes

conflicting) data on the nature of noise in real images (see for example Fleck [7] and

McIvor [21]), it can be argued that one has little basis on which to build a more formal

model.
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The distribution of the sum of these vectors is obtained by succes-
sively convolving the position distributions for the noise vectors at each
scale. As these are all 2-D Gaussians, the final distribution of the end po-
sition of the energy vector will also be Gaussian. However, what we are
interested in is the distribution of the magnitude of the energy vector.
This will have a Rayleigh distribution [40] of the form

R(x)=
x

σ 2
G

e

−x2

2σ2
G ,

where σ 2
G is the variance of the Gaussian distribution describing the

position of the total energy vector. The mean of the Rayleigh distribution
is

µR = σG

√

π

2
, (3)

and its variance is given by

σ 2
R =

4 − π

2
σ 2
G. (4)

If one can determine an expected value of energy due to noise, we can
use this as an estimate of the mean of the energy’s Rayleigh distribution,
and, hence, determine its variance. A noise threshold can then be set in
terms of a specified number of standard deviations above the mean.

Rather than construct the expected value of E, it is more convenient
to estimate E2. Note that, while E will have a Rayleigh distribution, E2

will have a χ2 distribution with two degrees of freedom. The expected
value of E2 will correspond to the second moment of the Rayleigh
distribution with respect to the origin:

E(E2)= 2σ 2
G, (5)

where E denotes the expected value.
The expected value for E2 in terms of our filter responses is

E(E2)= E

((

∑

n

en

)2
+

(

∑

n

on

)2)

= E

((

∑

n

en

)2)

+ E

((

∑

n

on

)2)

+ E

(

2
∑

i<j

(eiej + oioj)
)

= 2E

((

∑

n

en

)2)

+ 4E

(

∑

i<j

(eiej)
)

, (6)

this last step being possible because the distributions of en and on are
identical, but independent.

Given that en is obtained by convolving the noise signal g with a filter
Mn, and denoting the Fourier transform F(f )= f̂ , we obtain
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E(E2)= 2E

(

∑

n

(Mn ∗ g)2
)

+ 4E

(

∑

i<j

(Mi ∗ g).(Mj ∗ g)
)

= 2E

(

∑

n

(M̂n.ĝ)
2
)

+ 4E

(

∑

i<j

F−1(M̂i.ĝ) ∗ (M̂j .ĝ)
)

= 2|ĝ|2E

(

∑

n

M̂2
n

)

+ 4E

(

∑

i<j

F−1(|ĝ|2.(M̂i ∗ M̂j)
)

= 2|ĝ|2E

(

∑

n

M2
n

)

+ 4|ĝ|2E

(

∑

i<j

(Mi.Mj)
)

. (7)

Note, we are assuming that g has zero mean and |ĝ| is constant. The
components of Equation (7) involving the filters Mn can be evaluated
numerically, but what we do not know is the amplitude of the noise
spectrum, |ĝ|. However, we can estimate |ĝ| from the response of the
smallest scale filter pair in the wavelet bank as follows.

The smallest scale filter has the largest bandwidth and as such will
give the strongest noise response. Only at feature points will the response
differ from the background noise response, but the regions where it
will be responding to features will be small due to the small spatial
extent of the wavelet. Thus, the distribution of the squared amplitude
response from the smallest scale filter pair across the whole image will
be primarily the noise distribution, a scaled 2 DOF χ2 distribution, with
some contamination as a result of the response of the filters to feature
points in the image.

We can obtain a robust estimate of the mean of the squared amplitude
response of the smallest scale filter via the median response. The median
of a 2 DOF χ2 distribution is the value x such that

∫ x

0

1

2
e

−x
2 =

1

2

⇒ median = −2 ln(1/2).

Noting that the mean of a 2 DOF χ2 distribution is 2, we obtain

E(A2
N)=

−median(A2
N)

ln(1/2)
,

where N is the index of the smallest scale filter. This allows us to form
the estimate

|ĝ|2 ≃
E(A2

N)

E(M̂2
N)

. (8)

This can be substituted back into Equation (7) to obtain a value for
E(E2); then, using Equations (5), (4), and (3), we can obtain the mean,
µR, and variance, σ 2

R, of the Rayleigh distribution describing the noise
energy response.

The radius, T , of the noise circle (shown in Figure 4) is taken to be
the mean noise response plus some multiple, k, of σR,

T = µR + kσR, (9)

where k is typically in the range 2 to 3. If we subtract this estimated
noise effect from the local energy before normalizing it by the sum of
the wavelet response amplitudes, we will eliminate spurious responses
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Figure 6. Noise-compensated phase

congruency of two step profiles.
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to noise. Thus, we modify the expression for phase congruency to the
following:

PC(x)=
⌊E(x)− T ⌋

∑

n An(x)+ ε
,

where ⌊ ⌋ denotes that the enclosed quantity is equal to itself when
its value is positive, and zero otherwise. This approach to noise com-
pensation has parallels to Donoho’s techniques for de-noising via soft
thresholding [5].

The phase congruency of a legitimate feature will be reduced accord-
ing to the magnitude of the noise’s local energy relative to the feature.
Thus, we end up with a measure of confidence that the feature is signifi-
cant relative to the level of noise. Figure 6 shows the results of processing
two noisy step profiles. In both cases, a k value of 3 was used to estimate
the maximum influence of noise on local energy.

5 The Importance of Frequency Spread
Clearly, a point of phase congruency is significant only if it occurs over a
wide range of frequencies. In the degenerate case where there is only one
frequency component (a pure sine wave), phase congruency will be one
everywhere. A more common situation is where a feature has undergone
Gaussian smoothing. The smoothing reduces the high-frequency compo-
nents in the signal and reduces the frequency spread. In the extreme,
the frequency spread is reduced so much that locally we approach the
situation that arises with pure sine functions.

To counter this problem, one can incorporate low-frequency com-
ponents in the calculation of phase congruency. These low-frequency
components are the least affected by any smoothing of the signal. Even
so, the values of energy and

∑

n An can still be nearly equal over an
extended region about the feature, producing a poorly localized phase
congruency response. Thus, as a measure of feature significance, phase
congruency should be weighted by some measure of the spread of fre-
quencies present. What then is a significant distribution of frequencies?
If we consider some common feature types such as the square waveform
(step edge), the triangular waveform (roof edge), and the delta func-
tion (line feature) as some of the “edgiest” waveforms imaginable, we
can use their frequency distributions as a guide to the ideal.

The power spectrum of a square wave is of the form 1/ω2. Each
of the wavelets that we use to analyze the signal gathers power from
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geometrically increasing bands of the spectrum. The net result is that
filter responses are constant, independent of filter centere frequency.
Hence, the expected distribution of amplitude responses to a step feature
will be a uniform one. Field [6] points out that, in many cases, images
of natural scenes have overall spectral distributions that fall off inversely
proportional to frequency, and for this reason he also advocates the use
of geometrically scaled filter banks. Under these conditions, filters at all
scales will, on average, be responding with equal magnitudes, which
is likely to maximize the precision of any computation (numerical or
neural) that we make with the filter outputs.

The other important feature types we must consider are the delta
function (corresponding to line features) and roof edges. The power
spectrum of a delta function is uniform. One can show that, for a delta
feature, the amplitude of the wavelet filter responses will be proportional
to their bandwidths, and hence their centere frequencies. This will give
a distribution of filter responses strongly skewed to the high-frequency
end. On the other hand, for a triangular waveform where all the features
are roof edges, the power spectrum falls off at 1/ω4, resulting in a
distribution of filter amplitude responses that is strongly skewed to the
low-frequency end.

Thus, the difficulty we face here is that there is no one ideal distri-
bution of filter responses. All we can say is that the distribution of filter
responses should not be too narrow in some general sense. We can also
say that a uniform distribution is of particular significance as step dis-
continuities are common in images.

Accordingly, we can construct a weighting function that devalues
phase congruency at locations where the spread of filter responses is
narrow. A measure of filter response spread can be generated by taking
the sum of the amplitudes of the responses and dividing by the highest
individual response to obtain some notional “width” of the distribution.
If this is then normalized by the number of scales being used, we obtain
a fractional measure of spread that varies between 0 and 1. This spread
is given by

s(x)=
1

N

(
∑

n An(x)

ε + Amax(x)

)

,

where N is the total number of scales being considered, Amax(x) is the
amplitude of the filter pair having maximum response at x, and ε is used
to avoid division by zero and to discount the result should both

∑

An(x)

and Amax(x) be very small.
A phase congruency weighting function can then be constructed by

applying a sigmoid function to the filter response spread value, namely

W(x)=
1

1 + eγ (c−s(x))
,

where c is the cut-off value of filter response spread below which phase
congruency values become penalized, and γ is a gain factor that controls
the sharpness of the cutoff. Note that the sigmoid function has been
merely chosen for its simplicity and ease of manipulation.

Thus,

PC(x)=
W(x)⌊E(x)− T ⌋

∑

n An(x)+ ε
.
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Figure 7. Frequency spread weight-

ing function with a cut-off value of

0.4 and γ value of 10.
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Weighting by frequency spread—as well as reducing spurious responses
where the frequency spread is low—has the additional benefit of sharp-
ening the localization of features, especially those that have been
smoothed.

6 A New Measure of Phase Congruency
Even with the addition of frequency spread weighting, one finds that
the localization of phase congruency remains poor on blurred features.
The reason for this is evident when one studies the expression for en-
ergy. Energy is proportional to the cosine of the deviation of phase angle,
φn(x) from the overall mean phase angle, φ(x). While the cosine func-
tion is maximized when φn(x)= φ(x), it requires a significant difference
between φn(x) and φ(x) before its value falls appreciably. For example,
the filter outputs could be such that all phase angles were φ(x)± 25 deg.
and we would still have a phase congruency of approximately 0.9. Thus,
using the cosine of the phase deviation is a rather insensitive measure of
phase congruency.

We can construct a more sensitive measure of phase congruency by
noting that, at a point of phase congruency, the cosine of the phase de-
viation should be large and the absolute value of the sine of the phase
deviation should be small. The gradient of the sine function is a maxi-
mum at the origin. Therefore, making use of the sine of the phase de-
viation will increase our sensitivity. Accordingly, a more sensitive phase
deviation function on which to base the calculation of phase congruency
is

*+(x)= cos(φn(x)− φ(x))− |sin(φn(x)− φ(x))|. (10)

Figure 8 plots this function along with the cosine function for compar-
ison. The function falls very nearly linearly as phase deviation moves
from 0 to ±π/2. Thus, a near-direct measure of phase deviation is ob-
tained without having to resort to inverse trigonometric functions.

Using this new measure of phase deviation, *+(x), a new measure of
phase congruency can be defined as

PC2(x)=

∑

nW(x)⌊An(x)*+n(x)− T ⌋
∑

n An(x)+ ε
,

Figure 8. Comparison between

cos(x) (dotted line) and cos(x) −

| sin(x)| (solid line).
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where, as before, ε is a small constant to avoid division by zero and
T is the estimated noise influence4. Note that this expression for phase
congruency is PC2(x) to distinguish it from the previous definition of
phase congruency that will now be referred to as PC1(x).

The relationship between these two phase congruency measures
can be seen in statistical terms. The measure PC2(x) is related to the
weighted mean absolute deviation of phase from the weighted mean5

in that the phase deviation measure it uses varies almost linearly with
angular deviation of phase. On the other hand, PC1(x)—in using the
cosine of the phase deviation—is related to the approximate weighted
variance with respect to the weighted mean phase.

The calculation of this new measure of phase congruency, PC2(x),
can be done using dot and cross products between the filter output
response vectors to calculate the cosine and sine of (φn(x)− φ(x)). The
unit vector representing the direction of the weighted mean phase angle,
φ(x) is given by

(φe(x), φo(x))=
1

√

(F (x)2 +H(x)2)
(F (x),H(x)). (11)

Now, using dot and cross products one can form the quantities:

An(x) cos(φn(x)− φ(x))= en(x).φe(x)+ on(x).φo(x), (12)

An(x)| sin(φn(x)− φ(x))| = |en(x).φo(x)− on(x).φe(x)|. (13)

Thus,

An(x)(cos(φn(x)− φ(x))− | sin(φn(x)− φ(x))|)=

(en(x).φe(x)+ on(x).φo(x))− |en(x).φo(x)− on(x).φe(x)|, (14)

which gives us the quantity needed to calculate this new version of phase
congruency.

7 Extension to Two Dimensions
So far our discussion has been limited to signals in one dimension.
Calculation of phase congruency requires the formation of a 90 deg.
phase shift of the signal which we have done using odd-symmetric filters.
As one cannot construct rotationally symmetric odd-symmetric filters,
one is forced to analyze a two-dimensional image by applying our one-
dimensional analysis over several orientations and combining the results
in some way. Three issues must be resolved: the shape of the filters in
two dimensions, the numbers of orientations to analyze, and the way in
which the results from each orientation are combined.

7.1 2-D Filter Design
The one-dimensional filters described previously can be extended into
two dimensions by simply applying some spreading function across the

4. This equation for phase congruency does not lend itself readily to the noise analysis

described in Section 4. In practice, it is found that the analysis used in Section 4 approx-

imately applies to the PC2 measure, but the noise effect is typically overestimated. This

can be compensated for by rescaling the value for T calculated in Equation (9) by a factor

of 0.5 to 0.7.

5. Normally the mean absolute deviation is calculated with respect to the median of

a distribution; the median minimizes this quantity. However, the mean of the phase

distribution is more accessible to us than the median, especially if we want to weight phase

values by amplitude values.
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filter perpendicular to its orientation. Such a 2-D filter is separable;
image convolution can be accomplished by a 1-D convolution with the
spreading function, followed by a 1-D convolution in the orthogonal
direction with the wavelet function. Since we are interested in the phase
information, the important thing to ensure is that convolution with the
spreading function does not corrupt the phase data in the image.

The obvious spreading function to use is the Gaussian, and there are
good reasons for choosing it. Any function smoothed with a Gaussian
undergoes amplitude modulation of its components, but phase is unaf-
fected. Thus, the phase congruency at any features will be preserved. If,
on the other hand, we were to, say, use a rectangular spreading function,
some phase angles in the signal would be reversed because the transfer
function (a sine function) has negative values. Phase congruency at fea-
tures would then be corrupted.

7.2 Filter Orientations
To detect features at all orientations, our bank of filters must be de-
signed so that they tile the frequency plane uniformly. In the frequency
plane, the filters appear as 2-D Gaussians symmetrically or antisymmet-
rically placed around the origin, depending on the spatial symmetry of
the filters. The length-to-width ratio of the 2-D wavelets controls their
directional selectivity. This ratio can be varied in conjunction with the
number of filter orientations used in order to achieve an even coverage
of the 2-D spectrum.

A logical way to construct 2-D filters in the frequency domain is to
use polar-separable 2-D Gaussians. In the radial direction, along the fre-
quency axis, the filters are designed in the same way as we have been
designing 1-D filters (that is, log Gaussians with geometrically increasing
centere frequencies and bandwidths). In the angular direction, the fil-
ters have Gaussian cross-sections, where the ratio between the standard
deviation and the angular spacing of the filters is some constant. This
ensures a fixed length-to-width ratio of the filters in the spatial domain.
Thus, the cross-section of the transfer function in the angular direction
is

G(θ)= e
−
(θ−θ0)

2

2σ2
θ ,

where θ0 is the orientation angle of the filter, and σθ is the standard de-
viation of the Gaussian spreading function in the angular direction. This
is set to be some fixed ratio of the orientation spacing between the fil-
ters to ensure even coverage of the spectrum in all orientations. A filter
orientation spacing of 30 deg. has been found to provide a good com-
promise between the need to achieve an even spectral coverage while
minimizing the number of orientations. The use of more filter orienta-
tions does not change the quality of the results significantly. The final
arrangement of filters results in a rosette of overlapping polar-separable
2-D Gaussians in the frequency plane. Simoncelli et al. [35] describe a
systematic filter design technique for achieving uniform coverage of the
frequency plane that could also be applied here.

7.3 Combining Data over Several Orientations
The important issue here is to ensure that features at all possible orienta-
tions are treated equally, and all possible conjunctions of features (such
as corners and “T” junctions) are treated uniformly. Indeed, we want
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to avoid making any assumptions about the 2-D form of features that
one may encounter. It is also important that the normalization of energy
to form phase congruency is done after summing energies over all ori-
entations. We want the final result to be a weighted normalized value,
with the result from each orientation contributing to the final result in
proportion to its energy.

The approach that has been adopted is as follows. At each location in
the image, we calculate energy, E(x), in each orientation, compensate
for the influence of noise, apply the weighting for frequency spread, and
then form the sum over all orientations. This sum of energies is then
normalized by dividing by the sum over all orientations and scales of
the amplitudes of the individual wavelet responses at that location in the
image. This produces the following equation for 2-D phase congruency:

PC2(x)=

∑

o

∑

nWo(x)⌊Ano(x)*+no(x)− To⌋
∑

o

∑

n Ano(x)+ ε
, (15)

where o denotes the index over orientations. Notice in the equation
above that noise compensation is performed in each orientation inde-
pendently. The perceived noise content as deduced from the average
power response of the smallest scale wavelet pair can vary significantly
with orientation due to the correlation in noise along scan lines that can
occur in the digitization of an image.

8 Scale via High-Pass Filtering
The traditional approach to analyzing an image at different scales is to
consider various low-pass or band-passed versions of the image. Versions
of the image having only low frequencies left are considered to contain
the “broad scale” features. This approach is inspired from the presence
of receptive fields in the visual cortex that act as band-pass filters [19].
While this approach is intuitive, the justification for assuming the brain
uses these band-passed versions of the image directly for multiscale
analysis is perhaps somewhat circular. On being presented with a low-
pass version of an image, one is asked “What features do you see?” Of
course, you see the broad scale features: they are the only things left in
the image to be seen.

A major problem with the use of low- or band-pass filtering for mul-
tiscale analysis is that the number of features present in an image, and
their locations, vary with the scale used. It seems very unsatisfactory for
the location of a feature to depend on the scale at which it is analyzed.

The use of phase congruency to measure feature significance allows
one to consider an alternative interpretation of feature scale. Phase
congruency at some point in a signal depends on how the feature is built
up from the local frequency components. Depending on the size of the
analysis window, features some distance from the point of interest may
contribute to the local frequency components considered to be present.
Thus, features are not considered in isolation but in context with their
surrounding features.

Therefore, as far as phase congruency is concerned, the natural scale
parameter to vary is the size of the window in the image over which
we perform the local frequency analysis. In the context of our use of
wavelets to calculate phase congruency, the scale of analysis is specified
by the spatial extent of the largest filter in the wavelet bank. With this
approach, we are using high-pass filtering to specify the analysis scale.
We cut out low-frequency components (those having wavelengths larger
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than the window size) while leaving the high-frequency components
intact.

If we use a small analysis window, each feature will be treated with a
great degree of independence from other features in the image. We will
be comparing each feature to only a small number of other features that
are nearby; hence, each feature is likely to be perceived more important
locally. At the largest scale (window size equal to image size), each
feature is considered in relation to all other features, and we obtain a
sense of global significance for each feature.

It should be noted that our original ideal that the significance of
image features should be invariant to image magnification is not really
attainable. In practice, we have to compute phase congruency using a
finite number of spatial filters that cover a limited range of the spectrum.
Changing the magnification of an image may alter the relative responses
of individual filters and hence change the perceived phase congruency.
However, the changes in measured phase congruency will, in general,
be much smaller than any corresponding changes in intensity gradient.

In summary, it is proposed that multiscale analysis be done by consid-
ering phase congruency of differing high-passed versions of an image.
The high-pass images are constructed from the sum of band-passed im-
ages, with the sum ranging from the highest frequency band down to
some cutoff frequency. With this approach, no matter what scale we con-
sider, all features are localized precisely and in a stable manner. There is
no drift of features that occurs with low-pass filtering. All that changes
with analysis at different scales is the relative significance of features.
This provides an ideal environment for the use of coarse-to-fine strate-
gies. Figure 9 illustrates a one-dimensional signal at two different scales
of band-pass and high-pass filtering, along with phase congruency at the
two high-pass scales.

9 Experimental Results
A problem in discussing the performance of a feature detector is devising
a sensible form of evaluation. Performance criteria have been used by
a number of researchers to design edge operators, notably Canny [2,
3], Spacek [36], and Deriche [4]. These criteria generally measure the
ability of a detector to produce a distinct local maximum at the point
of a step discontinuity in the presence of noise. However, these criteria
are limited in their usefulness, as they are concerned only with specific
feature types, usually step discontinuities, and they are not concerned
with the absolute value of the resulting maxima in the detector’s output.
They provide no guide as to one’s ability to set general thresholds. A
feature detector is of limited use if one does not know in advance what
level of response corresponds to a significant feature.

One of the primary motivations for using phase congruency to detect
image features is that it provides an absolute measure of the significance
of features. This allows one to set thresholds that are applicable across
wide classes of images. The other motivation for detecting features on
the basis of phase congruency is that we are not required to make any
assumptions about the luminance profile of the feature; we are simply
looking for points where there is order in the frequency domain. Step
discontinuities, lines, and roof edges are all detected.

The performance of the phase congruency detector is illustrated on
two test images and on five real images on the following pages. For
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Figure 9. Analysis at different scales.
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comparison, the output of the Canny detector is also presented. The im-
plementation of the Canny detector used here follows the modifications
suggested by Fleck [8]. The raw, gradient magnitude image is displayed
so that comparison can be made without having to consider any artifacts
that may be introduced by nonmaximal suppression and thresholding
processes. The purpose of providing this comparison is to illustrate some
of the qualitative differences in performance between the two detectors.
Quantitative comparisons are difficult because the design objectives of
the two detectors are completely different. One is seeking to localize step
edges, and the other is seeking to identify points of phase congruency.

9.1 Parameters
It should be emphasized that all the results presented on the following
pages were obtained by applying the same parameter and threshold
values to every image.

The raw phase congruency images were obtained by applying Equa-
tion (15) to the images with the following parameters. Local frequency
information was obtained using two-octave bandwidth filters over four
scales and six orientations. The wavelength of the smallest scale filters
was 3 pixels, the scaling between successive filters was 2. Thus, over the
four scales, the filter wavelengths were 3, 6, 12, and 24 pixels. The filters
were constructed directly in the frequency domain as polar-separable
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functions: a logarithmic Gaussian function in the radial direction and a
Gaussian in the angular direction. In the angular direction, the ratio be-
tween the angular spacing of the filters and angular standard deviation
of the Gaussians was 1.2. This results in a coverage of the spectrum that
varies by less than 1%. A noise compensation k value of 2.0 was used.
The frequency spread weighting function cutoff fraction, c, was set at
0.4, and the gain parameter, γ , was set at 10. The value of ε, the small
constant used to prevent division by zero in the case where local energy
in the image becomes very small, was set at 0.01. None of these param-
eter values are particularly critical. However, it is worth noting that the
spatial extent of log Gabor filters appears to be minimized when they
are constructed with a bandwidth of approximately two octaves [16].

The phase congruency feature maps were obtained by performing
nonmaximal suppression on the raw phase congruency images followed
by hysteresis thresholding with upper and lower hysteresis threshold
values fixed at phase congruency values of 0.3 and 0.15.

MATLAB code for performing the calculation of phase congruency,
nonmaximal suppression, and hysteresis thresholding is provided by
Kovesi [17] for those wishing to replicate the results presented here.

9.2 Discussion
The main qualitative difference between the two detectors is the wide
range of response values from the Canny detector. For example, with
the Canny detector, the low-contrast square in the circle at the top right
of the first test image almost disappears, whereas under phase congru-
ency it is marked prominently. This wide range of responses from the
Canny detector makes threshold selection difficult. The other obvious
difference is that the Canny detector produces responses on each side
of line features, whereas the phase congruency detector produces a re-
sponse centered on the line. (This problem was recognized by Canny,
and he designed a separate operator to detect line features.) One prob-
lem with the phase congruency detector (or at least this implementation
of it) is its behavior at junctions of features having greatly different
magnitudes. Notice how the horizontal edges in the gray scale on the
left-hand side of the first test image fade as they meet the strong verti-
cal edge of the gray scale. At the junction between the low-magnitude
horizontal edges and the high-magnitude vertical edge, the normalizing
component of phase congruency,

∑

n An, is dominated by the magnitude
of the vertical edge. Thus, at the junction, the significance of the hori-
zontal edges relative to the vertical one is downgraded. This problem
could possibly be overcome through a different approach to combining
phase congruency information over several orientations. Freeman [9],
in his use of a normalized form of energy for feature detection, encoun-
tered this same problem at junctions of varying contrast. His solution
was to normalize energy in each orientation independently using only
energy responses from filters in the same orientation. The energy values
used for the normalization were blurred spatially in a direction perpen-
dicular to the orientation being considered. This approach has not been
adopted here. Robbins and Owens [31] also provide a detailed study of
the detection of 2-D features, such as junctions and corners, using local
energy.
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10 Conclusion
Phase congruency is a dimensionless measure of feature significance. It
provides an invariant measure of the significance of feature points in an
image, and this allows constant threshold values to be applied across
wide classes of images. Thresholds can be specified in advance; they do
not have to be determined empirically for individual images.

The theory behind the calculation of phase congruency has been ex-
tended in a number of ways. This paper develops a new measure of
phase congruency that provides greater localization of features. It is
shown how phase congruency can be calculated via log Gabor wavelets,
and the problems involved in extending the calculation of phase con-
gruency from 1-D signals to 2-D are addressed. It is shown that, for a
normalized measure of feature significance (such as phase congruency),
it is crucial to be able to recognize the level of noise in an image and to
compensate for it. An effective method of compensation is presented that
requires only that the noise power spectrum be approximately constant.

Also presented is the importance of weighting phase congruency by
some measure of the spread of the frequencies that are present at each
point in an image. This prevents false positives being marked where
the frequency spread is very narrow. It also improves the localization
of features. While it is not possible to specify one ideal distribution of
filter response amplitudes with frequency, it is shown that, when geo-
metrically scaled filters are used, a uniform distribution of responses is
a particularly significant one. This distribution matches typical spectral
statistics of images and corresponds to the distribution that arises at step
discontinuities.

Another contribution of this work is to offer a new approach to the
concept of scale in image analysis. The natural scale parameter to vary
in the calculation of phase congruency is the size of the analysis window
over which to calculate local frequency information. Thus, under these
conditions, scale is varied using high-pass filtering rather than low-pass
or band-pass filtering. The significant advantage of this approach is that
feature locations remain constant over scale, and only their significance
relative to each other varies.
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Figure 13. Goldhill image. This im-

age illustrates the ability of the PC2

measure to pick out fine features.

The window panes and roof tiles in

the nearer houses are clearly marked.

(a) original image; (b) phase congru-

ency feature map; (c) Canny edge

strength image; (d) raw phase con-

gruency image.
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(c) (d)
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Figure 14. Venice image. Here

the value of phase congruency’s

invariance to contrast can be seen.

Notice how some of the buildings

along the canal are partly in shadow.

The output of the Canny detector

almost disappears in the shadowed

regions. However, phase congruency

successfully picks out many of the

features in these regions. (a) original

image; (b) phase congruency feature

map; (c) Canny edge strength image;

(d) raw phase congruency image.

(a) (b)

(c) (d)
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Figure 15. Boat image. Note the

faithful recording of the rigging

by phase congruency. (a) original

image; (b) phase congruency feature

map; (c) Canny edge strength image;

(d) raw phase congruency image.

(a) (b)

(c) (d)

Figure 16. VDU image. The low

contrast edges of the VDU against

the table are marked quite clearly by

phase congruency. Notice also, the

marking of the right-hand vertical

edge of the monitor. (a) original

image; (b) phase congruency feature

map; (c) Canny edge strength image;

(d) raw phase congruency image.

(a) (b)

(c) (d)
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