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Abstract To understand the true nature of black holes, fun-

damental theoretical developments should be linked all the

way to observational features of black holes in their natu-

ral astrophysical environments. Here, we take several steps

to establish such a link. We construct a family of spinning,

regular black-hole spacetimes based on a locality princi-

ple for new physics and analyze their shadow images. We

identify characteristic image features associated to regular-

ity (increased compactness and relative stretching) and to the

locality principle (cusps and asymmetry) that persist in the

presence of a simple analytical disk model. We conjecture

that these occur as universal features of distinct classes of

regular black holes based on different sets of construction

principles for the corresponding spacetimes.

General Relativity (GR) has passed many observational

tests [1,2]. In particular, it describes spacetime outside the

event horizon of a black hole consistently with observa-

tions within the statistical and systematic uncertainties [3–

7]. Despite these successes, a problem with the theoretical

description of black holes in GR remains. The theory pre-

dicts a singularity of the space-time curvature, signalling its

own breakdown. Thus, we do not understand the true nature

of black holes. We know from observations that compact

objects like black holes exist [8]. We know from theoret-

ical consistency that these objects must be nonsingular. A

two-step development is called for: theoretically consistent,

regular spinning black-hole spacetimes are constructed with

a subsequent extraction of image features relevant for the

Event Horizon Telescope (EHT) [6,9–13] and observables

accessible to other observations, e.g., [14–19].

The theoretical explorations of shadow images beyond GR

mostly follow two distinct strategies.

In the first strategy, black-hole solutions are derived in

gravity theories beyond GR [18,20–36]. This strategy has
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two main disadvantages: First, it is impossible to cover every

conceivable theory beyond GR. Second, the shadow-images

from many distinct theories are bound to be indistinguishable

given the finite resolution of the EHT.

In the second strategy, all possible deviations from a Kerr

metric are parametrized without reference to a fundamental

theory [37–43]. Thus, even a detection of a deviation would

not provide any direct information on the nature of new grav-

itational physics.

In this paper, we develop a third strategy that lies inbe-

tween the other two. We develop a parameterized family of

black-hole metrics that is based on a set of physical princi-

ples. Our principled-parameterized strategy results in image

features. We expect that these capture universal imprints of

a class of fundamental theories.

To develop this new strategy, we propose a family of

space-time metrics for spinning, regular black holes based

on a locality principle. We derive observational signatures in

their shadows that are characteristic imprints of the locality

principle. Our analysis accounts for observationally relevant

parameters like spin and inclination and includes a simple

analytical disk model following [44].

In order to take steps linking fundamental theory to future

observational data, we (i) start from a fundamental theoret-

ical principle, (ii) construct a family of spacetime metrics

based on it, and (iii) calculate images in a toy model for the

astrophysical environment of the black hole.

Four principles for black-hole spacetimes In contrast to

parameterized deviations from the Kerr spacetime, see,

e.g., [37–43], we base our construction on four fundamental

physical principles. We demand that

(i) the spacetime is described by a metric that is a solution

to some dynamics beyond GR,

(ii) the metric has a correct Newtonian limit,

(iii) the spacetime is nonsingular everywhere,
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(iv) the local curvature in Kerr spacetime determines the

magnitude of deviations (locality principle).

The last principle distinguishes our construction from other

work in spinning spacetimes, e.g., [18,22,23,25,26,28,29,

32,34–36]. As we will see, its implementation results in dis-

tinct new spacetime and image features. It follows from a

(classical or quantum) effective field theory point of view

on new physics which implies that deviations from GR set

in beyond a critical value of the local curvature. It is moti-

vated by several research lines, where quantum or classical

modifications of GR follow effective field theory principles,

both for black holes, e.g., [45–52] and beyond, e.g., [53–

61]. Within the highly restricted setting of spherical symme-

try, principles (i)–(iv) have been successfully implemented,

cf. [62–66]. However, astrophysical black holes typically

spin [7,67–69]. Yet, to the best of our knowledge, no exam-

ple implements principle iv) for a spinning black hole. This

is rooted in the intricate curvature structures of Kerr black

holes: for instance, the Kretschmann scalar changes its sign

at various locations throughout the spacetime. This makes it

technically challenging to define an invariant local curvature

scale as a new-physics scale.

For our construction, we require a coordinate invariant

characterization of space-time curvature. We follow [70,71],

provide a comprehensive overview of our construction in

an extensive companion paper [72] and restrict ourselves to

stating the result here: The local curvature for a Kerr black

hole (with mass m and spin parameter a) is characterized by

the invariant

KGR =
48m2

(

r2 + a2 cos2(θ)
)3

, (1)

which provides an envelope to the absolute value of the

maximum of all independent non-derivative curvature invari-

ants of the Kerr spacetime. These independent curvature

invariants are the Kretschmann scalar, Rμνκλ Rμνκλ, and

1/2 ǫμνρσ Rρσκλ R
μν

κλ . Independently, each of these is a

non-monotonic function of the spacetime coordinates. Equa-

tion (1) provides a monotonic (i.e., monotonically decreas-

ing with r and monotonically rising from θ = 0 to θ = π/2)

envelope of the maximum of the invariants. This expression

is the basis to implement the physical idea that modifications

of GR set in whenever any one of these curvature invariants

is larger than the new-physics scale. Here, we set G = 1 and

choose ingoing Kerr coordinates u, r, θ, φ. We denote the

mass and spin parameter by m and a, respectively. To imple-

ment principle iv), deviations from Kerr must be functions

of KGR · ℓ4
NP only, where ℓNP parameterizes the scale of new

physics, which is unknown and treated as a free parameter in

the following. To implement principles ii) and iii), we intro-

duce an effective mass function M(KGR) = M(r, θ) which

substitutes the constant mass in the Kerr metric, i.e.,

ds2 = −
r2 − 2M(r, θ)r + a2 cos2(θ)

r2 + a2 cos2(θ)
du2 + 2 du dr

−4
M(r, θ)ar

r2 + a2 cos2(θ)
sin2(θ)du dφ

−2a sin2(θ)dr dφ + (r2 + a2 cos2(θ))dθ2

+
sin2(θ)

r2 + a2 cos2(θ)

[

(

a2 + r2
)2

−a2
(

r2 − 2M(r, θ)r + a2
)

· sin2(θ)

]

dφ2. (2)

The mass function must interpolate between M(KGR →

0) → m and M(KGR → ∞) → 0 and fall off faster

than O((KGR · ℓ4
NP)−1/2) in order to ensure principle (ii)

and (iii). Except for these two limits and the requirement of

being nowhere singular, M(KGR) can, in principle, be cho-

sen freely to construct a model. A specific assumption for

the dynamics of the new physics would provide additional

constraints on M(KGR).

Nevertheless, the locality principle implies that

M(r = const, θ) is smallest at θ = π/2, i.e., the modifi-

cations are largest in the equatorial plane. Across different

choices of mass functions (which are monotonic functions of

KGR), this results in universal observational features, as we

will see by studying distinct examples,

Malg (KGR) =
m

1 + ℓ4
NP KGR

, (3)

Mexp (KGR) = m e−
(

ℓ4
NP KGR

)1/6

. (4)

Malg reduces to a generalization of the Hayward mass func-

tion [64] and Mexp to the Simpson–Visser mass function [66]

in the spherically symmetric limit. For comparison, we

choose a non-local model violating assumption (iv),

Mnon−local(r) =
m

1 + ℓ4
NP KGR

(

r, θ = π
2

) =
m

1 +
48m2ℓ4

NP

r6

.

(5)

For a Kerr black hole, M(KGR) = m = const.

Similar mass functions (typically in the spherically sym-

metric limit) arise in the context of Loop Quantum Gravity,

see, e.g. [24,27,31], asymptotic safety, see, e.g. [20,22,25,

30,65,73], non-commutative geometry, see, e.g. [21], and

string theory, see, e.g. [33]. In [74], a related mass func-

tion was proposed in axisymmetry in the asymptotic-safety

approach. Moreover, [75] links such regular black spacetimes

to classical modified gravity theories; and [63] show that sim-

ilar metrics arise in GR coupled to nonlinear electrodynam-

ics.

In [76,77], it has been pointed out that the inner horizon

of such black hole metrics might be unstable. To analyze

this potential instability, we would require a fundamental
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dynamics, which the nature of our principled-parameterized

approach to black-hole images does not provide. Instead,

this question may be addressed in individual gravity theories

beyond GR.

A dent from local new physics To characterize the black-hole

spacetime, we determine the location of the event horizon

numerically, [72], cf. left-hand panel in Fig. 1 which high-

lights two features.

(i) Globally, the horizon shrinks compared to a singular

Kerr black hole with the same m and a. The same

effect occurs in many spherically symmetric examples,

see, e.g., [31,62,64–66,74,78,79] and for all three mass

functions, including Mnon-local(r). This effect can be

traced back to the singularity-resolving new physics

which acts as a weakening of gravity leading to a more

compact event horizon.

(ii) An additional effect is only present in the axisymmet-

ric case: the event horizon features a dent at θ = π/2,

cf. left-hand panel in Fig. 1, i.e., a minimum of the radius

of the horizon as a function of θ . The dent is a result of

increased compactness in the equatorial plane. This fol-

lows from the angular dependence of the mass function

M(KGR) as a result of the classical curvature invariant

KGR in Eq. (1).

In contrast, the non-local mass function in Eq. (5) fea-

tures no angular dependence and thus results in a spherically

symmetric event horizon. More generally, this holds for any

mass function which is independent of θ , thus violating our

locality principle.

Impact of astrophysical environments The typical environ-

ments of astrophysical black holes are accretion disks. We

consider a simple model of such an environment by adding

a simple model of a non-dynamical disk. We neglect absorp-

tivity and assume that the disk is optically thin. There are

strong indications that accretion disks of supermassive black

holes such as M87* and Sgr A* could indeed be optically

thin [80]. Finally, given the nearly monochromatic nature of

present EHT observations, we focus on a single frequency ν.

In conclusion, we follow [44] and model the disk by a density

function with variable disk parameter h, i.e.,

n(r, θ) = n0 × exp

[

−
1

2

(

r2

100
+ h2 cos2(θ)

)]

. (6)

In this setup, the radiative transfer equation for the intensity

I reduces to:

d

dλ

(

Iν

ν3

)

= C n
(

xμ(λ)
)

, (7)

where λ is the affine parameter and the radiative transfer

equation is evaluated on the photon world line xμ(λ). C is a

constant that, together with the density n0, drops out once we

normalize the intensity in the images. Finally, the radial null

geodesics are obtained by numerically solving the geodesic

equation. The impact of varying disk parameter h on image

features is studied in the longer companion paper [72].

Overall image difference The shadow of Kerr black holes

deviates from a spherical shape by about 13% on the pro-

grade side of the image. On this side, light rays are pulled

closer to the black hole by frame dragging. The same effect

exists for our regular black holes. Thus the images of reg-

ular spinning black holes show a similar flattening of the

Fig. 1 Left-hand panel: parametric curves of the spherical Kerr hori-

zon (dashed green) and the non-spherical horizon of the local, regular

black-hole (Mexp with ℓNP = 0.2556 m ≈ ℓNP,crit), both at spin parame-

ter a = 0.9 m. Middle panel: Different explicit trajectories (as a function

of affine parameter λ) initiated at image points on the shadow boundary

(marked in the right-hand panel) probing symmetric (dashed) and asym-

metric (continuous) sections of the spacetime. Right-hand panel: The

resulting intensity image (normalized to the brightest image point) for

inclination θobs = π/2. Cusps in the shadow boundary occur whenever

trajectories jump between symmetric and asymmetric θ-oscillations

(cf. middle panel)
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shadow boundary and look largely comparable to the Kerr

case, cf. Fig. 2. Given the finite resolution of the EHT, our

study suggests that the imaged object [6,9–13] could be a

regular black hole satisfying our four principles.

This motivates the question whether future observations

could, in principle, detect imprints of regularity and the local-

ity principle. We compare to the case of a non-local mass

function (cf. Eq. (5)) to tentatively classify which image fea-

tures are associated to regularity and which to locality.

From Fig. 2, where we compare intensities in the Kerr

and a regular case, the prograde image-side emerges as the

interesting image location, which is why we focus on it in

the following.

Shift of the prograde shadow boundary The shadow is more

compact for regular than for Kerr black holes due to the more

compact horizon. The effect is significantly larger on the

prograde side, where frame dragging enables light rays to

probe the geometry closer to the more compact horizon. The

resulting appreciable shift of the prograde shadow boundary

is not tied to the locality principle, see, e.g., [18,34,78,81–

87].

This increase in compactness is not degenerate with the

flattening effect of increased spin parameter a in the Kerr

case. The overall shape of the shadow boundary cannot be

reproduced by any Kerr geometry, see [72].

Relative stretching Gravitational lensing in the vicinity of

the black-hole horizon results in multiple lensed images of

the disk. Corresponding image features can vary significantly

with inclination but are visible at all inclinations, cf. Fig. 3.

This includes the M87* case, where the spin axis nearly

points towards the observer, i.e., θobs ≈ 17π/180, [13]. The

distance between these features is stretched out in the case of

regular black holes. The intensity peaks furthest away from

the shadow boundary lie at similar locations in the image

plane in the singular and regular case, cf. Fig. 2. As null

Fig. 2 Relative intensity in the (x, y) image plane, normalized to the

brightest image point (of both images), cf. color legend in Fig. 1. Left:

Kerr black hole; Right: regular black hole with Mexp with ℓNP =

0.2556 m ≈ ℓNP,crit. We choose a = 0.9 m, inclination θobs = 8π/20,

and disk parameter h = 10 m in both panels. The gray boxes indicate

the prograde region in which the deviations from Kerr spacetime are

the largest, cf. Fig. 3 for detail images

geodesics move towards the light sphere, the compactness

of the probed geometry increases. Therefore, the distance to

further inwards lying intensity maxima is stretched out, in

comparison to the Kerr case.

The amount of stretching is a function of the radial and

angular dependence of the mass function M(r, θ). In par-

ticular, Mexp leads to a larger effect compared to Malg. In

both cases, the amount of stretching varies significantly with

image angle ψ , because the mass function also depends on

θ . Therefore the increase in compactness has an angular (ψ)

dependence. In contrast, for a non-local mass function, the

effect is more homogeneous across different image angles

because the increase in compactness only depends on the

radius.

Away from the shadow boundary, image features depend

on the geometry and on the emission structure [88–90],

see [72] for a first study of the impact of varying disk param-

eter h.

Cusps from the locality principle The overall shift and the

stretching of image features distinguish regular from Kerr

black holes, but are present for mass functions that either

satisfy or violate the locality principle. This motivates us to

search for potential distinguishing features between the two

classes of regular mass functions. A characteristic difference

between the two classes of geometries is the dent in the hori-

zon, exclusively present for mass functions satisfying the

locality principle. Indeed, we find that the latter can result

in characteristic cusp-like features in the shadow images,

cf. Fig. 3. These cusps are discontinuities in the shadow

boundary. Just like shift and relative stretching, cusps are

enhanced for Mexp compared to Malg. Moreover, they are

most distinct when the regular black holes are viewed face-

on (θobs = π/2).

To understand the origin of the cusps, one needs to

know that geodesics making up the shadow boundary cover

bounded ranges in θ while orbiting the black hole [91–93].

The range between θmin(ψ) and θmax(ψ) depends on the

image angle ψ . When the range of θ changes, the corre-

sponding radius of the horizon differs, cf. left panel in Fig 1.

Thus, null geodesics that arrive at distinct ψ effectively probe

different sections of the near-horizon geometry. For instance,

trajectories on two sides of a cusp probe symmetric and asym-

metric sections of the horizon geometry, respectively, cf. mid-

dle panel in Fig. 1. Discontinuous jumps in θmin/max(ψ) result

in discontinuities in the shadow boundary at ψ .

In particular, ψ = π is associated to a particularly pro-

nounced discontinuity at θobs ≈ π/2, cf. right-hand panel in

Fig. 1. In this case, the dent in the event horizon is mirrored

by a corresponding dent in the image, see also [74].

In contrast, for a spherically symmetric horizon, any sec-

tion of the near-horizon geometry contains the same infor-

mation on a constant horizon radius. Therefore changes in
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Fig. 3 Detailed intensity images of the prograde side of spinning black

holes (a = 0.9 m) in the (x, y) image plane, normalized to the bright-

est image point (of all four images in each row), cf. color legend

in Fig. 1. Columns from left to right correspond to mass functions

M = m (Kerr), Mnon-local(r) (cf. Eq. (5)), Malg(r, θ) (cf. Eq. (3)), and

Mexp(r, θ) (cf. Eq. (4)), respectively. Apart from the Kerr case, the

black-hole spacetimes are regular everywhere and, as in Fig. 2, ℓNP is

chosen close (i.e., with 4-digit precision) to the critical value ℓNP,crit for

which, in the respective spherically-symmetric case, the event horizon

disappears. The latter maximizes the potential new-physics effect in the

presence of an event horizon. The different rows depict different incli-

nations between the vector pointing from the black hole to the observer

and the black hole’s spin axis, i.e., θobs = π
2
, 8π

20
, 17π

180
from top to

bottom

θmin/max as a function of ψ do not lead to discontinuities

in the shadow boundary. This holds for singular Kerr black

holes and any non-local mass function that is associated with

a spherically symmetric event horizon.

Broken reflection symmetry from the locality principle From

the images in Fig. 3, we observe that the lack of reflec-

tion symmetry about the y = 0 axis generally characterizes

images which are not face on, i.e., for which θobs �= π/2.

For a Kerr black hole, the asymmetry decreases towards

and vanishes at the shadow boundary. The same observa-

tion holds for the non-local mass function, but not for a local

mass function. For Malg and Mexp, reflection symmetry of

the shadow boundary is broken. This is another consequence

of an event horizon that breaks spherical symmetry. In fact,

intuition based on geometric optics suggests that when view-

ing a non-spherically symmetric object, the resulting image

depends on whether the object is tilted towards or away from

the observer. Even if the object has a reflection symmetry

about its equatorial plane, images at nontrivial inclination

break this symmetry. This intuition describes the impact of

the inclination on the shape of the shadow boundary.

Again, as for the cusp-like features, the asymmetry follows

from the dent in the event horizon and hence our locality

assumption.

Outlook: universality classes of new-physics principles Our

results suggest that regular black holes could be character-

ized by a set of physical principles resulting in qualitatively

distinct image features, constituting universality classes for

black-hole shadows. A regularity principle results in a more

compact shadow, a shifted prograde shadow boundary, and
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relative stretching of image features. All representatives of

this principle that we have explored and others [18,34,78,81–

87] exhibit these characteristics. Moreover, the locality prin-

ciple could characterize a more constrained universality class

with added image features, namely cusps and broken reflec-

tion symmetry.

We tentatively conjecture that a distinction of mass func-

tions within a given universality class is rather difficult to

achieve given finite EHT resolution capabilities, see how-

ever [94,95]. However, a distinction between such univer-

sality classes might potentially be achievable in the case of

large ℓNP. This would constitute physical insight into prin-

ciples underlying a more fundamental theory of gravity than

GR.

These findings motivate a number of upgrades of our

study, most importantly a fully dynamical accretion disk with

more complete modelling of absorptivity and emissivity, as

in [96].
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