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Image Flow Segmentation and Estimation by 
Constraint Line Clustering 

BRIAN G. SCHUNCK, MEMBER, IEEE 

Abstract-Image flow is the velocity field in the image plane caused 

by the motion of the observer, objects in the scene, or apparent motion. 
The image flow velocity field is an important intrinsic image and many 

algorithms that use the image flow velocity field have already been de- 

scribed. The image flow velocity field can contain discontinuities due 
to object occlusion in the scene. An algorithm that can estimate the 

image flow velocity field when there are discontinuities due to occlusion 

is described. Experimental results on a demanding synthetic test case 

and a real image are presented. Some error analysis that explains the 

performance of the algorithm is provided. The velocity field estimate 

can be improved using surface reconstruction between velocity field 

boundaries. A new surface approximation algorithm that does not blur 
sharp boundaries is presented. 

Index Terms-Computer vision, image flow, motion estimation, mo- 

tion segmentation, optical flow, smoothing, surface approximation, 

surface interpolation, surface reconstruction 

I. INTRODUCTION 

T HIS paper describes a new algorithm called constraint 
line clustering for estimating the image flow velocity 

field. Particular emphasis is placed on motion estimation 
and segmentation in situations such as random dot pat- 
terns where motion is the only cue to segmentation. Ex- 
perimental results and error analysis are presented. A new 
smoothing algorithm for improving the velocity field es- 
timate is described. The smoothing algorithm constructs 
a smooth estimate of the velocity field by approximating 
a surface between step discontinuities. 

A. Image Flow 

Image flow is the velocity field in the image plane that 
arises due to the projection of moving patterns in the scene 
onto the image plane. The motion of patterns in the image 
plane may be due to the motion of the observer, the mo- 
tion of objects in the scene, or both. The motion may also 
be apparent motion where a change in the image between 
frames gives the illusion of motion. Image flow is a short- 
range visual process that is more local than matching 
methods which work with image features, but not as local 
as difference picture methods which work with pixel-sized 
regions [ 11. 
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Image flow is modeled by the image flow constraint 
equation, 

E,u + EYu + E, = 0, (1) 

which models the interaction between the velocity field 
(u, v) and the local changes in space and time of the im- 
age irradiance E(x, y, t). The image flow constraint equa- 
tion is discussed by Schunck [2], [ 11. 

B. Applications 

Potential applications for image flow include structure 
from motion, egomotion, object tracking, and image 
compression. Schunck [3] provides a summary of image 
flow applications. It is possible that the image flow ve- 
locity field cannot be estimated with sufficient accuracy 
for structure from motion or egomotion. Schunck [4] ar- 
gues that the image flow constraint equation (1) may not 
be the appropriate model for using motion to estimate 
scene structure and observer motion. Regardless of how 
these concerns are answered, the image flow velocity field 
can be used for segmentation since the velocity field is 
useful for qualitative purposes [5]. 

C. Scope of Presentation 

The work described in this paper is concerned with de- 
veloping an algorithm for estimating the image flow ve- 
locity field from image input. Since image flow is a short- 
range process, long-range motions that would require cor- 
respondence over large distances are not considered. It is 
assumed that image flow is an early vision process that 
precedes (or works in parallel with) feature extracting 
processes; hence, image flow algorithms based on feature 
matching are not considered. The work presented in this 
paper differs from prior work in the attention given to im- 
age flow estimation when there are motion boundaries. 
Particular emphasis is placed on the performance of the 
image flow estimation algorithm in cases where motion is 
the only cue for segmentation and the image sequence 
contains motion boundaries. An example of this situation 
is the test pattern used by Braddick [6], explained in Sec- 
tion II-E. 

D. Summary 

Section II summarizes prior work in image flow esti- 
mation. Section III discusses image flow models. The po- 
lar form of the image flow constraint equation [2], [l] is 

0162-8828/89/1000-1010$01.00 0 1989 IEEE 



SCHUNCK: IMAGE FLOW SEGMENTATION AND ESTIMATION 1011 

presented and sampling effects are discussed. Section IV 
describes the constraint line clustering algorithm for es- 
timating the image flow velocity field and presents exper- 
imental results. Section V provides some error analysis 
for constraint line clustering. Section VI presents a new 
smoothing algorithm, called surface-based smoothing, for 
intrinsic images with discontinuities. Surface-based 
smoothing must be used to improve the velocity field es- 
timate produced by constraint line clustering. Experimen- 
tal results with surface-based smoothing applied to the re- 
sults of constraint line clustering from Section IV are 
presented. The paper finishes with a discussion of conclu- 
sions in Section VII. 

II. BACKGROUND 

This section reviews prior work in developing algo- 
rithms for estimating the image flow velocity field. Work 
in image flow estimation by regularization and correla- 
tion, image flow estimation for image compression, and 
image flow estimation along contours will be reviewed. 
Related work in psychology that suggests a performance 
goal for image flow estimation algorithms will be dis- 
cussed. Image flow research related to motion boundaries 
is summarized. A good overview of early work in image 
flow is provided by Nagel [7]. 

A. Image Flow Estimation by Regularization 

Regularization has been used to develop many vision 
algorithms for early vision processing [8]. Horn and 
Schunck [9] formulated an optimization problem for es- 
timating image flow. The optimization measure consisted 
of two terms: a penalty on the deviation of the estimated 
velocity field from the image flow constraint equation and 
a penalty on the deviation of the velocity field components 
from smooth surfaces. The smoothness penalty was the 
sum of the squares of the magnitude of the gradient of 
image flow velocity. Horn and Schunck [9] implemented 
iterative equations for solving these equations and pre- 
sented examples of the application of the iterative equa- 
tions to several synthetic images. Unfortunately, the al- 
gorithm cannot work in cases where there are motion 
boundaries in the velocity field since the smoothness con- 
straint leads to iterative equations that blur abrupt changes 
in the velocity field. 

A test case that demonstrates some of the problems with 
image flow estimation algorithms based on regularization 
is a textured box translating across a uniform background. 
The textured box is any rectangular region with a random 
pattern of image u-radiance and the uniform background 
has constant image n-radiance. Suppose that an image flow 
estimation algorithm based on regularization, such as one 
developed by Horn and Schunck [9], is applied to this test 
case for many frames until the object is beyond the field 
of view. Let a small number (possibly as few as one) it- 
erations of the algorithm be performed per frame of the 
test sequence. This provides the best results in most cases 
since new motion constraint information is injected into 
the algorithm [9, Sect. 171. In the first few frames of the 

sequence, an image flow velocity field will be estimated 
within the boundaries of the box. The velocity field out- 
side of the box will be zero. As the box moves, the region 
of nonzero velocity field does not move along with the 
box since there is nothing in the algorithm that forces the 
velocity field to be extrapolated in the direction of mo- 
tion. In fact, this would be the wrong thing to do in many 
cases such as rotation or dilation without translation. Since 
the location of the region of nonzero velocity field is not 
forced to move along with the box, the translating box 
moves out from under the region of nonzero velocity vec- 
tors. New nonzero velocity vectors are formed on the sur- 
face of the box as it moves into positions. The algorithm 
does not eliminate the old region of velocity that trails 
behind the box since the uniform background provides no 
constraint on the possible velocities. This creates a 
“comet tail” of velocity behind the box. In regions of the 
image where the gradient is zero, the Horn and Schunck 
algorithm degenerates into the Laplace equation which 
smooths the velocity field. The region of nonzero velocity 
vectors that trails behind the box is smoothed into a con- 
sistent (though obviously wrong) velocity field which per- 
sists long after the translating box moves beyond the 
boundaries of the image. The erroneous velocity field will 
never be eliminated; it is just gradually smoothed out into 
the uniform background. 

B. Motion Estimation by Correlation 

Poggio and Reichardt [lo], Reichardt and Poggio [ 111, 
and Buckner [12], have studied the visual system of the 
fly and concluded that the behavior of the motion detec- 
tion system can be described as a correlation. Any cor- 
relation scheme for motion estimation, whether imple- 
mented in a biological organism or in a machine vision 
system, cannot produce a velocity field estimate with 
sharp boundaries. Correlation cannot achieve the type of 
result desired in this work. 

The work of Poggio and Reichardt [lo], [ 1 l] was based 
on the Volterra series for modeling systems with multiple 
inputs [13]. The Volterra series multiplies inputs but pro- 
vides no special facilities for representing discontinuities. 

C. Motion Estimation for Image Compression 

Haskell [14], Limb and Murphy [15], [16], Cafforio 
and Rocca [ 171, Netravali and Robbins [ 181, Stuller and 
Netravali [19], Stuller, Netravali, and Robbins [20], and 
Jones and Rashid [21] have studied motion estimation for 
image compression. Additional work was reported by 
Paquin and Dubois [22]. Image compression has not 
forced the development of image flow estimation algo- 
rithms that handle discontinuities because image 
compression does not require perfect estimation of the 
motion and does not require the detection of motion 
boundaries. Any discrepancy between frames caused by 
inaccurate estimation of the motion is transmitted as a 
correction. It may be true that a better motion estimation 
algorithm could reduce the image bandwidth further, but 
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any improvement must be balanced against the added cost 
of the image compression implementation [3]. 

D. Image Flow Estimation Along Contours 

Recent work used edge information in the flow com- 
putation by combining motion information along edge 
contours [23]-[26]. There are problems with this ap- 
proach: 1) the velocity vector of an edge is a very pow- 
erful clue for grouping edges into contours, but this ad- 
vantage is dismissed when motion estimation proceeds 
contour grouping, 2) edge fragments can be combined into 
contours that cross motion boundaries and this will lead 
to an incorrect motion estimate, and 3) it is not necessary 
to restrict motion information to edges since it is possible 
to develop one algorithm that simultaneously estimates the 
motion at edges and interpolates between edges. The mo- 
tion estimation algorithm developed by Horn and Schunck 
[9] uses a single set of iterative equations that, in effect, 
automatically balance the computations performed in re- 
gions of high and low gradient. When the gradient is large, 
the information provided by the image flow constraint 
equation dominates the smoothing process; when the gra- 
dient is small, less weight is given to the motion con- 
straint and the iterative equations reduce to the computa- 
tion of a surface approximation determined by the form 
of the smoothness constraint. The surface approximation 
computation iteratively fills in the velocity field using the 
estimates derived from areas where the gradient is large. 
Another problem with image flow estimation algorithms 
that follow edge contours is that they do no better in sit- 
uations where there are velocity field discontinuities than 
any of the other algorithms summarized in this section. 

E. Results from Psychology 

Although it was not the intent of this work to develop 
a model for human motion perception, some results from 
psychology focused this project on solving a demanding 
problem in motion segmentation with translating objects 
[6], [27]-[29]. The work of Braddick [6] provided the key 
test case and standard of performance for this research. 
Braddick [6] performed apparent motion experiments with 
pairs of random-dot images. Pixels were randomly chosen 
to be black or white. A central rectangle within one image 
was displaced to form the second image. No texture of 
image intensity boundaries were present in the test im- 
ages. The image pairs used by Braddick differed in pixel 
size and displacement distance. Subjects were required to 
decide whether the rectangle was horizontal or vertical 
and rate the clarity of the motion percept. Performance 
and clarity decreased with the size of displacement, irre- 
gardless of the pixel size. For small displacements of 
around 5’ of arc, subjects reported that the motion was 
coherent and the boundaries of the rectangle could be 
clearly seen. The range over which the clarity of the mo- 
tion perception deteriorates corresponds closely with the 
increasing sizes of the channels in the edge detection the- 
ory of Marr and Hildredth [30]. As the displacement in- 
creases, it is within the support of fewer channels and the 

ability to perceive coherent motion decreases. Beyond 20’ 
of arc, coherent motion was not perceived and the bound- 
ing contour of the rectangle was not clearly seen. Brad- 
dick argued that if human vision used an algorithm that 
matched pixels of one type (white or black) to nearby pix- 
els of the same type, then when the size of the displace- 
ment was more than one pixel subjects would not see co- 
herent motion. Since this did not occur, Braddick argued 
that human vision must incorporate a more sophisticated 
algorithm than matching nearby pixels to perceive coher- 
ent motion. Subsequent analysis [29, p. 181 argues for a 
short-range process based on changes in image intensity 
in addition to a long-range process based on feature cor- 
respondence. 

This research is not concerned with discovering the 
mechanisms of biological vision systems, but the results 
from psychology on the short-range motion process were 
essential in focusing this project. Since the short-range 
motion process in human subjects can detect motion 
boundaries in scenes where other cues are not present, it 
must be possible to develop an algorithm for estimating 
the image flow velocity field while retaining the sharp 
changes in velocity values that may occur across a motion 
boundary that corresponds to occlusion of scene surfaces. 
The range of displacement over which coherent motion is 
perceived in the short-range motion process is limited by 
the size of the largest channel. In machine vision, the 
maximum displacement for which an image flow estima- 
tion algorithm can be applied is limited by the size of the 
smoothing filter applied to the image or the size of the 
aperture function if no smoothing is performed. The ap- 
erture function is usually approximately equal to the pixel 
spacing. If no smoothing filter is applied to the image, 
then the displacement between frames must be no greater 
than the pixel spacing. 

In summary, the illusion of Braddick [6] is a key test 
case for image flow estimation because it requires esti- 
mation and segmentation based on short-range motion 
without other visual cues. Since the subjects in the exper- 
iments conducted by Braddick were able to clearly per- 
ceive the outline of the moving rectangle, an image flow 
estimation algorithm should be able to retain sharp step 
changes in the velocity field when given a random dot 
image pair as input. 

F. Image Flow Estimation and Motion Boundaries 

Nakayama and Loomis [31] proposed a function called 
the convexity function for detecting motion boundaries in 
the image flow field, but did not explain how the velocity 
field could be estimated in the vicinity of the motion 
boundary. Batali and Ullman [32] tried a local consis- 
tency check on the motion information provided by direc- 
tional selectivity to segment random binary images, but 
the algorithm did not estimate the velocity field. Mutch 
and Thompson [33] presented a correspondence algorithm 
for motion analysis that detected occlusion by looking for 
significant regions where matches could not be found. 
Thompson, Mutch, and Berzins [34] developed a motion 
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detection operator based on the zero-crossing detector of 
Marr and Hildreth [30] and developed an analysis of mo- 
tion boundaries that allowed the occluding surface to be 
differentiated from the occluded surface. 

Fennema and Thompson [35] developed an algorithm 
for estimating the velocity vector of the most prominent 
object in the scene by using histogram analysis to com- 
bine image flow constraints. The algorithm could only de- 
termine the motion of the single most prominent object, 
could not handle rotation or translation in depth, and as- 
sumed that the background was stationary. Since the local 
structure was lost, the algorithm could not compute an 
image flow velocity field and this meant that the algorithm 
was not useful for scenes containing multiple objects. For 
example, it is not possible to differentiate between 1) the 
situation where one large object is translating and 2) the 
situation where two objects, each half the size of the ob- 
ject in situation (1)) but separated by some significant dis- 
tance, are translating. Nevertheless, the algorithm was 
significant because the histogram technique was immune 
to the incorrect motion constraints generated along mo- 
tion boundaries [l] and was not confused by multiple 
moving objects in the scene as long as one moving object 
was significantly larger than the others. The Fennema and 
Thompson algorithm inspired the cluster analysis ap- 

proach presented in this paper. 

the image it-radiance in space and time. The polar form of 
the equation is the basis for the algorithm development in 
this paper. As stated by Schunck [ 11, [4], two conditions 
are required to ensure the validity of the image flow con- 
straint equation: 1) the perceived change in image irra- 
diance at each point in the image plane must be entirely 
due to motion of the image pattern, as opposed to changes 
in the pattern due to reflectance effects, and 2) the image 
must be smooth except at a finite number of discontinui- 
ties. The first condition is satisfied by the image of a 
translating, diffuse object with distant light sources; the 
second condition is a technical point. In other words, the 
perceived change in image irradiance at each point in the 
image plane must be entirely due to shifts of the image 
pattern, as opposed to changes in the pattern. These con- 
ditions are probably too restrictive to allow image flow to 
be useful for structure from motion, but the image flow 
equation is obeyed in practice with sufficient accuracy for 
tasks such as segmentation. 

A. Polar Form of the Constraint Equation 

The image flow constraint equation defines a line in ve- 
locity space as shown in Fig. 1. The line in velocity space 

G. Summary of Prior Work 

Image flow algorithms have been developed with reg- 
ularization, but the algorithms are not suitable for real- 
world scenes because the algorithms cannot handle veloc- 
ity field discontinuities. Correlation and image flow esti- 
mation along contours have the same problem. Much work 
on image flow estimation has been done for image 
compression, but the problem of estimating the image flow 
velocity field with discontinuities has not been addressed. 
Results from psychology strongly suggest that the human 
vision system can estimate the image flow velocity field 
without blurring motion boundaries. This implies that a 
machine vision system should be capable of estimating 
the image flow velocity field with little distortion in the 
velocity field discontinuities. The intent of this work is to 
develop an image flow velocity field estimation algorithm 
with performance comparable to that of the human vision 
system; the algorithm should be able to estimate the ve- 
locity field in images that contain motion boundaries 
without blurring the boundaries or allowing the presence 
of the boundaries to distort the velocity field estimate. It 
is not the intent of this work to propose the image flow 
estimation algorithm presented in this paper as a model 
for the human vision system, since it would require more 
experimentation and comparison with psychophysical re- 
sults; but the algorithm presented in this paper may sug- 
gest a model for image flow estimation in the human vi- 
sion system that could be subjected to the required tests. 

that is the locus of possible velocities specified by the im- 
age flow constraint equation is called the constraint line. 
The constraint line is uniquely defined by d, the distance 
of the line from the origin along the perpendicular bisec- 
tor and the angle cr with respect to the u axis. The dis- 
placement and angle of the constraint line are given by 

(2) 
PI FI 

d= qq=IVEI; 
arctan (E,, Ey) if E, 1 0; 

CY= 
arctan ( -E,, -Ey) otherwise. 

(3) 

To derive the constraint equation in polar coordinates, 
note that the image flow equation contains the dot product 
of the image irradiance gradient with the velocity vector 

E,u + E,v + E, = VE * (u, v) + E,. (4) 

If p is the speed of motion, CY is the angle of the constraint 
line, and fi is the direction of motion, then the dot product 
in (4) is 

plVE( cos (a - 6). (5) 

Dividing through by the magnitude of the image gradient 
yields the polar form of the image flow constraint equa- 
tion 

d=pcos(cr-0). (6) 

Note that fi is constrained to be between (Y - a/2 and CY 
+ 7r/2. Since the displacement d of the constraint line 
from the origin must always be nonnegative, the orienta- 
tion Q is reflected when E, > 0. The displacement d is 
the projection of the motion vector onto the line of the 
gradient of image ii-radiance and is independent of the 
magnitude or polarity of the gradient. 

The polar form of the image flow constraint equation 

III. IMAGE FLOW MODELS 

The image flow constraint equation (1) models the re- 
lationship between the velocity field and the changes in 
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Fig. 1. The locus of points satisfied by the image flow constraint equation 
is shown. The equation defines a line of points in velocity space with 
velocities that satisfy the constraint. The distance d from the origin to 
the constraint line L is called the displacement of the constraint line: the 
angle (Y is called the orientation of the constraint line. 

should be used in the analysis of algorithms for image 
flow estimation with motion boundaries since the polar 
form will not contain &functions at step discontinuities. 
In other words, if an example contains an ideal step dis- 
continuity in image irradiance, then the coefficients in the 
conventional form of the image flow constraint equation 
(1) will be &functions. The polar form will not contain 
b-functions since the displacement d is the ratio of the 
magnitude of the change in time of the image irradiance 
to the magnitude of the gradient of the image irradiance 
and this ratio remains finite in the limit as the image ir- 
radiance becomes an ideal step discontinuity. 

B. Sampled Image Flow Models 

The time-varying image E(x, y, t) is sampled in space 
and time to produce an image sequence. The spatial sam- 
pling distance must be smaller than the scale of image 
texture. This concept is most easily explained by refering 
to Fig. 9. Note how the shift in the image irradiance func- 
tion is small relative to the wavelength of the image ir- 
radiance. The temporal sampling period must be much 
shorter than the scale of time over which the velocity field 
changes and sufficiently short, relative to the velocity, so 
that the local displacement is smaller than the local scale 
of the image texture. In other words, the image ii-radiance 
pattern in the image sequence must evidence a phase shift 
that is large enough to be measured accurately and small 
enough to avoid phase ambiguity. 

The constraints are suflicient to allow the sampled im- 
age sequence to accurately portray the local motion data 
between motion boundaries, but are not sufficient to cap- 
ture the motion information at motion boundaries. The 
motion constraints computed along motion boundaries are 
extremely sensitive to the effects of occlusion boundaries 
and are usually severely in error. No practical sampling 
period can provide useful motion information along a mo- 
tion boundary [2], [l]. An image flow estimation algo- 
rithm must be able to work in situations where there are 
motion boundaries in the image; consequently, the algo- 

rithm must be resistant to grossly incorrect measure- 
ments. The errors along motion boundaries are too severe 
to ignore. 

In this work, any motion constraint that deviates greatly 
from the true motion constraint is called a grossly incor- 
rect constraint. Experimental observations [2], [l] indi- 
cate that grossly incorrect constraints almost always occur 
along motion boundaries. Since motion estimation in the 
presence of motion boundaries is central to this work, 
grossly incorrect constraints must be handled. 

IV. CONSTRAINT LINE CLUSTERING 

An algorithm called constraint line clustering [36] that 
estimates the image flow field when the image irradiance 
pattern or the velocity field contains discontinuities will 
be presented. 

A. Problem Statement 

The constraint line clustering algorithm uses the polar 
form of the image flow constraint equation 

d=pcos(a!--P) (7) 

where p (x, y) and /3(x, y) are the speed and direction of 
motion, respectively. The velocity vector ( p, 0) for the 
motion at any point in the image must lie along the line 
in velocity space defined by the image flow constraint 
equation (7) shown in Fig. 1. The constraint line is 
uniquely defined by the displacement d of the constraint 
line from the origin and the orientation (Y of the constraint 
line. The constraint line displacement has the dimensions 
of speed; it is the minimum speed consistent with the mo- 
tion constraint. 

Assume that the image intensity E(x, y, t) already in- 
corporates any spatial or temporal filtering performed on 
the image. For example, the image could be smoothed 
with a Gaussian filter. The image is sampled in space and 
time to produce an image sequence E (xi, yj , tk). The d 
and a intrinsic image arrays d (Xi, yj ) and (Y (Xi, Yj ) are 
computed from the image sequence using the formulas in 
(3). The partial derivatives are computed by first differ- 
ences over a cube in space and time [9, sect. 71. The im- 
age flow estimation problem is to compute the intrinsic 
image arrays p (Xi, yj ) and /3 (xi, yj ) for the speed and 
direction of motion from the motion measurements in the 
d and a arrays. Prior knowledge of the image flow veloc- 
ity field is not available. By assumption, the image flow 
equation (7) describes the changes in the image sequence; 
hence, the restrictions discussed by Schunck [l] apply. 

B. Constraint Line Clustering 

The constraint line clustering algorithm uses a clever 
form of cluster analysis to extract the motion estimate 
from contradictory data. What could be a multidimen- 
sional cluster analysis problem is transformed into a triv- 
ial cluster analysis problem in one dimension. Suppose 
that for each d and cy measurement a set of measurements 
{ di, (Yi } is taken from some spatial neighborhood of the 
point that generated d and a. Compute the set of intersec- 
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tions of each of the neighboring measurements di and pi 
with the given d and CY measurement. All of these inter- 
sections lie along the line defined by d and cr. Any con- 
straint lines in { di, (yi } that are part of the same region 
of motion as d and CY will tend to intersect the line defined 
by d and cx in a tight cluster around the true velocity. Any 
constraint lines in { di, (Yi } that are from regions of dif- 
ferent motion will intersect the line defined by d and 01 
over a broad range of positions. The grossly incorrect 
constraint lines generated along a motion boundary will 
not intersect the line defined by d and (Y at a consistent 
point. The velocity estimate for the neighborhood of a 
given d and CY measurement can be computed by one-di- 
mensional cluster analysis of intersections along a con- 
straint line. 

1) Computing Constraint Line Intersections: The for- 
mula for the position of the intersection along a constraint 
line is easily derived by first rotating the coordinate sys- 
tem so that the constraint line defined by d and (Y is par- 
allel to the vertical axis in velocity space. Let the angle 
between the two constraint lines be denoted by 4 = (Y’ - 
CX, as shown in Fig. 2. The distance of the intersection 
along the constraint line defined by d and cx is given by 

b=C 
tan+’ 

03) 

The distance c is related to d, d’, and 4 by 

(d + c) cos 4 = d’, (9) 

so using (8) to eliminate c from (9) yields 

dcos+ + bsin4 = d’. (10) 

Solving for b and substituting the definition for 4 yields 

b=d’-dcos4 d’-dcos(a’-cr) 
= 

* sin 4 sin (CY’ - c~) (11) 

This formula provides the position along a constraint line 
defined by d and CY of the intersection of the constraint 
line with another constraint line defined by d’ and CX’. 

2) One-Dimensional Cluster Analysis: Given a set 
{ bi } of intersections of the constraint lines within a 
neighborhood with a given constraint line at the center of 
the neighborhood, the set of intersections must be ana- 
lyzed to determine the most consistent subset of intersec- 
tions that cluster about the likely velocity. The cluster 
analysis criterion is motivated and explained by the fol- 
lowing example. Imagine that a motion boundary passes 
almost vertically through a neighborhood just to the left 
of the center element. At any reasonable pixel resolution, 
the boundary will most likely pass smoothly through the 
neighborhood dividing the neighborhood almost in half. 
The region on the left corresponds to one surface in the 
scene and the region on the right including the center ele- 
ment corresponds to a different surface. In the extreme 
case where the boundary passes very close to the center 
of the neighborhood, almost half of the intersections of 
neighborhood constraint lines with the constraint line from 

V 

t 

d 
t I \ 

Fig. 2. The method for deriving the formula for the position of the inter- 
section of two constraint lines along one of the constraint lines is 
shown. 

the center of the neighborhood will be with constraints 
from the left surface or the motion boundary itself. These 
intersections will most likely not be close to the velocity 
of the right surface from which the center constraint line 
was obtained. Almost half of the intersections may be 
useless in the extreme case; but at least half of the inter- 
sections will correspond to the same region of motion. 
Since rejecting correct intersections is less harmful than 
accepting incorrect intersections, a conservative stand is 
taken: the algorithm looks for the tightest cluster that con- 
tains roughly half of the intersections. 

In one dimension, cluster analysis is easy since there is 
a total ordering of points along a line and cluster analysis 
reduces to interval analysis. The constraint line clustering 
algorithm sorts the set of n intersections { bi } and then 
looks for the tightest interval that contains half of the in- 
tersections by examining successive pairs of intersections 
that are Ln/2 1 intersections apart. The algorithm 
chooses the pair of intersections that are closest together 
as the estimate of the majority cluster of intersections. 
The test assumes that there is at most one motion bound- 
ary within the spatial neighborhood of the d and CY mea- 
surement and the motion detectors are sufficiently finely 
spaced that the motion boundary within the neighborhood 
does not pass erratically through the neighborhood. The 
assumption excludes cases where the center d and CY mea- 
surement in a neighborhood is from one side of a motion 
boundary while the majority of d and (Y measurements in 
the neighborhood are from the opposite side of the motion 
boundary. In practice, the constraint line clustering al- 
gorithm continues to work when the assumption is vio- 
lated for reasons explained in Section IV-C 1). 

A formula for the exact fraction of constraint lines that 
should be in the majority when the motion boundary 
passes cleanly through the neighborhood is easily de- 
rived. Suppose that a straight, vertical motion boundary 
passes through a neighborhood to one side of the center 
element. Let the neighborhood size be n by n where n = 
2k + 1 for some positive integer k. The number of con- 
straint lines in the compatible majority is (2k + l)( k + 
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1)) the number of incompatible minority constraint lines 
is (2 k + 1) (k - 1)) and the number of erroneous con- 
straint lines is 2k + 1. The number of compatible con- 
straint line intersections forming a relatively tight cluster 
will be 

(2k + l)(k + 1) - 1 = 2k2 + 3k = k(2k + 3), 

(12) 

and the fraction of constraint line intersections that should 
form a tight cluster is 

k(2k + 3) = kP + 3) 2k + 3 

(2k+ I)*- 1 4k2+4k =4k’ 
03) 

The constraint line clustering algorithm determines the 
tightest cluster of constraint line intersections that con- 
tains this fraction of the total number of constraint line 
intersections. There may be fewer than 4k (k + 1) inter- 
sections, since some of the constraint lines may be par- 
allel to the constraint line at the center of the neighbor- 
hood. The location of the center of the shortest interval 
that contains the fraction of intersections given by the for- 
mula above is used as an estimate for the most consistent 
velocity within the neighborhood. Note that the formula 
for the fraction of the constraint lines on the majority side 
of the boundary asymptotically goes to l/2 as k + 00. 

3) Estimating the Velocity Vector: The center position 
6 of the tightest cluster along the constraint line is the 
midpoint of the smallest interval that contains roughly half 
of the intersections. The estimated speed of motion is 
given by 

h=XLFX (14) 

and the estimated direction of motion is given by 

6 = (Y + tan(i/d). (15) 

The estimated speed and direction of motion ( B, ,8 ) com- 
puted with constraint line clustering from the motion pa- 
rameters { di } and { ai } satisfy the problem statement in 
Section IV-A. 

C. Potential Problems with Constraint Line Clustering 

Some concerns that may be raised about the perfor- 
mance of constraint line clustering will be addressed in 
this section. Implementation details of.he constraint line 
clustering algorithm will also be explained. 

1) Motion Boundary Corners: The constraint line 
clustering algorithm is very robust and works even if the 
basic assumption that at least half of the intersections must 
be from the same region of motion is violated. For ex- 
ample, if the center constraint is from just inside a right 
angle comer so that only about l/4 of the intersections 
are from the same region of motion, the algorithm still 
works because the intersections from constraints outside 
the comer are almost uniformly distributed along the con- 
straint line and do not bias the estimate of the tightest 
cluster [3]. The error analysis in Section V attempts to 
explain this in detail. 

2) The Aperture Problem: Marr and Ullman [37] dis- 
cuss the aperture problem for image flow estimation. The 
problem occurs in any situation where an estimate must 
be obtained from data in a local neighborhood in an image 
that may contain a boundary. If an algorithm contains an 
assumption that the data are consistent over the neighbor- 
hood and the assumption is violated, then the image flow 
estimate will be incorrect. On the other hand, it is nec- 
essary to use measurements in a neighborhood large 
enough to provide sufficient variation in gradient orien- 
tation. The constraint line clustering algorithm does not 
suffer from an aperture problem, because the one-dimen- 
sional cluster analysis computation provides a statistical 
check that prevents the aperture problem from occurring 
within a neighborhood of any size. This means that the 
size of the neighborhood can be increased to include more 
good constraint lines and improve the local estimate of 
the velocity field. This property is particularly useful 
given the problem that erroneous constraint lines will oc- 
cur along a motion boundary. Since the aperture problem 
is not a concern, the relative number of erroneous con- 
straint lines in a neighborhood can always be controlled 
by varying the size of the neighborhood. Constraint lines 
that occur along the curve of a motion boundary are 
grossly incorrect due to sampling effects [2], [l]. If the 
neighborhood size w is defined to be the width of a neigh- 
borhood, then the number of grossly incorrect constraint 
lines generated along a motion boundary within a neigh- 
borhood increases at most linearly with neighborhood 
size. The number of constraint lines that are not grossly 
incorrect always increases as the square of neighborhood 
size. The ratio of grossly incorrect to reasonably accurate 
constraint lines will always decrease at least as fast as 
l/w where w is the neighborhood width. Within the 
neighborhood of any good constraint line, there will al- 
ways be enough reasonably accurate constraint lines to 
form a tight cluster. 

3) Numerical Condition: Constraint line intersections 
are not always numerically well conditioned. When two 
constraint lines are close in orientation there can be a large 
error in the intersection position. When the constraint lines 
have the same orientation and different displacements, the 
lines will not intersect. In spite of these objections, the 
constraint line clustering algorithm is robust by virtue of 
the fact that only the tightest group of points are retained 
to compute the motion estimate. When an intersection po- 
sition is computed for two constraint lines that are close 
in orientation and displacement, then the position of the 
intersection may be distant from the true position. Nearly 
half of the interaction positions will be discarded. Any 
grossly incorrect intersections will most probably be dis- 
carded since they lie outside the tightest cluster. 

4) Selecting the Neighborhood Size: The algorithm is 
relatively insensitive to the choice of neighborhood size. 
Good results have been obtained even for the minimum 
neighborhood size of 3 by 3. Larger neighborhood sizes 
produce only slightly better motion estimates. There are 
two reasons for this. The first reason is that the accuracy 
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of the motion estimate is limited by the accuracy of the 
constraint line along which the motion estimate is ob- 
tained. The second reason is that the number of points in 
the neighborhood may have little impact on the quality of 
the motion estimate; it is the spatial extent of the neigh- 
borhood relative to the gradient variation that determines 
the quality of the motion estimate. 

Increasing the spatial extent of the neighborhood, with- 
out necessarily increasing the number of points in the 
neighborhood, may bring new information (new con- 
straints) into the calculation of the velocity estimate if the 
larger neighborhood provides more gradient variation. 
Consider a region in the image where the gradient is nearly 
constant. The motion constraints derived in this region 
will be similar and will not yield good intersection mea- 
surements because the intersection computations are ill- 
conditioned. In order to get good intersection measure- 
ments, motion constraints must be used from beyond the 
region of similar gradient. The motion estimate can be 
greatly improved by increasing the spatial coverage of the 
neighborhood. It is not necessary to increase the number 
of motion constraints in the neighborhood since the mo- 
tion constraints close to the center of the neighborhood 
are redundant. The amount of spatial variation in the mo- 
tion constraint measurements determines the minimum 
spatial extent of the neighborhood. 

The constraint line clustering algorithm has a wide tol- 
erance to the neighborhood size: the neighborhood must 
be large enough to provide sufficient variation in image 
gradient direction as explained in Section IV-C6), but 
small enough so that constraint line clustering does not 
average away variations in the velocity field as explained 
in Section IV-(X). The wide tolerance in the neighbor- 
hood size made it easy to select the neighborhood size for 
all of the experiments in this work: a neighborhood size 
of 5 by 5 possibly with some downsampling as explained 
in Sections IV-C7) and IV-D) was sufficient. 

5) variation in the Velocity Field: The amount of slow 
spatial variation in the velocity field may limit the maxi- 
mum neighborhood size due to an averaging effect. Sup- 
pose that a neighborhood does not contain a motion 
boundary. The intersection measurements will be closely 
grouped together, relative to the situation where the 
neighborhood extends across a motion boundary. If there 
is some variation in the velocity field within the neigh- 
borhood, then the spread of the intersection positions will 
be greater than if there were no variation. There is ac- 
tually no point where constraint line clustering will fail to 
yield a reasonable estimate of the center position of the 
group of intersections along the constraint line from the 
center of the neighborhood. Using the center position of 
the intersections as the velocity estimate is like averaging 
or low-pass filtering the velocities in the neighborhood. 
The averaging will reduce the spatial resolution of the ve- 
locity field estimate. The neighborhood size should be 
chosen so that the spatial extent of the neighborhood is at 
least as large as the scale of the variation in the image 
gradient, but not so large that the resolution in the veloc- 

ity field estimate would be excessively reduced due to av- 
eraging . 

6) ZnsuJicient Variation in Image Gradient: Any al- 
gorithm for estimating the image flow velocity field de- 
pends on the assumption that there will be sufficient con- 
straints on the motion. If there are insufficient constraints, 
then the algorithm cannot solve the problem; and if the 
constraints conspire to yield an incorrect solution, then 
the algorithm will not compute the correct solution. For 
example, if all of the constraint lines in the neighborhood 
of a given constraint line are nearly parallel except for the 
constraint line at the center of the neighborhood, then the 
bundle of constraint lines may not intersect the center 
constraint line near the correct velocity. The point is that 
any algorithm including regularization over regions [9] or 
regularization along contours [24], [25] will have trouble 
in cases where there is insufficient or misleading motion 
constraints because fundamentally any algorithm will have 
trouble if the data is ill-conditioned. In other words, any 
algorithm including constraint line clustering must have 
sufficient variety of information. Since constraint line ori- 
entation is gradient direction or its opposite, there must 
be sufficient variety of gradient directions in the neigh- 
borhood . 

In practical examples, there were spurious problems in 
stationary areas of the test images. Some points in the 
velocity estimate that should have had velocities near zero 
had large velocities. The constraint line clustering algo- 
rithm was not at fault. The constraint line displacements 
at the points corresponding to these erroneous velocity es- 
timates were large when they should have been very small. 
Closer inspection revealed that the magnitude of the im- 
age gradient was very small at the points where the large 
d values occurred. The errors in the constraint line dis- 
placements were caused by numerical ill-conditioning. 
The constraint line displacement is computed by 

(E,I 

d = (VE( (16) 

and the calculation is most sensitive when 1 VE ) is small. 
To eliminate this problem, the constraint line displace- 
ment is forced to zero whenever the magnitude of the im- 
age gradient is small. A small gradient indicates locally 
uniform image irradiance and the velocity estimate in a 
region of uniform irradiance should be zero. Changing the 
constraint line displacement from an erroneously large 
value to zero allows constraint line clustering to produce 
a small velocity if the majority of the constraint lines in 
the neighborhood also have small displacements. 

7) Downsampling: If the width of the neighborhood 
over which the constraint line clustering is performed is 
not large enough to provide a set of constraint lines of 
sufficient variety to allow the constraint line clustering al- 
gorithm to form a well-conditioned set of intersections, 
then the size of the neighborhood over which constraint 
line clustering is performed can be increased. Because of 
the statistical nature of constraint line clustering, there will 
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be no problem if the larger neighborhood extends across 
a motion boundary. In practice, a large neighborhood may 
not be desirable since the amount of computation that must 
be performed is proportional to the area of the neighbor- 
hood. Excessive computation may be avoided by down- 

sampling the arrays of d and CY values prior to applying 
the constraint line clustering algorithm. Downsampling by 
a factor of k increases the effective area of the constraint 
line clustering neighborhood by a factor of k2 without in- 
creasing the amount of computation that must be per- 
formed for each neighborhood. The total amount of com- 
putation decreases by a factor of k2 since the constraint 
line clustering is performed over fewer neighborhoods in 
the d and a! arrays. 

An alternative to downsampling the d and Q! arrays is 
to use overlapping sparse neighborhoods. The constraint 
line clustering neighborhoods could be extended to cover 
the same pattern of points as in downsampling, but neigh- 
borhoods would be overlapped into the points that were 
left unused in pure downsampling. The amount of com- 
putation performed per neighborhood would be the same 
and the effective area of the neighborhood would increase 
in the same manner as for downsampling. But the neigh- 
borhoods would be overlapped and the number and den- 
sity of velocity measurements obtained would be about 
the same as the size and density of the original d and (Y 
arrays. 

8) Incorrect Center Constraint Line: One apparent 
weakness with constraint line clustering is that it depends 
on the accuracy of the constraint line at the center of the 
neighborhood. In fact, this is not a problem with the con- 
straint line clustering algorithm itself, but is an instance 
of a more fundamental problem with assigning a motion 
estimate to a point in an image. If the motion constraint 
information is grossly incorrect, then there is a funda- 
mental ambiguity in assigning a motion estimate to 
the corresponding image location. For example, if the 
grossly incorrect motion constraint is caused by a motion 
boundary (which is likely [2], [l]), then it is unclear which 
motion present in the neighborhood should be assigned to 
that location. If the grossly incorrect motion constraint is 
not caused by a motion boundary, then it is still caused 
by some effect in the image and the ambiguity is funda- 
mental and legitimate. Stated briefly, if the motion con- 
straint is grossly incorrect, a correct motion estimate can- 
not be assigned to the location. Another way of saying 
this is that d and CY can be computed accurately when the 
gradient is large and there is no motion boundary; other- 
wise, no motion estimate is reasonable. 

9) Relationship to Other Methods: The information in 
the image flow constraints could be combined by least 
squared methods [38]-[41], if it were not for the focus of 
this research on segmentation in situations where there are 
several motion boundaries. The image flow constraint 
equation is only one constraint with two unknowns and 
the problems in combining image flow constraints near 
motion boundaries are so severe that least-squares algo- 
rithms cannot be used without modifications to select a 

consistent set of motion constraints [2], [ 11. Fischler and 
Bolles [42] present an example where the least-squares fit 
of a model to inconsistent data leads to a wrong estimate 
that cannot be fixed by eliminating the outlier. In this 
problem, the constraints that are far from the true velocity 
are the outliers. Robust statistics provides some methods 
for fitting models to inconsistent data [43], [44]. These 
methods were not used in this work because the special 
structure of the problem leads to a more efficient solution. 
Given the assumption on motion boundaries used in con- 
straint line clustering, the test for outliers is simple. Fur- 
ther experiments should be conducted to compare robust 
estimates with constraint line clustering. 

There are several kinds of robust statistical measures. 
In typical robust statistical procedures, data points are 
sorted into ascending order and statistical measures are 
derived from the ordering of the data points. Two mea- 
sures that may be related to this work are M-statistics and 
L-statistics. An M-statistic is a maximum likelihood esti- 
mate derived from the order of a set of measurements [44, 
pp. 43-551. An L-statistic is a linear combination of the 
ordered data points [44, pp. 55-611. An example of an L- 
statistic is the range of a set of data points [43, p. 331. 
Constraint line clustering informally combines several 
ideas from robust statistics. The selection of the tightest 
interval that contains half of the data points resembles an 
M-statistic; but there is no formal proof that the tightest 
interval containing half the data points is the most likely 
choice. Once the tightest interval has been determined, 
the location of the velocity estimate is computed with an 
L-statistic. Constraint line clustering also resembles the 
trimmed mean for computing the mean while eliminating 
the influence of outliers [45, p. 2471. Order statistics [43] 
presumes that the data points can be ranked into ascending 
order. In constraint line clustering, the data points that are 
ranked are the locations along the center constraint line of 
the intersections with neighboring constraint lines. Al- 
though constraint line clustering achieves good results, 
the intersections may not be the best choice as a starting 
point for the application of formal statistical methods. 
Further work should be done with robust regression for 
determining the velocity field estimates directly from the 
constraint line coefficients. 

The random sample consensus (RANSAC) algorithm 
[42] developed by Fischler and Bolles handles outliers by 
computing an estimate from a consistent subset of incon- 
sistent data points. The algorithm randomly selects a set 
S of the minimum number of points required to fit a model 
from the set of data points P. The set S is used to compute 
a model estimate. The consensus set S* of points in P that 
are within an error tolerance r of the model is determined. 
If the number of points in S* is greater than some thresh- 
old, then the model is recomputed using the data points 
in S*; otherwise, a new set S is randomly selected from 
the data points P and the consensus procedure is repeated. 
After a predetermined number of iterations, the algorithm 
either fails or settles for the model obtained from the larg- 
est consensus set. The RANSAC algorithm has three pa- 
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rameters that must be chosen by the user: the error toler- 
ance, the minimum acceptable size of the consensus set, 
and the number of trials. In constraint line clustering, the 
consensus set is the set of intersections in the tightest in- 
terval. There is no error tolerance that must be chosen by 
the user and the size of the consensus set is fixed at half 
of the intersections. The fixed limit on the size of the con- 
sensus set is justified by the worst case geometry of a mo- 
tion boundary in a neighborhood which in turn is justified 
by reasonable assumptions on pixel spacing as described 
in Section IV-B2). The user does not have to choose the 
limit on the number of trials in constraint line clustering 
because the algorithm is not iterative. Although constraint 
line clustering shares many important similarities with 
random sample consensus, constraint line clustering 
avoids the choice of parameters and is faster since it it not 
iterative. Constraint line clustering is like a one step 
RANSAC algorithm that eliminates parameter choices be- 
cause it is tailored to the specific problem of estimating 
the image flow velocity field in situations that satisfy the 
restrictions of the short-range motion process. 

In principle, a random sample consensus algorithm 
could be developed for this problem by randomly choos- 
ing pairs of constraint lines until an intersection is found 
that is consistent with at least half of the constraint lines; 
but an iterative algorithm would be more computationally 
demanding than constraint line clustering and it would be 
very hard to choose the error tolerance for the consensus 
set. Experimental observations made during this work in- 
dicate that the width of the tightest interval in constraint 
line clustering can vary greatly. In the early stages of test- 
ing the constraint line clustering algorithm, it was thought 
that the width of the tightest interval could be used as a 
measure to detect motion boundaries; but it was found 
that correct velocity field estimates could have intervals 
that were very wide and it was not possible to choose a 
threshold on interval width that would identify boundary 
points. 

D. Experimental Results 

A version of the test stimulus used by Braddick [6] was 
the key test case for developing the constraint line clus- 
tering algorithm for image flow estimation. A synthetic 
image was generated with a textured square on a textured 
background. The texture of the foreground square and the 
background were produced by independent sampling from 
a uniform random number generator in the range [0, 256). 
The foreground image was overlayed on the background 
image at a position roughly in the center of the back- 
ground for the first frame of the test case and at the po- 
sition one pixel to the right for the second frame of the 
test case. Uniform noise at various amplitudes was added 
to these test frames to simulate realistic and greater than 
realistic noise levels. The additive noise was obtained by 
independent sampling from a uniform random number 
generator in the range [ - ‘X, % 1, where the noise ampli- 
tude 32 was some specified percentage of the maximum 
pixel amplitude which was 255. After adding a noise sam- 

ple to a pixel, the pixel was compared to the original pixel 
range of [0, 256). If the pixel was negative, then it was 
changed to zero; otherwise if the pixel was greater than 
255, then it was reduced to 255. This procedure models 
saturation in black and white. Subsequent work with im- 
ages obtained from an RCA vidicon camera indicated that 
a noise level at 5 percent of the maximum pixel amplitude 
simulated typical error magnitudes. Since the foreground 
and background textures had identical statistics, the square 
could not be seen in either frame alone. Only motion be- 
tween frames allowed the square to be differentiated from 
the background. The two frames of this test case are dis- 
played in Fig. 3. 

The results of applying constraint line clustering with 
5 by 5, 9 by 9, and 13 by 13 neighborhoods to the dis- 
placed square test case with 5 percent uniform noise is 
displayed in Figs. 4, 5, and 6, respectively. The impor- 
tant point to note is that the estimated velocity field is not 
improved by increasing the size of the neighborhood in 
this test case. This means that the quality of the motion 
estimate is limited by the quality of the d and CY measure- 
ments, not by the performance of the constraint line clus- 
tering algorithm. This is an attractive characteristic from 
the stand point of this research since it indicates that the 
algorithm will work well with a given accuracy for the d 
and LY measurements. Better algorithms for measuring the 
d and a data will lead to better estimates of the image 
flow velocity field, but constraint line clustering works 
very well with the primitive methods for computing d and 
CY used in this work. 

Constraint line clustering was run on a real image pair 
shown in Fig. 7. The scene was taken with a camera look- 
ing down on a laboratory table. A sheet of circuit board 
was lying on the table and a phonebook with an outdoor 
scene was placed on the circuit board. Scene illumination 
was provided by typical fluorescent room lighting. The 
camera was an inexpensive RCA Vidicon camera with au- 
tomatic gain control that precluded any adjustment of the 
lens aperture. The phonebook was displaced by hand 
slightly between frames. The displacement was smaller 
than the wavelength of the texture on the cover of the 
phonebook as shown by the slices through the original 
image pair in Fig. 8. The test images were very noisy as 
can be seen from the plots in Fig. 8. Each image was 
smoothed with a 16 by 16 point Gaussian filter. Three 
slices after smoothing are shown in Fig. 9. The displace- 
ment between the slices shows the degree of displacement 
appropriate to a motion estimation algorithm based on the 
image flow constraint equation. Even after Gaussian fil- 
tering, the quality of the motion constraint data was very 
poor as can be seen by looking at the scatter plot of con- 
straint line displacement versus angle in Fig. 10. Ideally, 
the data should form a cosine pulse where the speed of 
motion is the height of the pulse and the direction of mo- 
tion corresponds to the center of the pulse; but errors due 
to- noise and occlusion are very severe. To reduce com- 
putation and increase the spatial extent of the constraint 
line clustering neighborhood, the d and (II arrays were 
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Fig. 3. The two frames of a test case used frequently in this work are dis- 
played. The test frames contain a central square that is displaced one 
pixel to the right between FRAME-l and FRAME-2. This frame pair 
does not contain added noise. 

Fig. 4. The velocity field after applying constraint line clustering to the 
test case of the displaced square with 5 percent uniform noise added is 
displayed. The neighborhood size was 5 by 5. 
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Fig. 5. The velocity field after applying constraint line clustering to the 
test case of the displaced square with 5 percent uniform noise added is 
displayed. The neighborhood size was 9 by 9. Note that there is no sig- 
nificant improvement over the field displayed in Fig. 4. 
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Fig. 6. The velocity field after applying constraint line clustering to the 
test case of the displaced square with 5 percent uniform noise added is 
displayed. The neighborhood size was 13 by 13. Note that there is no 
significant improvement over the field displayed in either Fig. 4 or Fig. 
5. The constraint line clustering algorithm performed very well; the 
quality of the motion estimate was limited by the d and 01 measurements. 

downsampled by a factor of 4. The result of constraint 
line clustering with a 5 by 5 neighborhood is shown in 
Fig. 11. Since the motion data was downsampled by a 
factor of 4, the effective neighborhood size was 20 by 20. 
The original images were 256 by 256 pixels before filter- 
ing and computing the motion constraints. An idea of the 
relative size of the constraint line clustering neighborhood 
can be found by dividing the width of the original images 
by the effective width of the constraint line clustering 
neighborhood: the width of the neighborhood for con- 
straint line clustering was almost 8 percent of the image 
width. Smoothed versions of the velocity field are pro- 
vided in the experimental results in Section VI-D. 

E. Summary 

The constraint line clustering algorithm estimates the 
velocity vector in successive neighborhoods by intersect- 
ing the constraint lines in a neighborhood with the con- 
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Fig. 7. A pair of real images that contains an object displaced slightly 
between frames. The scene cants lined a phonebook lying on a sheet of 
circuit board. The cover of the pt tonebook had an outdoor scene. 

Fig. 8. Three pairs of horizontal slices through the images of the phone- 
book test case from Fig. 7 are plotted. The plots were created by over- 
laying the plots from the same position in the two frames of the image 
pair. The images are very noisy with considerable variation in the left 
hand portion of the plots which corresponds to the stationary part of the 
scene. 

Fig. 9. Three pairs of horizontal slices through the images of the phone- 
book test case after smoothing with a 16 by 16 point Gaussian filter are 
plotted. The displacement between frames is clearly seen as the phase 
shift in the plots. This illustrates the degree of displacement appropriate 
to algorithms based on the image flow constraint equation. 

straint line from the center of the neighborhood and 
choosing the midpoint of the tightest cluster. The tightest 
cluster is the interval of smallest width along the con- 
straint line that contains half of the intersections. This test 
is motivated by the characteristics of motion boundaries. 

d 

Fig. 10. A scatter plot of constraint line displacement d versus angle IX for 
the motion constraints obtained from the phonebook test case is shown. 
This illustrates the poor quality of the motion data due to noise and the 
effects of occlusion. 

If the motion boundary is smooth, then at least half of the 
d and CY measurements in the neighborhood belong to the 
same motion as the d and CY measurement at the center of 
the neighborhood. It is harmless to assume the remaining 
measurements are not from the same region of motion; 
rejecting a helpful intersection is harmless, but accepting 
a bad one can ruin the motion estimate. 

V. ERROR ANALYSIS 

This section provides some analysis of constraint line 
clustering that explains some of the characteristics of the 
algorithm that have been seen in experimental results. The 
analysis assumes that the distribution of constraint line 
orientations is uniform. This analysis may seem too op- 
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Fig. 11. The velocity field obtained by constraint line clustering with a 5 
by 5 neighborhood is shown. The d and a arrays were downsampled by 
a factor of 4 to increase the effective neighborhood size to 20 by 20 
without increasing computation. 

timistic, but the neighborhood size for constraint line 
clustering can and should be large enough to provide suf- 
ficient variation in constraint line orientation for the as- 
sumption to be reasonable. Certainly the assumption is 
justified for the random dot images that are the key test 
case in this work. The important point addressed by the 
analysis is to offer an explanation of why constraint line 
clustering works in situations such as comers that violate 
the assumptions of the algorithm. 

A. Constraint Line Intersections 

The analysis begins by deriving an interesting formula 
for a geometric problem that will lead us to approximate 
formulas for the general case. Suppose that there are one 
or more lines intersecting a given line L and that these 
lines all pass through a point P, as depicted in Fig. 12. 
The line L is displaced from point P by distance d along 
the perpendicular bisector of L passing through P. The 
probability density function for the intersection positions 
will be determined. This problem corresponds to the sit- 
uation where the one-dimensional cluster analysis algo- 
rithm is applied along a constraint line that is associated 
with a motion, but due to errors in the constraint line coef- 
ficients the line passes a distance d from the true velocity 
at point P and all constraint lines in the neighborhood of 
L are error free and pass through point P. This is an im- 
portant case since experimental results indicate that the 
accuracy of constraint line clustering is determined pre- 
dominantly by the accuracy of the estimate of the motion 
constraint coefficients. If the constraint line at the center 
of the neighborhood is accurate, but some of the con- 
straint lines in the neighborhood are not, then constraint 
line clustering will filter out the inaccurate intersections. 
This analysis addresses the case where the constraint lines 

Fig. 12. A line L is displaced from a point P by distance d. Another line, 
passing through P with an angle 4 between the line and the perpendicular 
bisector of L, intersects line L. The distance from the perpendicular bi- 
sector of L passing through P to the point of intersection is b. The prob- 
ability distribution for b is derived in the text and is part of the error 
analysis of constraint line clustering. 

surrounding the center are accurate, but the center con- 
straint line is not. 

The spread in intersection positions that will occur when 
multiple valid constraint lines intersect constraint line L 
must be determined. To obtain this statistic, the proba- 
bility density function for the distance b along line L from 
the perpendicular bisector of L, passing through P, to the 
point of intersection must be determined. Assume that the 
angle between the valid constraint line and the perpendic- 
ular bisector of L is 4. The distance b is given by 

b = dtan+. (17) 

A probability density function for b can be derived from 
a probability density function for 4 by equating equal 
probability measures and applying change of variables. 
For any value of r$o in the range [ - 3r/2, 7r/2 1, 

s 

40 

Prob [ 4 < 40] = pn,2~d+) & = Prob lb < &I 

(18) 
where b = d tan +o, and 

s 

bo 

Prob [b < b,] = --m pb(x) dx. (19) 

By change of variables 

s hl = --m ~&an-’ (x/d)) ’ 1 dx. (20) 
1 + (x/d)* d d 

So the probability density function for b, in terms of the 
probability density function for 4 is 

I%(X) = -&-p&an-l b/d)). (21) 

To continue the analysis, assume that 4 is uniformly dis- 
tributed between - 7r/2 and n/2. This assumption should 
typically be valid since the size of a neighborhood should 
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be large enough to guarantee that a diverse range of con- 
straint line orientations lies in the neighborhood. The as- 
sumption of uniform distribution in 4 leads to a Cauchy 
distribution for the intersection position: 

Pb(X) = -ALL 
x2 + d*’ (22) 

This distribution has an unbounded second moment, so 
the variance will not be a useful measure of spread. The 
percentage of the distribution that lies in the interval [ - 1, 
+1 ] can be computed. The value of 1 that contains some 
fixed percentage (such as half) of the intersection posi- 
tions can be used as a measure of the spread. The per- 
centage of intersections in the interval [ -I, + 1 ] is given 

by 

s 

1 

s 

1 

-I P&) dx = 2 o~d4 dx (23) 

s 

1 

= 2d/n 
1 

~ dx 
od2 +x2 (24) 

(25) 

= 2/7r tan-’ (l/d). (26) 

The width s of the interval that contains a fraction P of 
the intersections is 

s = 2d tan (P7r/2). (27) 

Note that the spread is proportional to d and the constant 
of proportionality is 2 tan (Pr/2). This constant is about 
1 for P around 30 percent and is exactly 2 for P = 50 
percent. Above 50 percent, the constant of proportionality 
increases rapidly. 

B. Multiple Motions 

When there are two motions near a constraint line, the 
intersections with the constraint line will have a distri- 
bution that is the sum of two Cauchy distributions, 
weighted according to the fraction of the intersections that 
arise from each motion. The combined distribution is 

p&Id,, 4) = rlC(bjd,) + (1 - a>W~dd. (28) 

This result gives us an insight into the effect of interfer- 
ence between two motions. The spread of the intersec- 
tions from each motion will be proportional to the dis- 
tance of the motion from the constraint line. The 
constraint line clustering algorithm chooses the tightest 
cluster of intersections that contains roughly half of the 
intersections. This tends to guarantee that the cluster of 
intersections that corresponds to the majority of intersec- 
tions (that is, the set of intersections from the same side 
of the motion boundary from which the constraint line was 
taken) will be chosen over the minority cluster. Severe 
interference can only take place if the majority cluster has 
a very large spread and overlaps the minority cluster suf- 
ficiently to add enough intersections to the minority clus- 
ter to make it seem to be the majority cluster. Since the 

distribution of intersections scales in proportion to the 
distance of the motion from the constraint line, this is an 
unlikely situation. 

The assumptions used to formulate the test for the tight- 
est cluster of intersections along a constraint are not valid 
at the comers of sharp motion boundaries, but the con- 
straint line clustering algorithm works well at comers. 
This is explained by the statistical results presented above. 
At a comer, the statistics of constraint line intersections 
are given by (28). The intersections caused by constraint 
lines from inside the comer form a tight cluster with a 
Cauchy distribution while the intersections caused by 
constraint lines from outside the comer form a broad clus- 
ter with a Cauchy distribution. The broader Cauchy dis- 
tribution trails off slowly from its central peak and ap- 
proximates a uniform distribution over the interval that 
overlaps the tight cluster of the narrower Cauchy distri- 
bution. So in the vicinity of the small cluster of intersec- 
tions from the constraint lines inside the comer there are 
additional intersections that are approximately uniformly 
distributed and these additional intersections do not bias 
the location of the tightest peak in the interval. The con- 
straint line clustering algorithm will, under the most prob- 
able circumstances, choose the location of the center of 
the small, tight cluster of intersections from the constraint 
lines inside the comer as the motion estimate over some 
other location near the much broader spread of intersec- 
tions from the constraint lines outside the comer. 

VI. SMOOTHING DISCONTINUOUS IMAGE FLOWS 

An algorithm called surface-based smoothing for im- 
proving the velocity field estimate of an image flow vector 
field is described in this section. The algorithm iteratively 
computes the motion boundaries in the velocity field and 
smooths the velocity field estimate between the motion 
boundaries. An excellent velocity field estimate with sharp 
motion boundaries can be derived from a noisy initial ve- 
locity field estimate. The algorithm is based on a funda- 
mental property of all intrinsic images and can be used to 
improve the estimate of any intrinsic image. 

Surface-based smoothing is able to improve the veloc- 
ity estimate produced by constraint line clustering be- 
cause the velocity estimate is good enough to allow the 
motion boundaries to be detected, so smoothing can be 
restricted to regions between motion boundaries. The al- 
gorithm relies on the fact that the true velocity function is 
smooth between motion boundaries because the moving 
surfaces in the scene that generated the image flow field 
are smooth between step changes in depth. 

A. Motion Boundary Detection 

The velocity field estimated by constraint line cluster- 
ing is good enough to allow any of the usual edge detec- 
tion algorithms to be used to detect the motion boundary, 
but better performance can be obtained by using a better 
edge detection method. Thompson, Mutch and Berzins 
[34] presented an algorithm for motion boundary detec- 
tion that was an extension of the edge detection algorithm 
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of Marr and Hildreth [30] and presented insights on oc- 
clusion analysis. In this work, the gradient of the Gauss- 
ian followed by nonmaxima suppression is used to detect 
boundaries in the components of the image flow field [46]. 

After each velocity field component is smoothed with a 
Gaussian filter, the Prewitt operator is used to compute 
the x and y partial derivatives of each motion estimate 
[47, p. 1061. The Prewitt masks are applied to the 
smoothed u and z, motion data to produce four arrays of 
boundary data: the x and y partial derivative approxima- 
tions for the each of the two velocity field components. 
The partial derivative approximations are used to compute 
the gradient magnitude and angle for each velocity field 
component. 

Nonmaxima suppression reduces the broad ridges and 
isolated mounds of edge detector output to thin curves and 
edge fragments. The gradient orientation is reduced to one 
of four sectors, then the magnitude of the gradient at each 
point is compared to the magnitude of its two neighbors 
along the line of the sector. If either of the neighbors of 
the center element have large magnitudes, then the mag- 
nitude of the center element is set to zero. The total num- 
ber of edge detector output values that are above some 
threshold is decreased. This makes more of the velocity 
field data available to the smoothing algorithm. Nonmax- 
ima suppression also produces paths through weak bound- 
aries that allow the velocity field estimates on opposite 
sides of the boundaries to mix. 

B. Velocity Field Smoothing 

The smoothing problem is formulated as a minimiza- 
tion problem with two components: 1) ,a cost for the lack 
of smoothness in the velocity field between motion 
boundaries and 2) a cost on the deviation of the smoothed 
velocity field from the velocity field estimated by con- 
straint line clustering. This approach was motivated by 
the work of Horn and Schunck [9] and Grimson [48]-[50]. 
Other methods for implementing the smoothing equations 
are discussed by Terzopoulos [51] and an interesting dis- 
cussion of viewpoint invariant surface interpolation is 
provided by Blake [52]. The mathematics of smoothing 
operators is presented by Brady and Horn [53]. Surface 
interpolation at multiple scales of resolution is thoroughly 
discussed by Terzopoulos [5 11, [54]. Markov random field 
methods for surface reconstruction have been discussed 
by Marroquin [55] and Geman and Geman [56]. The re- 
lationship of problems in surface reconstruction to regu- 
larization has been described by Poggio and Torre 1571. 
An analog network model for the implementation of sur- 
face reconstruction algorithms based on Markov random 
fields was presented by Hutchinson and Koch [58]. Blake 
and Zisserman [59] present a thorough discussion of al- 
gorithms for the reconstruction of surfaces in vision. 

Let u and z1 denote the x and y components of the ve- 
locity field estimate obtained by constraint line clustering, 
let U and V denote the smoothed velocity field estimate. 
The cost assigned to the deviation of the smoothed veloc- 

ity field estimate from the original velocity field estimate 
is 

(u - ii)* + (u - 8)‘. (29) 

The cost assigned to lack of smoothness is the sum of the 
squares of the magnitudes of the gradients of the x and y 
velocity field components, 

ii; + ii; + a; + z;, (30) 

as used by Horn and Schunck [9]. The combined opti- 
mization criterion is 

ss 
K2(U,2 + ii; + 8; + z2 Y) 

+ (u - iQ2 + (u - a)* dx dy (31) 

where ~~ weights the degree of smoothing versus the de- 
gree of deviation from the original velocity field estimate. 
This optimization problem is easily solved by the calculus 
of variations [60, pp. 191-1923. The result is a pair of 
linear partial differential equations that are decoupled: 

K2v2ii - U = 0 (32) 

K2v2ij - V = 0. (33) 

The equations can be solved iteratively by approximating 
the Laplacian with a nine point mask [61, p. 1281, 

1 4 1 

v* z i 4 -20 4 1 . 

1 4 1 

(34) 

Using this approximation, the iterative equations are eas- 
ily obtained 

--nfl = 
u Un + K2@“)] (35) 

-n+l = 
V Vn + K2s(an)], (36) 

where the function S ( * ) represents the computation of the 
eight point surround of the approximation to the Lapla- 
cian. 

These smoothing equations should only be used over 
the interior of a region of slowly varying velocity. The 
equations should never be applied across a motion bound- 
ary since to do so would blur the boundary. Natural 
boundary conditions should be used when the support of 
the approximation to the Laplacian is next to a motion 
boundary. Since the shape of the motion boundary is ar- 
bitrary, it is difficult to develop and apply the approxi- 
mations to the Laplacian that should be used at a motion 
boundary. A simple scheme was used to approximate nat- 
ural boundary conditions near a motion boundary: the ve- 
locity field value at the center of the Laplacian is used in 
place of the velocity field value at any point in the support 
of the Laplacian that is a boundary point. This scheme is 
simple to implement and works for boundaries of arbitrary 
shape. 
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C. Interleaved Detection and Smoothing 

The algorithm for detecting motion boundaries and the 
algorithm for smoothing the velocity field estimate be- 
tween motion boundaries are interleaved so that each 
computation can benefit from the improved information 
provided by the other. The computation begins with the 
original velocity field estimate computed by constraint line 
clustering. The x and y components of the velocity field 
are contained in separate arrays. The motion edge detec- 
tor is applied to each velocity component to obtain sepa- 
rate arrays of edge information for each velocity compo- 
nent. One iteration of the smoothing operator is applied 
in place to each component of the velocity field, using the 
boundary information for that component, to obtain the 
new smoothed version of each velocity field component. 
The border of the arrays is filled using data from the rows 
and columns just inside the border to approximate natural 
boundary conditions along the perimeter of the field of 
view. Subsequent iterations begin by applying the motion 
boundary detection operator to the smoothed velocity field 
estimate. The smoothing that was performed between mo- 
tion boundaries over the interior of surfaces will have re- 
duced the variation in the velocity field. Since the varia- 
tion is less, the output of the boundary detection operator 
in these regions will be weaker. Near a motion boundary, 
the local variation in the velocity field will be more ap- 
parent: the velocity values on either side of the boundary 
will be more consistently the same and the velocity values 
on opposite sides of the boundary will be more consis- 
tently different. The velocity values in the interior of the 
surfaces corresponding to objects and the background will 
not wander far from the original values estimated by con- 
straint line clustering since there is a cost on the deviation 
of the smoothed velocity estimates from the original ve- 
locity estimates. This anchors the velocity estimates to 
the original motion data. As successive iterations are per- 
formed, the height of the boundary operator output will 
increase along a motion boundary, decrease over the in- 
terior of objects and background points between bounda- 
ries, and the smoothing of the velocity estimate will be 
confined to a well within which a smooth velocity field 
estimate will be achieved independent of the velocity field 
values at points on the other side of the motion boundary. 

D. Experimental Results 

The boundary estimation and surface smoothing com- 
putation was applied to the results of constraint line clus- 
tering for the random box test case shown in Fig. 4. The 
results of surface-based smoothing are displayed in Figs. 
13-15. The plot in Fig. 15 shows that the maximum de- 
flection of the estimated velocity field from the true ve- 
locity field is around 3 percent. Maximum deflection is a 
better statistic than mean-squared error since extreme er- 
rors are significant. The results show that the interleaved 
iterations of boundary estimation and surface smoothing 
can improve the velocity field estimate and produce a 
clean estimate of the motion boundary. 

\ .----------4----....... 
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Fig. 13. The velocity field computed after 16 smoothing iterations have 
been performed on the velocity field shown in Fig. 4 is displayed. The 
motion edges were computed using the Prewitt x and y partial derivative 
approximations applied to the motion components after smoothing with 
an 8 by 8 Gaussian filter. The motion edge threshold was 1000 and 16.0 
was used for the smoothing weight. 
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Fig. 14. The plot is the boundary of the u component of the velocity field 
shown in Fig. 13. Note that there are no false boundary points. 

I I 

Fig. 15. Three horizontal slices through the a component of the smoothed 
velocity field from Fig. 13 are graphed. The deflection of the estimated 
value from the true value is no greater than 3 percent. 

Surface-based smoothing was also applied to the output 
of constraint line clustering for the phonebook example 
shown in Fig. 11. The results of surface-based smoothing 
for the phonebook test case are shown in Figs. 16 and 17. 

VII. SUMMARY AND CONCLUSIONS 

This paper presented work on velocity field estimation 
with emphasis on image flows that may contain step dis- 
continuities in the image irradiance or velocity field. A 
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Fig. 16. The smoothed velocity field after 16 iterations of surface-based 
smoothing applied to the output of constraint line clustering from Fig. 
11 for the phonebook example is shown. The smoothing parameter was 
16.0 and the threshold on the motion edge operator output was 2500. 
The u and v velocity components had to be scaled down by a factor of 
5 to prevent integer overflow in the iterative calculations. 

one-dimensional cluster analysis algorithm for the esti- 
mation of discontinuous image flows was described and a 
partial analysis of errors was presented. The paper con- 
cluded with a presentation of a smoothing algorithm that 
improves velocity field estimates without blurring the mo- 
tion boundaries. 

Two contributions important to vision research were 
presented: 1) the constraint line clustering algorithm that 
uses a clever statistical test to estimate the image flow 
velocity field in the presence of step discontinuities and 
2) the surface-based smoothing algorithm that improves 
velocity field estimates without blurring motion bounda- 
ries. The constraint line clustering algorithm shows that 
it is possible to formulate an algorithm with statistical 
techniques that estimates an intrinsic image without los- 
ing the boundary information that is important to percep- 
tion. The surface-based smoothing algorithm shows that 
an improved approximation to an intrinsic image can be 
obtained without blurring boundaries in the estimate of 
the intrinsic image. These two results have implications 
for vision research beyond image flow estimation. 

ACKNOWLEDGMENT 

Many thanks to my thesis committee for their support 
during this work, especially B. Horn and M. Brady for 
their immense technical skill and patience; R. Jain for his 
encouragement and his efforts to provide an excellent re- 
search environment in the Artificial Intelligence Labora- 
torv at the Universitv of Michigan: and the reviewers for 

. 
. 
. . 
. . . . 
. . 

. . . . 

. 

. 

. 

. 
. 

. 

. 
. 
. 

Fig. 17. The boundary in the u component of the velocity field for the 
phonebook example after 16 iterations is shown. The boundary is not 
dense due to poor choice of threshold, but the boundary estimate is good 
enough for surface-based smoothing without excessive leakage of mo- 
tion data from one region to another as shown in the smoothed velocity 
field in Fig. 16. 
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