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large first and second harmonic terms for physically reasonable values of the para-
meters. The first harmonic signal is proportional to the product of the dither
amplitude and the offset. The second harmonic signal is proportional to the square
of the dither amplitude and is independent of offset. The two coefficients are
identical except for an integral numerical factor. It is suggested that the ratio
of second harmonic to first harmonic signals is thus potentially a powerful measure
of offset, i.e., of focusing error in the limit of zero dither, and thus of
range-from-focus pixel-by-pixel. Fxtending the model to three dimcnsions, removing
GIe approximations, extending the model to natural scenes, and verifying and
implementing the results experimentally are outlined briefly. .,
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1 Abstract

The integral form of the instrument transmission function for a one-dimensional pixel in a two-
dimensional optical system is presented. The integral is solved explicitly in the paraxial ray
approximation for a single spatial Fourier component of a Lambertian object. The difference between
signals from adjacent pixels is derived. It is shown to have zero derivative with respect to focusing
error when the focusing error is zero, i.e., it is a weak source of range-from-focus information.
Describing the instantaneous focusing error as the sum of a fixed offset and a time-domain sinusoidal
dither, the power spectrum of the signal from each individual pixel is shown to contain large first and
second harmonic terms for physically reasonable values of the parameters. The first harmonic signal
is proportional to the product of the dither amplitude and the offset. The second harmonic signal is
proportional to the square of the dither amplitude and is independent of offset. The two coefficients
are identical except for an integral numerical factor. It is suggested that the ratio of second harmonic
to first harmonic signals is thus potentially a powerful measure of offset, i.e., of focusing error in the
limit of zero dither, and thus of range-from-focus pixel-by-pixel. Extending the model to three
dimensions, removing the approximations, extending the model to natural scenes, and verifying and
implementing the results experimentally are outlined briefly.

p.

.

:.
S.

] . .

'.,

,0

l3.



2

2 Introduction

Image focusing [31 is conventionally regarded as a spatial-domain activity: the focus-controlling
parameter (lens-to-sensor plane distance in a camera, focal length in the eye) is presumed to be
adjusted with the goal of maximizing the amplitudes of the high spatial frequency image components.
The focusing signal, i.e., these amplitudes, is derived from pixel-to-pixel signal differences. The
focusing information available from these differences is in reality weak. Thus most practical focusing,
e.g., in film and video photography, is done indirectly, without reference to the image, by an open-
loop method using a rangefinder (e.g., a parallax based split-image method) arbitrarily coupled to the
image distance. In humans, depth perception is known to be derived from the fusion of focus and
binocular parallax cues. However the focusing cue is easily discounted: most people have no trouble
understanding stereo photos even though focus is confined to the screen-plane, while the conflicting
convergence cues are controlled by the offset between corresponding points in the left and right eyes'
images [6).

In this report I partially model the image, i.e., the signal associated with each pixel in the sensor
plane, simply and approximately described by:

" the object modeled as a Fourier amplitude for an arbitrary spatial frequency and phase;
" the object distance z, the image distance z', and their relationship via the lens equation;

" the sensor plane distance z" and the pixel diameter 2 p
in two dimensions, i.e., for cylindrical optics.

The result shows explicitly why pixel-to-pixel signal differences are a weak source of focusing
information: the derivative of the pixel-to-pixel signal difference with respect to sensor plane distance
z" is zero precisely at perfect focus z" = z', which makes it operationally difficult to find the exact focus
using only the spatial domain information.

I then examine the predictions that the model makes in the longitudinal direction. This is conveniently
imagined as an experiment in the time domain: the signal from each pixel is modulated by dithering
the sensor plane distance as sin am. The dominant AC signal appears at the fundamental dither
frequency, and precisely in phase with it, and the next largest harmonic is the second, corresponding
to a cos 2ao term. The fundamental signal is proportional to the product of the dither amplitude and
the offset distance between the image plane and the sensor plane, whereas the second harmonic
signal is proportional to the square of the dither amplitude, and is independent of the offset distance.
The proportionality constant for the second harmonic is exactly one-fourth the proportionality constant
for the fundamental. I then use this model to show how a pair of synchronous amplifiers [4] tuned to
sin ax and cos 2ox could be used in a ratio mode to detect focus precisely, and thus robustly to
deduce range-from-focus pixel-by-pixel.

3 Model

For geometrical simplicity, and for the accompanying simplicity in the degree and limits of the
integrals representing the instrument transmission function', in this introductory report I will model a
cylindrical rather than a spherical optical system. This will affect the power law behavior of some

ldealized instruments use point detectors to look at point sources through infinitesimal apar', "-; real instruments report the
integral over their own detector area of signal received from a finite source area through finite sized apertures. The instrument
transmission function is a description, in terms of integrals over aperture and detector dimensions, of the signal that will be
seen for any specified source description.
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variables, e.g., the "exposure time" will be linear rather than quadratic in the f-number, and some
numerical coefficients may differ in the two cases by factors the order of unity, but the essential
conclusions should be the same in cylindrical and spherical models. To keep notation simple and
physical concreteness in the forefront, throughout the report I will illustrate with geometrically special
cases that involve no loss of physical generality.

The model optical system is depicted in Figure 1. It consists of a simple, thin, aberration free lens of
aperture 2R, an object plane at distance z measured to the left of lens center, the corresponding
image plane at distance z' measured to the right of lens center, and a sensor plane at distance z" also
measured to the right of lens center. Locations in the object, corresponding image, and sensor
planes are measured by x, x, and x" respectively, with the positive direction of x physically opposite to
the positive directions of Z and x". The optical model is geometrical, ignoring diffraction entirely.

The object plane is characterized by a source function W(x,O) that in this introduction I will take as an
angularly Lambertian, spatially sinusoidal grating2 representing one Fourier component of the optical
power emitted or reflected by the object:

W(x,0) = wocos (kx+O)cos O watts-meter- 1-radia- t  (1

The constant k = 2., where X is the spatial wavelength of the sinusoidal object feature. The constant

€ is a phase factor that describes the symmetry (or lack of symmetry) of the sinusoid about the optical ,
axis. € = 0 is the special case of a sine function (antisymmetrical), and 0 = ! is the special case of a

2
cosine function (symmetrical). Direction angle 0 is with respect to the object plane normal.

Figure 1 also shows a typical ray connecting x,", the center of a pixel that extends from x," - p to
x,"+ p, to the object plane, which it intersects at location x0 and angle 0. The power collected by this
pixel3 is

f X01. + pf an R-'To

= f77- W(.(x", 0"),O(x",0")) dO" dx" watts (2)Sxo-p 0 ~ x
-atan R.

As is often the case in modeling instrument transmission functions, the key features of the problem
reside in the limits of the integrals that describe the physical averaging performed by the various
apertures in the system.

2A uniform background, structureless in space and time, can be superimposed in the reader's mind if the negative values
sometimes assumed by this function are disconcerting. The background makes no net contribution to the spatial difference and
temporal derivative signals of interest in this report

3 Depending on the physical mechanisms underlying transduction, sensors may or may not generate output signals
more-or-less linear in the incident optical power. In practice optical detectors, both electronic and photochemical, when used
under the conditions recommended by their manufacturers, deliver electical voltage or developed optical density signals
whose amplitudes are approximately linear in the product of incident optical powers and integrating time, i.e., these detectors
are inddent energy sensitive. This functional relationship is not required in any fundamental sense: a detector could in
principle respond to the electric field strength (wave amplitude) rather than to power (wave intensity, essentially amplitude
squared). The distinction fortuitously evaporates in the usual case of incoherent illumination: averaging over random phases
leaves rms power proportional to electric field amplitude. However for coherent (laser) illumination, where this averaging does
not occur, the distinction is important. It is also important in sonar ranging: typical modem acoustic transducers, e.g., the
ubiquitous Polaroid [51 product, are amplitude (diaphragm displacement) sensitive, whereas typical older transducers, e.g., the
carbon granule microphones in telephone mouthpieces, are (I suppose) power sensitive. Sonar ranging modules that
compensate for attenuation with range by using an amplifier whose gain is ramped linearly with time are relying on the
amplitude sensitivity of the detector. Because phctcdctoctors are in practice intensity sensitive, time linear compensation does
not work with optical imaging, e.g., for a given flashbulb or strobe lamp energy pulse the product of f-number (reciprocal square
root of exposure) and object distance is a constant, the guide number'. I
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From the geometry

x = x" + (z" - z) tan 0" meters (3)

and

0 = atan x+ 1* 
' ztan 0" radians (4)

z

From the simple lens equation [1]

S x' meters (5)

Substituting these relationships, and making small angle, near axis approximations
+R Z -) "

S = fo+P .f7 z"x" AO" dx" watts (6)
xo. -p -R z

which integrates to
kzp kzR(z"-zl)

4WoPR sin -- sin z" kzx0 "
Scos (--Co .+) watts (7)z" kzp kzR(z"-z')

Substituting some convenient definitions:

Sk-= k', the object feature spatial frequency in the image plane;
Z

haf-aperture, approximately and exactly - where F is the focal length,

and f is the conventional f-number;
* k'A a k", the object feature spatial frequency in the image plane times the half-

aperture, and thus a measure of the depth of field;

* z"-z' z C, the offset between the image and sensor planes;
the result is simply expressed as

S = 4W0 pA sink'p s Cos(k'"+O) watts (8)

This equation for the instrument transmission function of a pixel is the model in the approximation
stated. It describes the optical power received by a pixel as the product of several physically sensible
terms:

* the image function Wocos (k'x0 "+O) corresponding to the source function equation 1,
where in the small angle approximation cos0 = 1;

o the full pixel height 2 p;

a the full lens aperture 2A;

* a transverse spatial filter sin k'p.
P'p

* and a longitudinal spatial filter sin k" ;

The features of this result that I want to investigate in this report are its transverse pixel-to-pixel
differences and its longitudinal derivatives (conveniently modeled as the temporal frequency
spectrum when C undergoes forced oscillation). In a future report I will discuss the corresponding
three dimensional model, integration over multiple spatial frequencies (thus admitting realistic object
descriptions), and the effects of removing the paraxial and other smallness approximations.

, - r -- " , " , " , " " =" %- "" %a%; ". " " , WK' '
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4 Example

For concreteness I will assign "typical" values to the parameters, and use these values for illustration
and comparison throughout the rest of this report:

" source function W. = 1000watts-meter-'-radian-1 ;

" pixel size 2p = 13.m;

" lens focal length F = 20mm, lens aperture 2R = 10mm, thus f-number = 2 and A = 0.25;

* object distance z = 2meters, i.e., magnification 0.01.

An interesting choice for the object feature size is the one for which k' p = !, so that for the 13 pm pixel

size k'= 2.4166 x 10& meters- ' and k = 2.4166 x i03 meters- 1. These correspond to a spatial
wavelength in the object plane of 2.6emm or 26pm in the image plane, i.e., exactly two pixel widths: a

light band falling on one pixel and a dark band falling on an adjacent pixel maximumize contrast. The
pixelation is then an optimally matched filter for the spatial wavelength. I

Finally, k" = k'A = 6.042 x 104 meters- ', corresponding to a longitudinal wavelength (for the specified
f-number) of 104p.m, twice the f-number times the transverse wavelength. "Small" in the longitudinal
direction means small with respect to this distance.

5 Differences Between Adjacent Pixels

Consider a pixel centered on axis at x," = 0 and an adjacent pixel centered at x" =2 p. By symmetry,
when the sensor plane has a pixel centered on-axis (in contrast to having two pixels straddle the
axis), the most visible object features will be those for which € = 0. The difference in signal between
the on-axis pixel and an adjacent pixel is then*

A sink'p sink" (cosO - coS2k'p) watts (9)

which expands exactly to

AS= 8 sin 3 k'p sink"; watts (10)

and for small focusing errors k" << 1

M W sin3k'p - 1 watts (11)

The absolute value of the difference signal clearly has a local transverse extremum for any integer I
satisfying k' p = - and a local longitudinal extremum for any integer m satisfying k" C = . Because

2 2
of the k' in the denominator of the numerical coefficient the difference signal has a global maximum
when n = I The best contrast between adjacent pixels is obtained when the image plane feature size
has a spatial half-wavelength equal to the pixel diameter.

For this best-contrast condition, with the feature size optimally matched to the pixel size k'p = but

perhaps away from precise focus:
16WoAP sin s

matc watts (12)

When the sensor plane also coincides with the image plane = 0 the value of sin kr is unity so

,..--
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w oced 16WoAP

- watts (13)matchad

This is the largest difference signal that can ever be obtained between adjacent pixels (for an object
&focund

with a single sinusoidal feature). It is thus convenient to use So - ,,iched as the unit relative to
2

which to measure other signal powers.

With this notation the instrument transmission function is
ros sin k'p sin k" os

S 'o2 si sin k'xo"+) watts (14)

and the difference between signals from adjacent pixels for object features optimally matched to
pixelation is exactly

AS,),,d = 2S ° s7" watts (15) -'

and in the limit of small k" .

AStc,,,d 2S o [1- !L] watts (16)mihd 0 31 r

The physical interpretation is that at focus, with the feature's spatial wavelength and phase matched
to the pixelation, the on-axis pixel sees S. , an adjacent pixel sees -S o l and when the sensor plane

fails to coincide with the image plane the difference signal is attenuated as --- k"-;,or approximately

quadratically in the focusing error.

The matched condition is optimal for focusing on contrast. Its sensitivity to is given by the derivative
d&Sgtched 2 So k" (s k" - sin _4) watts-meter_ (17)

( - ;)2

which to first-order in ?, and recalling k" = k'A, is
'4dAiSmac - 2SoA2k/'2

m'Sthd - -2SA_____ watts-meter- (18)
dZ-- 3

which, of course, could have alternatively been obtained by directly differentiating equation 16.

Two points are worth noting:
" the sensitivity improves rapidly with increasing aperture (and might be predicted to do so

even more rapidly with spherical optics);

" nevertheless, the situation is hopeless at C = 0: the effect we would use to detect a
discrepancy between the image plane and the sensor plane has zero slope when the
discrepancy is zero.

The last point is not so serious if the goal of focusing is just to obtain a sharp image: that the
derivative of the difference signal is small simply says that the endpoint is not critical. But if part of
the goal of focusing is to obtain range-from-focus, this result makes the prospects seem grim indeed.

Returning to the ongoing numerical example S, = 4.138mW, so AS,,,c, = 8.276--mW. Then how

big does the focusing error have to be to make a one-bit difference in AS? Suppose (to be
generous) that we can digitize the difference to 8-bits when AS is a half scale signal. We want to
know the value of k" that makes AS, differ from unity by 1/128. The answer (obtained graphically) is
k"0.216, which for k" 6.042x 104 meters- corresponds to a focusing error =3.6 Pn. The
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corresponding range error is found by resubstituting the lens equation into its own derivative with
respect to z':

(19)= 7"
To a good approximation, the fractional range error is the fractional focusing error times the reciprocal
of the magnification, 100 in this example. Thus a one bit signal change that corresponds to a 3.6pm
focusing error in a 20mm focal length corresponds to 1.8% range error, or 36mm range error in
2 meters. In any but the lowest precision real world application this range error would be
unacceptable.

The rest of this report suggests a class of data collection and processing technologies that show
on-paper promise of being able to use the longitudinal structure of the image to obtain range-from-
focus with high accuracy.

6 The Temporal Dimension
I now investigate the signal observed in the time domain from a single pixel when the sensor plane is

both offset from the image plane and is driven in a small amplitude oscillation:

= C&+a~sin (wt meters (20)

In the absence of practical three dimensional image sensors4, imagining a pixel plane in longitudinal
oscillation, especially with the recognition that synchronous detection can then be employed, is a
useful expository tool as well as a proposal for a practical implementation.

For a pixel on-axis x" = 0, an object symmetrical about the axis 4 = 0, and object feature and pixel
sizes satisfying k' p -

2
S(1) = sin k"(; 0+asin c atts (21)

0 k" ( 0 + a sin ox)

For small C

k 2 (;o + a sin ox)2

S(t) = SO[1 - .1 watts (22)031

which expands to

S) = S0[1 - T ( o+2C0asin ct+a2sin:cot)] watts (23)

In units of So we then have for the power spectrum:

" a DC term 1- (e";') which is just half the adjacent pixel difference equation 16;
31o

" an AC term synchronous with the driving term 30 (which can alternatively be

interpreted as a positive amplitude and a phase shift of x with respect to the driving
term);

" a term whose time dependence corresponds to sin 2cot and whose amplitude : )2 . is
312

4Some attempts at building processing layers behind sensing layers are underway [21, but I am unaware of any efforts to
build three dimensional sensing lattices.
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independent of , , i.e., independent of focus, and is thus a measure of the product of all
the uncertain intensity and geometry related weights.

Noting that sin- - - 2 , the sin 2-t amplitude is further interpreted as

" another DC term of power -
'e a'

312 %

" an AC term of power with frequency and phase corresponding to cos 2(ot.

The net power accounting is then:
(k' d

e for the DCterm: Po 1 3 a)2

9 for the sin ot term: P -2k- 2 a

e for the cos 2(ot term: P2,, 312

The ratio of the signals at the second harmonic and the fundamental driving frequencies is -1 which

becomes arbitrarily large as Co approaches zero, i.e., as focus is achieved. This ratio might thus
provide a high sensitivity, high accuracy focusing criterion. 0

How much useful AC signal there is depends on k", the depth of field in the image distance in relation
to the object feature size. If the transverse matching condition k' p = is satisfied then the longitudinal

condition is k" - = Recall that in the ongoing numerical example, corresponding to these conditions

and some typical parameters, k"-6.042xl04 meters- , or -- 16.55 PM. For offset and dither

amplitudes of this order-of-magnitude the longitudinal smallness approximation is valid to about 1%.
As a practical matter, displacements of this size could be easily obtained piezoelectrically. Then, _ 4pf terltv inlpwr r
continuing the example, if we take a =the relative signal powers are

P0 * Pr, * P2 0 = 0.750-0.3333 * 0.0833. Since P., grows quadratically as a, even higher modulation
fractions are obtainable within the realm of plausible electronically driven sensor plane
displacements.

7 Temporal-Longitudinal vs Spatial-Transverse Domains

Combining the results of the two previous sections, the ratio of the maximum difference between
signals from adjacent pixels to the time domain single pixel signals at DC, first harmonic, and second
harmonic is

OP *,IgZI2[1-(k"PQ2 ]*[I-(k"-----. [1--. - (.2 ]0-2r 2 a 0 (Vkt)2  (24)
A mce 0 W 2w3-1 3!1 312 31 312

Substituting ; 0o+asin wt into the expression for A,,at&d and averaging over time, i.e., making
a DC measurement, shows that 2P o is effectively the same as A.,

The DC components ,S,,t), d and Po are unable to distinguish between signal due to focus error and
extraneous signals (noise) induced by motion and vibration of the object or the camera, changes in
illumination, changes in thermal dark current in the sensor, electronic noise in the detection system,
etc. In contrast the AC signals from individual pixels have several properties that make them
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potentially immune to fluctuations and noise, and thus sensitive to focus with a high signal-to-noise
ratio:

" ratiometric measurement the ratio of the first harmonic signal to the second harmonic

signal is .. independent of illumination, optical system uncertainties, small motions,

vibrations, fluctuations, etc;

" zero crossing: the first harmonic signal and the ratio signal have zero crossings at offset
= 0, i.e., at exact focus, and this is a desirable condition for detectability;

*synchronous detection: the first and second harmonic signals are phase-locked to the
dither; synchronous detection methods5 can thus cleanly extract these signals from noisy
environments;

* insensitivity to flicker noise: modulation (dither) and AC detection move the
measurement from near DC to a higher frequency regime in which flicker (or I) noise

may be dramatically lower.
Hands-on experience in different but analogous problem domains [7] leads me to expect that these
methods could yield an advantage of several orders-of-magnitude with even cursory attention to good
engineering practice.

8 Extensions and Pitfalls

Extending the model to spherical optics looks straightforward, although the additional integration over
an azimuthal coordinate may involve some messy intermediate algebra. I expect the result will look
very similar to the one presented here, with the complication of a transverse filter term for the
y-direction, signal proportional to the square of the lens aperture, and slightly different numerical
coefficients.

Removing the paraxial ray approximations should be straighttorward although the more general
results are usually rLIrettably less revealing of the intuitive physics and geometry.

Removing the smallness approximation on the arguments of the transverse and longitudinal spatial
filter functions should similarly be straightforward. The result could bring some surprises, especially
longitudinally, since the longitudinal scale distance x is typically rather small.

Re

*. By far the most important restriction to remove is the description of the object as a simple sinusoidal
*' grating. When the object space is described as a Fourier integral over a spatial frequency continuum

instead of as a single spatial frequency, will the effect be to wash out the structures I am counting on
detecting, i.e., as many optical interference effects are washed out when a monochromatic light
source is replaced by a polychromatic light source, or will the pixelation act as a matched spatial filter
that selects exactly what is needed to focus on surface texture? If the answer is washing out rather
than selecting out, then my method will be useful only for artificially simple scenes.

Experimental verification can be envisioned as real-time and direct, by electromechanically driving the

5Also known in different implementations and contexts as lock-in amplification, phase sensitive amplification, and
synchronous rectification, the methods are powerful for extracting small signals with line spectra from overpowering
backgrounds with continuum spectra. The signal from a reference oscillator both modulates the source (in this case: dithers
the sensor plane) and in effect dials in the center frequency of the detector input filter. Synchronous detection methods are
robust in that they squeeze out continuum noise by extreme narrow-banding, but because of their inherent tracking ability they
exhibit no line spectrum signal loss with reference oscillator frequency drift.
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sensor plane (or, more-or-less equivalently, the lens or even the focal length) at an audio frequency
and analog parallel processing of the signals from a few pixels. High temporal bandwidth detectors,
e.g., photodiodes, would be desirable. Alternatively, an indirect, non-real-time equivalent would
involve stepping the sensor plane a fraction of the longitudinal scale distance between successive
frames from a conventional video camera, with after-the-fact digital analysis. The direct real-time
approach is preferred: it could take full advantage of synchronous detection, whereas the indirect
simulation, with little practical prospect for averaging over many cycles, could easily be disabled by
fluctuation noise.

A final potential pitfall is that real photosensors do not necessarily stop all the light incident on them in
effectively zero thickness. The sensor thickness is manifested as an averaging operation in the
longitudinal direction that attenuates the signals developed by the method proposed. With some
sensor types this attenuation-by-thickness might be a fatal flaw.
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