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We study the image formation by a high-numerical-aperture optical imaging system in the presence of a multilayer structure in the region
around the image plane. Earlier references to this subject in the literature use numerical solutions of the diffraction integrals. In this paper,
we use a numerical approach based on the semi-analytic Extended Nijboer-Zernike (ENZ) theory to solve the diffraction integrals in the
presence of a multilayer structure. The specific ENZ calculation scheme uses the complex Zernike expansion of the complex amplitudes of
forward and backward propagating plane wave components in a certain layer of the multilayer stack. By its nature, the ENZ approach enables
an accurate and fast calculation of the vector field in the stratified image region. Examples of multilayer imaging that are encountered in
high-numerical-aperture optical systems and in optical lithography for semiconductor manufacturing are presented and the accuracy of the
ENZ approach is examined. [DOI: 10.2971/jeos.2009.09048]
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1 INTRODUCTION

Numerical methods based on rigorous calculation of the elec-
tric field around the focal region of a focusing lens system are
a powerful tool to understand and interpret image formation
and information retrieval, since the 3D point-spread function
is directly related to the resolution and frequency response of
the optical system. For lens systems where the Debye approx-
imation is valid, a very common method to calculate the field
in focus is to consider the diffraction integral according to the
formulation first described by Ignatowsky [1] and re-derived
by Wolf [2] and Richards and Wolf [3]. Using this general de-
scription, one can obtain the field distribution in a homoge-
neous medium, but in most cases the propagating field, be-
tween the exit pupil of the lens system and the focal region,
is subjected to one or even several transitions between layers
of a stratified focal region. Thus, in order to obtain an accu-
rate description of the focused field at the region of interest,
one must take into account the effects of these layers, since
the transmission and reflection at the transitions depend on
the angle of incidence and state of polarization of an incident
plane wave. The total effect on the imaging by the system is
obtained by integrating over the plane wave components that
are present within the angular aperture of the lens system. The
procedure has been carried out in previous work on the transi-
tion between two media like in microscopy (air/sample or im-
mersion liquid/sample) [4]–[8], and regarding general strati-
fied media, with applications in optical lithography [9]–[11],
optical recording [12]–[15], and confocal microscopy [16].

As an alternative to numerical methods to solve directly the
diffraction integral, it has been shown that the Extended
Nijboer-Zernike (ENZ) theory can be used to compute the
through-focus behaviour of the optical image [17, 18]. The
ENZ method is based on first constructing the Zernike expan-
sion of the wave field in the entrance pupil. This expansion is
then multiplied by the complex lens transmission function to
include the amplitude and phase changes of the optical field
accumulated during the transition through the imaging sys-
tem. Using the resulting Zernike field expansion in the exit
pupil, ENZ theory provides the through-focus electric and
magnetic field in image space. The advantages of using the
ENZ method as compared to direct numerical computations
of the diffraction integral is that it is semi-analytical, arbitrar-
ily accurate and that it can deal with aberrations in a straight-
forward way. The separation in the ENZ-analysis of the aber-
rational effects and the diffraction effects in the focal region
allows for an important reduction of the computational ef-
fort. The computation beforehand and the subsequent storage
in look-up tables of basic spread-functions greatly enhances
the numerical speed once a real aberrated system needs to
be analyzed with respect to its imaging properties in the fo-
cal volume. In previous papers, we have shown how the ENZ
diffraction theory can also be used to obtain an efficient and
accurate imaging algorithm for extended objects with general
shape and for arbitrary illumination conditions in the case of
a homogeneous medium between the exit pupil and the fo-
cal region [19, 20]. In the present paper, we extend the ENZ
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diffraction theory to obtain the three-dimensional field dis-
tribution in media that are often encountered in practice, in
particular in an image space that is built up of various thin
parallel layers (stratified image space). These structures are
commonly found in optical microscopy, optical data storage
systems and in optical lithography for semiconductor man-
ufacturing. Applying our Zernike-based method for multi-
layer imaging implies that we automatically obtain accurate
Zernike coefficients for the forward and backward propagat-
ing fields in a particular layer in image space. This allows us,
for instance, to extract the aberrational state of the imaging in
the particular sublayer and to design the optical imaging sys-
tem in such a way that this aberration is corrected in advance.

The composition of this paper is as follows. In Section 2, we
first introduce the multilayer geometry that is present in the
image space and the general approach to obtain the forward
and backward propagating wave amplitudes in the multilayer
region. In Section 3, we describe the extension to ENZ theory
that is needed to treat the presence of a multilayer in image
space. As a result, we produce the expressions for the electric
and magnetic field components in a selected layer in image
space. To this goal, we derive updated values of the Nijboer-
Zernike expansion coefficients that pertain to the combination
of object structure and imaging system with multilayer struc-
ture. Finally, in Section 4, we present some practical examples
that illustrate the application of the theory to high-resolution
imaging in microscopy and optical lithography and we dis-
cuss the accuracy and the speed of the calculation method.

2 EXTENDED NIJBOER-ZERNIKE IMAGING
IN A MULTILAYER

In an earlier publication [20] we have shown that the Ex-
tended Nijboer-Zernike (ENZ) theory can be used to com-
pute the through-focus aerial image of an extended object.
This work already included the possibility to have a differ-
ent medium in both object and image space, but did not ac-
count for a non-uniform or layered configuration in image
space. Such configurations are of particular interest as they
are often encountered in advanced imaging applications such
as advanced lithography. In lithography, the image is created
in a resist layer that is enclosed by several other layers such as
the wafer stack and protective capping layers.

In this work we will analyze the implications that arise when
a multilayer configuration in the focal region of an imaging
system is considered within the frame-work of the ENZ for-
malism. It will be shown that, although the layered configu-
ration gives rise to many light reflections and thus strongly
influences the image formation, it still remains possible to ap-
ply the main results provided by ENZ theory.

In Figure 1, a schematic presentation is given for the general
optical system considered in this paper. It is assumed that
the object is very small compared to the transverse dimen-
sion of the entrance pupil and that it is illuminated using a
Köhler illumination scheme. The optical system, represented
by its complex transmission function, TI , and magnification,
M, transforms the field captured by the entrance pupil into

. . . . n1 n2 nh nHn0

M
α

t
h

rh

object

entrance
pupil

exit
pupil

. . . . 

F

FIG. 1 Schematic representation of imaging into a multi-layered image space by an op-

tical system with magnification M. The different layers have their respective refractive

indexes, nh, (possibly complex) where the subscript refers to the h-th layer starting

from the exit pupil. th and rh are labels pertaining to the amplitudes of the forward

and backward propagating plane wave components in the layer labeled h. The point

F is the geometrical best focus position in case of a uniform image region and the

numerical aperture NA is given by n1 sin α with sin α = s0.

a field distribution in the exit pupil. So far, the approach re-
mains the same as in [20], but now, instead of constructing
an image in an uniform image space we are faced with image
formation in a focal region that consists of several layers with
different refractive index nh. The problem with such a con-
figuration is that, at the interface between two layers having a
different refractive index, the light will be partly refracted and
reflected, and thus gives rise in every layer to both forward
and backward travelling electric field components, th and rh.
In this paper, we will track all transmitted and reflected con-
tributions in a certain layer in a systematic way, and will show
that this will allow us to do simulations of image formation in
a layered stack using the ENZ formalism.

3 ENZ THEORY IN CASE OF A
MULTILAYER IN THE FOCAL REGION

To keep track of the forward and backward propagating
waves in the multilayer part of the image space, it is conve-
nient to decompose the electric (and magnetic) field compo-
nents in orthogonal s- and p-polarization components. In the
refraction or reflection process at the optical surfaces in the
optical system and at the interfaces in the multilayer, the s-
and p-components suffer different changes in amplitude and
phase that follow from the complex reflection and transmis-
sion coefficients at the interfaces. In this section, we first de-
velop the expressions for the s- and p-polarized plane wave
components in the entrance pupil of the imaging system. The
next step is to follow these components through the optical
system and to find their direction and complex amplitudes on
the exit pupil sphere in the homogeneous image space with in-
dex n1. In the last step, we calculate the modified direction and
amplitude of the transmitted and reflected plane wave com-
ponents as they are found in the layer with index h (refractive
index nh). These plane wave components are then used in the
integrand of the Debye integral to obtain the field in the spe-
cific layer with index nh. The integration is carried out over
the exit pupil where the truncated transmitted and reflected
plane wave spectra originate.
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3.1 Field components in the entrance pupil

We start with the Cartesian field components of the incident
field distribution in the object plane directly after the ob-
ject structure. These components are obtained by some other
means, for instance, a rigorous diffraction calculation of the
coherent field transmitted through the object structure. This
object field is then propagated to the entrance pupil sphere of
the optical system using a plane wave expansion of the Carte-
sian object field components. As usually, it is sufficient to con-
sider two components out of three, for instance Ex and Ey,
the third component Ez following from the orthogonality of
the electric components with respect to the propagation direc-
tion of the particular plane wave. Referring to Figure 2 where
the object structure has been simplified to a fictitious point
source, we project the Cartesian field components in the en-
trance pupil onto a spherical coordinate base that is given in a
general point Q0(ρ, θ) by

k̂0 = sin α0 cos θ x̂ + sin α0 sin θ ŷ + cos α0 ẑ , (1)

p̂0 = cos α0 cos θ x̂ + cos α0 sin θ ŷ− sin α0 ẑ , (2)

ŝ0 = − sin θ x̂ + cos θ ŷ. (3)

y

point
source

z
θ

x

y

α0

s0
^

p0
^

^
k0

Q0

ρ

s0
^ p0

^

FIG. 2 Definition of the local basis for a general point Q0 on the entrance pupil sphere

with an axial cross-section (left-hand graph) and a cross-section perpendicular to the

z-axis (right-hand graph).

The normalized radial coordinate ρ with 0 ≤ ρ ≤ 1 is defined
by α0 = arcsin(ρ/R). In general, we present unit vectors by a
bold character with a hat on top and the unit vectors p̂0, ŝ0 and
k̂0 in the figure form a right-handed coordinate system along
the s- and p-polarization directions and the local propagation
direction of the field.

From the components Ex and Ey in the entrance pupil, we can
find Ez by exploiting the orthogonality of the field compo-
nents with respect to the propagation unit vector k̂0 yielding

E0,z(ρ, θ) = −{E0,x(ρ, θ) cos θ + E0,y(ρ, θ) sin θ} tan α0 . (4)

The field components on the new basis are then given by

E0,p(ρ, θ) = E0(ρ, θ) · p̂0

=
E0,x(ρ, θ) cos θ + E0,y(ρ, θ) sin θ

cos α0
, (5)

E0,s(ρ, θ) = E0(ρ, θ) · ŝ0

= −E0,x(ρ, θ) sin θ + E0,y(ρ, θ) cos θ. (6)

E0,k(ρ, θ) was forced to be zero because of the Fraunhofer ap-
proximation. This approximation is valid in the case of diffrac-
tion towards an entrance pupil that is very far away from the
object in terms of the wavelength of the light.

3.2 Field components in the exit pupil

The transmission of the plane wave spectrum through the op-
tical system is treated according to the laws of geometrical
optics. Each plane wave component with unit propagation
vector k̂0 at Q0 in the entrance pupil experiences amplitude
and phase changes following from the trajectory of the cor-
responding geometrical ray through the optical system. The
intersection point Q1 of this optical ray with the exit pupil in
the homogeneous part of the image space with index n1 fol-
lows from some ray mapping condition between object and
image space. In the case of a high-quality large-field imaging
system, the mapping condition is given by the Abbe sine con-
dition. In terms of the unit wave propagation vectors k̂0 and
k̂1 in object and image space we have

n1 Mk1,x = n0k0,x , n1 Mk1,y = n0k0,y , (7)

with M the lateral magnification of the imaging system. The
position of the point Q1 then follows from the plane wave
propagation vector k̂1 = {k1,x, k1,y, (1− k2

1,x − k2
1,y)

1/2} in the
homogeneous part of the image space with index n1 and is
given by

xQ1 = −ρR1k1,x , yQ1 = −ρR1k1,y , (8)

with R1 the axial distance of the exit pupil towards the im-
age plane. At this point we also introduce some abbreviations
for goniometric quantities that will frequently occur in the ex-
pressions for the field components on the entrance and exit
pupil sphere and in the multilayer region. We write

s0,M =
n1 Ms0

n0
, s0,h =

n1s0

nh
,

sin(α1) = s0 ρ , cos(α1) = (1− s2
0 ρ2)1/2 ,

sin(α0) = s0,M ρ , cos(α0) =
(

1− s2
0,M ρ2

)1/2
,

sin(αh) = s0,h ρ , cos(αh) =
(

1− s2
0,h ρ2

)1/2
. (9)

From the s- and p-polarized components of the electric field
on the entrance pupil sphere, we derive the s- and p-polarized
components on the exit pupil sphere for a forward propagat-
ing plane wave with unit wave vector k̂1 according to

E1,s(ρ, θ) =
f1 TI(ρ, θ) TR(ρ)

Rp

√
n0

n1
E0,s(ρ, θ)

=
f1 TI(ρ, θ) TR(ρ)

Rp

√
n0

n1

× (−E0,x(ρ, θ) sin θ + E0,y(ρ, θ) cos θ) , (10)

E1,p(ρ, θ) =
f1 TI(ρ, θ) TR(ρ)

Rp

√
n0

n1
E0,p(ρ, θ)

=
f1 TI(ρ, θ) TR(ρ)

Rp

√
n0

n1

×
(E0,x(ρ, θ) cos θ + E0,y(ρ, θ) sin θ)

cos(α0)
. (11)
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FIG. 3 Definition of the s- and p-polarization directions in an azimuthal plane de-

fined by the angles θ and θ + π. The transmitted propagation wave vector in the

thin layer with refractive index nh (azimuthal coordinate θ) is derived from an ef-

fective wave vector in image space with unit vector k̂h = (kx,h , ky,h , kz,h). The s-

and p-components of the oppositely directed reflected wave with unit wave vector

k̂h,r = −k̂h are obtained from the diametrically opposed direction of incidence

with unit wave vector (−kh,x ,−kh,y , kh,z) and azimuth θ + π. The p-directions of

the transmitted and reflected waves are parallel, their s-components have opposite

directions.

Here we have used the same steps as in [20], Eqs. (7)–(15) with
Rp given by the axial distance from the exit pupil to the parax-
ial focal point of the imaging system. See also Figure 3 for the
direction of the s- and p-components in image space.
In these expressions we have

TR(ρ) =

√
cos(α1)
cos(α0)

=
(1− s2

0 ρ2)1/4

(1− s2
0,M ρ2)1/4

. (12)

The ρ-dependent amplitude factor TR follows from the cho-
sen lens mapping factor, in our case the Abbe sine condition.
As customarily, TI(ρ, θ) is the complex lens transmission and
aberration function, f1 is the focal distance, n0 is the refrac-
tive index of the object space and n1 the refractive index of
the homogeneous part of the image space before entering the
multilayer structure.

3.3 Field components in layer h of the
mult i layer system

When we introduce a multilayer in the focal region the expres-
sions for the s- and p-components of the electric field change
due to various reflections and refractions at the multilayer in-
terfaces. Snell’s law applied to the various interfaces of the
mulitlayer yields for the unit propagation vector in the h-th
layer

nhkh,x = n1k1,x , nhkh,y = n1k1,y . (13)

The expressions for the s- and p-components of the elec-
tric field in the h-th layer in the focal region are the sum
of those pertaining to the forward propagating wave with
unit propagation vector k̂h,t = (kh,x, kh,y, kh,z) and complex
transmission factor th and those associated with the reflected
wave in the h-th layer with unit propagation vector k̂h,r =
(−kh,x,−kh,y,−kh,z) and complex reflection coefficient rh. The

reflected wave originates from a forward propagating wave
with unit propagation vector k̂h = (−kh,x,−kh,y, +kh,z); in
the far field, its polar coordinates are given by (ρ, θ + π). We
have to define the sign convention for the reflection coefficient
r in the case of s- and p-polarization. Like in most textbooks,
we choose the s-direction for the reflected wave in the same
direction as for the incident wave; the p-direction of the re-
flected wave is chosen opposite to the p-direction of the in-
cident wave. With this convention, we find the following ex-
pressions for the s- and p-field components in the h-th layer:

Eh,s(ρ, θ) =
f1 TI(ρ, θ) TR(ρ)

Rp

√
n0

n1

×
{

th,s(ρ)E0,s(ρ, θ)− rh,s(ρ)E0,s(ρ, θ + π)
}

=
f1 TI(ρ, θ) TR(ρ)

Rp

√
n0

n1

×
{

th,s(ρ)
[
−E0,x(ρ, θ) sin θ + E0,y(ρ, θ) cos θ

]
− rh,s(ρ)

[
E0,x(ρ, θ + π) sin θ − E0,y(ρ, θ + π) cos θ

]}
, (14)

Eh,p(ρ, θ) =
f1 TI(ρ, θ) TR(ρ)

Rp

√
n0

n1

×
{

th,p(ρ)E0,p(ρ, θ) + rh,p(ρ)E0,p(ρ, θ + π)
}

=
f1 TI(ρ, θ) TR(ρ)

Rp cos(α0)

√
n0

n1

×
{

th,p(ρ)
[
E0,x(ρ, θ) cos θ + E0,y(ρ, θ) sin θ

]
−rh,p(ρ)

[
E0,x(ρ, θ+π) cos θ + E0,y(ρ, θ+π) sin θ

]}
. (15)

The minus sign in front of rh,s in Eq. (14) follows from the
opposite sign convention for s-polarization of the transmitted
wave and the reflected wave, see Figure 3. The Cartesian com-
ponents in the h-th layer are given by

Eh,x(ρ, θ) = Eh,p(ρ, θ) cos(αh) cos θ − Eh,s(ρ, θ) sin θ , (16)

Eh,y(ρ, θ) = Eh,p(ρ, θ) cos(αh) sin θ + Eh,s(ρ, θ) cos θ , (17)

Eh,z(ρ, θ) = Eh,p(ρ, θ) sin(αh) . (18)

The substitution of Eh,s and Eh,p in Eqs. (16)–(18) yields

Eh,x(ρ, θ) =
f1 TR(ρ)

Rp

√
n0

n1

[
cos(αh)
cos(α0)

×
{

th,p(ρ) TI(ρ, θ)
[

E0,x(ρ, θ) cos2 θ + E0,y(ρ, θ) cos θ sin θ
]

− rh,p(ρ) TI(ρ, θ + π)

×
[

E0,x(ρ, θ + π) cos2 θ + E0,y(ρ, θ + π) cos θ sin θ
]}

+

{
th,s(ρ) TI(ρ, θ)

[
E0,x(ρ, θ) sin2 θ − E0,y(ρ, θ) cos θ sin θ

]
+ rh,s(ρ) TI(ρ, θ + π)

×
[

E0,x(ρ, θ+π) sin2 θ − E0,y(ρ, θ+π) cos θ sin θ
]}]

, (19)
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Eh,y(ρ, θ) =
f1 TR(ρ)

Rp

√
n0

n1

[
cos(αh)
cos(α0)

×
{

th,p(ρ) TI(ρ, θ)
[

E0,x(ρ, θ) cos θ sin θ + E0,y(ρ, θ) sin2 θ
]

− rh,p(ρ) TI(ρ, θ + π)

×
[

E0,x(ρ, θ + π) cos θ sin θ + E0,y(ρ, θ + π) sin2 θ
]}

−
{

th,s(ρ) TI(ρ, θ)
[

E0,x(ρ, θ) cos θ sin θ − E0,y(ρ, θ) cos2 θ
]

+ rh,s(ρ) TI(ρ, θ + π)

×
[

E0,x(ρ, θ+π) cos θ sin θ−E0,y(ρ, θ+π) cos2 θ
]}]

, (20)

Eh,z(ρ, θ) =
f1 TR(ρ)

Rp

√
n0

n1

sin(αh)
cos(α0)

×
{

th,p(ρ) TI(ρ, θ)
[
E0,x(ρ, θ) cos θ + E0,y(ρ, θ) sin θ

]
− rh,p(ρ) TI(ρ, θ + π)

×
[
E0,x(ρ, θ + π) cos θ + E0,y(ρ, θ + π) sin θ

]}
. (21)

The Zernike coefficients that pertain to a layer h in the strati-
fied image region follow from the field in the exit pupil that in-
cludes the lens transmission and aberration function and from
the functions th(ρ) and rh(ρ). Although one could also include
the lens mapping function TR(ρ) into the construction of the
Zernike polynomials, we choose not to do so because the map-
ping is an entity that is basically detached from the lens qual-
ity and the object properties. Of course, in the case of litho-
graphic imaging, there is virtually no choice left and the lens
mapping is entirely defined by the Abbe sine condition. Re-
garding the functions th,p(ρ), th,s(ρ), rh,p(ρ) and rh,s(ρ), these
can be obtained in a straightforward manner using, for in-
stance, thin-film matrix theory.

We construct the required β-coefficients using TI th,s, TI th,p,
TIrh,s and TIrh,p. At this point it is also straightforward to in-
clude birefringence of the optical system into the formalism
by allowing non-identical aberration functions, TI,x and TI,y,
acting on the x- and y- components of the incident field, re-
spectively. We then find the following sets of β-coefficients

E0,x(ρ, θ) th,s(ρ) TI,x(ρ, θ) = ∑
n,m

βm
n,x,ts R|m|n (ρ) exp(imθ), (22)

E0,x(ρ, θ) th,p(ρ) TI,x(ρ, θ) = ∑
n,m

βm
n,x,tp R|m|n (ρ) exp(imθ), (23)

E0,y(ρ, θ) th,s(ρ) TI,y(ρ, θ) = ∑
n,m

βm
n,y,ts R|m|n (ρ) exp(imθ), (24)

E0,y(ρ, θ) th,p(ρ) TI,y(ρ, θ) = ∑
n,m

βm
n,y,tp R|m|n (ρ) exp(imθ), (25)

and similarly for the counter propagating field components

E0,x(ρ, θ) rh,s(ρ) TI,x(ρ, θ) = ∑
n,m

βm
n,x,rs R|m|n (ρ) exp(imθ), (26)

E0,x(ρ, θ) rh,p(ρ) TI,x(ρ, θ) = ∑
n,m

βm
n,x,rp R|m|n (ρ) exp(imθ), (27)

E0,y(ρ, θ) rh,s(ρ) TI,y(ρ, θ) = ∑
n,m

βm
n,y,rs R|m|n (ρ) exp(imθ), (28)

E0,y(ρ, θ) rh,p(ρ) TI,y(ρ, θ) = ∑
n,m

βm
n,y,rp R|m|n (ρ) exp(imθ). (29)

For analysis of the field components in layer h, we only need
these eight sets of coefficients. When going to another layer,
new sets have to be constructed. Moreover, it will turn out that
each sublayer also requires new diffraction integrals to be in-
tegrated and tabulated (V(r, f )-functions). The ENZ approach
has to be compared with methods based on the direct summa-
tion of plane wave components in the sublayer h. The advan-
tage of the ENZ-approach in the multilayer configuration is
the availability of compact and accurate basic functions with
the general shape Vm

n,j(r, f ) exp(imθ) that immediately yield
the focused field in the entire layer by multiplication with the
β-coefficients of Eqs. (22)–(29) for the forward and backward
propagating fields.

With the Zernike expansions Eqs. (22)–(25) and Eqs. (26)–(29),
expressions can be found for the forward and backward prop-
agating Cartesian components of the electric and magnetic
field. However, to continue the use of the Vm

n,j-type integrals
that have been introduced in the earlier ENZ analysis with
a homogeneous image space, we define the following sets of
composite Zernike coefficients

βm
n,x,t+ =

βm
n,x,tp

+ βm
n,x,ts

2
; βm

n,x,t− =
βm

n,x,tp
− βm

n,x,ts

2
,

βm
n,y,t+ =

βm
n,y,tp

+ βm
n,y,ts

2
; βm

n,y,t− =
βm

n,y,tp
− βm

n,y,ts

2
,

βm
n,x,r+ =

βm
n,x,rp + βm

n,x,rs

2
; βm

n,x,r− =
βm

n,x,rp − βm
n,x,rs

2
,

βm
n,y,r+ =

βm
n,y,rp + βm

n,y,rs

2
; βm

n,y,r− =
βm

n,y,rp − βm
n,y,rs

2
, (30)

The Cartesian electric field components for each direction
of incidence in layer h can now be evaluated, both for the
forward and for the backward propagating field. Their di-
rectional or spectral dependence is determined by the nor-
malized polar coordinates (ρ, θ) on the exit pupil sphere
from where the propagating plane waves components in im-
age space originate. The somewhat lengthy expressions for
Et

h,x(ρ, θ), Et
h,y(ρ, θ) and Et

h,z(ρ, θ), as well as the correspond-
ing expressions for the back propagating components, are
written in full in Appendix A.

Next, these Cartesian spectral components have to be inserted
into the Debye diffraction integral. The propagation factor
for the transmitted wave is exp{i[kh,xx + kh,yy + kh,zz]};
for the back propagating wave we have the exponential
exp{−i[kh,xx + kh,yy + kh,zz]}. In both cases, the kz,h-
component is obtained from the dispersion relation in the
layer with index nh. Inserting the field components of forward
and back propagating waves into the Debye integral, see
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[2, 20], we find for the field vector E2 in layer h the expression

E2(r, φ, f ) =
−in1s2

0
λ0[

exp
(
−i f
u0,h

) ∫∫
C

Et
h(ρ, θ+π)

(1−s2
0ρ2)

1
2

exp
{

i f
u0,h

[
1−(1−s2

0,hρ2)
1
2

]}
× exp {i2πrρ cos(θ−φ)} ρ dρdθ

+ exp
(

i f
u0,h

) ∫∫
C

Er
h(ρ, θ)

(1−s2
0ρ2)

1
2

exp
{
−i f
u0,h

[
1−(1−s2

0,hρ2)
1
2

]}

× exp {−i2πrρ cos(θ−φ)} ρ dρdθ

]
, (31)

with

u0,h = 1−
√

1− s2
0,h ; f =

−2πnhu0,hz
λ0

, (32)

and λ0 the vacuum wavelength of the radiation. Et,r
h , the so-

called ray strength, represents the electric field components of
a forward or backward propagating plane wave with wave
vector ±(kx, ky, kz), measured at a distance of 1 meter from
the reference point in focus. The function Et

h for the transmit-
ted field in the integrand of the first integral has to be eval-
uated at the azimuth θ + π. This is because of the fact that
a wave vector with azimuth θ originates in the exit pupil at
an azimuthal position θ + π. In the second integral above for
the reflected field, the azimuth θ of the integration variables
and the azimuth of the incident wave vector that created the
reflected wave are identical.

We may proceed now by applying ENZ theory to derive the
fields Et,r

2 in the h-th layer of the focal region. Applying the for-
mulae that were already derived in [20], the field in the focal
region can now be written as (vector column notation between
brackets)

Et
2(r, φ, f ) =

−iπn1 f1s2
0

λ0 [1−M f1/R1]

√
n0

n1
exp

(
−i f
u0,h

)
∑
n,m

(−i)meimφ

×

βm
n,x,t+


Vm

n,0,t+−
(s2

0,M− s2
0,h)

2

(
Vm

n,+2,t+ e+2iφ+Vm
n,−2,t+ e−2iφ

)
i
(s2

0,M− s2
0,h)

2

(
Vm

n,+2,t+ e+2iφ−Vm
n,−2,t+ e−2iφ

)
−is0,h

(
Vm

n,+1,t+ e+iφ−Vm
n,−1,t+ e−iφ

)


+βm
n,x,t−


Vm

n,0,t−−
(s2

0,M− s2
0,h)

2

(
Vm

n,+2,t− e+2iφ+Vm
n,−2,t− e−2iφ

)
i (

s2
0,M− s2

0,h)
2

(
Vm

n,+2,t− e+2iφ−Vm
n,−2,t− e−2iφ

)
−is0,h

(
Vm

n,+1,t− e+iφ−Vm
n,−1,t− e−iφ

)


+βm
n,y,t+


i
(s2

0,M− s2
0,h)

2

(
Vm

n,+2,t+ e+2iφ−Vm
n,−2,t+ e−2iφ

)
Vm

n,0,t++
(s2

0,M− s2
0,h)

2

(
Vm

n,+2,t+ e+2iφ+Vm
n,−2,t+ e−2iφ

)
−s0,h

(
Vm

n,+1,t+ e+iφ+Vm
n,−1,t+ e−iφ

)


+βm
n,y,t−


i
(s2

0,M− s2
0,h)

2

(
Vm

n,+2,t− e+2iφ−Vm
n,−2,t− e−2iφ

)
Vm

n,0,t−+
(s2

0,M− s2
0,h)

2

(
Vm

n,+2,t− e+2iφ+Vm
n,−2,t− e−2iφ

)
−s0,h

(
Vm

n,+1,t− e+iφ+Vm
n,−1,t− e−iφ

)

,

(33)

for the forward propagating contribution and in a similar
fashion we get for the counter propagating contribution

Er
2(r, φ, f )=

−iπn1 f1s2
0

λ0 [1−M f1/R1]

√
n0

n1
exp

(
i f

u0,h

)
∑
n,m

(−i)meimφ

×

βm
n,x,r+


−Vm

n,0,r−+
(s2

0,M− s2
0,h)

2

(
Vm

n,+2,r− e+2iφ+Vm
n,−2,r− e−2iφ

)
−i

(s2
0,M− s2

0,h)
2

(
Vm

n,+2,r− e+2iφ−Vm
n,−2,r− e−2iφ

)
−is0,h

(
Vm

n,+1,r− e+iφ−Vm
n,−1,r− e−iφ

)


+βm
n,x,r−


−Vm

n,0,r+
+

(s2
0,M− s2

0,h)
2

(
Vm

n,+2,r+
e+2iφ+Vm

n,−2,r+
e−2iφ

)
−i (

s2
0,M− s2

0,h)
2

(
Vm

n,+2,r+
e+2iφ−Vm

n,−2,r+
e−2iφ

)
−is0,h

(
Vm

n,+1,r+
e+iφ−Vm

n,−1,r+
e−iφ

)


+βm
n,y,r+


−i

(s2
0,M− s2

0,h)
2

(
Vm

n,+2,r− e+2iφ−Vm
n,−2,r− e−2iφ

)
−Vm

n,0,r−−
(s2

0,M− s2
0,h)

2

(
Vm

n,+2,r− e+2iφ+Vm
n,−2,r− e−2iφ

)
−s0,h

(
Vm

n,+1,r− e+iφ+Vm
n,−1,r− e−iφ

)


+βm
n,y,r−


−i

(s2
0,M− s2

0,h)
2

(
Vm

n,+2,r+
e+2iφ−Vm

n,−2,r+
e−2iφ

)
−Vm

n,0,r+
− (s2

0,M− s2
0,h)

2

(
Vm

n,+2,r+
e+2iφ+Vm

n,−2,r+
e−2iφ

)
−s0,h

(
Vm

n,+1,r+
e+iφ+Vm

n,−1,r+
e−iφ

)

.

(34)

The integrals Vn,j,t± with j = −2,−1, 0, +1, +2 occurring in
the expressions above, are given as

Vm
n,j,t± (r, f )=

∫ 1

0
ρ|j|

{(
1−s2

0,hρ2
) 1

2±
(

1−s2
0,Mρ2

) 1
2
}−|j|+1

(
1−s2

0ρ2
) 1

4
(

1−s2
0,Mρ2

) 3
4

× exp
[

i f
u0,h

(
1−

√
1− s2

0,hρ2
)]

R|m|n (ρ)Jm+j(2πrρ)ρdρ. (35)

and we also immediately find for absorption-free media that

Vm
n,j,r± (r, f ) =

(
Vm

n,j,t± (r,− f )
)∗

. (36)

In Appendix B, a recipe is provided to efficiently compute the
integrals given in Eq. (35).

To calculate the power flow and momentum flux in the focal
region, we need the expression for the magnetic induction in a
specific layer of the multilayer stack. In homogeneous space,
for a plane wave, we have the relationship B = √εµ k̂ × E,
with k̂ the unit propagation vector of the plane wave. In the
optical domain, we are allowed to write µ = µ0 with µ0 the
magnetic permeability of vacuum and ε1/2 = nh(ε0)1/2. The
unit propagation vector is measured in the layer of the stack
with refractive index nh, for a certain value of the normalized
pupil coordinates (ρ, θ) in the exit pupil, and is given by

k̂h(ρ, θ)

=
(
−ρ n1s0 cos θ/nh,−ρ n1s0 sin θ/nh, [1− (ρ n1s0/nh)2]1/2

)
= (− sin(αh) cos θ,− sin(αh) sin θ, cos(αh)) . (37)
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Using this quantity to obtain the magnetic induction on the
exit pupil sphere and performing the Debye integral for the
magnetic induction components we find the following quan-
tities in the focal region (transmitted components in vector no-
tation) with c the speed of light in vacuum,

Bt
2(r, φ, f ) =

−iπn1nh f1s2
0

λ0c [1−M f1/R1]

√
n0

n1
exp

(
−i f
u0,h

)
∑
n,m

(−i)meimφ

×

βm
n,x,t+


i
(s2

0,M− s2
0,h)

2

(
Vm

n,+2,t+ e+2iφ−Vm
n,−2,t+ e−2iφ

)
Vm

n,0,t++
(s2

0,M− s2
0,h)

2

(
Vm

n,+2,t+ e+2iφ+Vm
n,−2,t+ e−2iφ

)
−s0,h

(
Vm

n,+1,t+ e+iφ+Vm
n,−1,t+ e−iφ

)


+βm
n,x,t−


i (

s2
0,M− s2

0,h)
2

(
Vm

n,+2,t− e+2iφ−Vm
n,−2,t− e−2iφ

)
Vm

n,0,t−+
(s2

0,M− s2
0,h)

2

(
Vm

n,+2,t− e+2iφ+Vm
n,−2,t− e−2iφ

)
−s0,h

(
Vm

n,+1,t− e+iφ+Vm
n,−1,t− e−iφ

)


+βm
n,y,t+


−Vm

n,0,t++
(s2

0,M− s2
0,h)

2

(
Vm

n,+2,t+ e+2iφ+Vm
n,−2,t+ e−2iφ

)
−i (

s2
0,M− s2

0,h)
2

(
Vm

n,+2,t+ e+2iφ−Vm
n,−2,t+ e−2iφ

)
is0,h

(
Vm

n,+1,t+ e+iφ−Vm
n,−1,t+ e−iφ

)


+βm
n,y,t−


−Vm

n,0,t−+
(s2

0,M− s2
0,h)

2

(
Vm

n,+2,t− e+2iφ+Vm
n,−2,t− e−2iφ

)
−i (

s2
0,M− s2

0,h)
2

(
Vm

n,+2,t− e+2iφ−Vm
n,−2,t− e−2iφ

)
is0,h

(
Vm

n,+1,t− e+iφ−Vm
n,−1,t− e−iφ

)

.

(38)

The backward propagating components of the magnetic in-
duction are obtained in a similar way, with the unit vector s
replaced by its negative counterpart for each reflected plane
wave component, and we obtain

Br
2(r, φ, f )=

−iπn1nh f1s2
0

λ0c [1−M f1/R1]

√
n0

n1
exp

(
i f

u0,h

)
∑
n,m

(−i)meimφ

×

βm
n,x,r+


i
(s2

0,M− s2
0,h)

2

(
Vm

n,+2,r− e+2iφ−Vm
n,−2,r− e−2iφ

)
Vm

n,0,r−+
(s2

0,M− s2
0,h)

2

(
Vm

n,+2,r− e+2iφ+Vm
n,−2,r− e−2iφ

)
s0,h

(
Vm

n,+1,r− e+iφ+Vm
n,−1,r− e−iφ

)


+βm
n,x,r−


i (

s2
0,M− s2

0,h)
2

(
Vm

n,+2,r+
e+2iφ−Vm

n,−2,r+
e−2iφ

)
Vm

n,0,r+
+ (s2

0,M− s2
0,h)

2

(
Vm

n,+2,r+
e+2iφ+Vm

n,−2,r+
e−2iφ

)
s0,h

(
Vm

n,+1,r+
e+iφ+Vm

n,−1,r+
e−iφ

)


+βm
n,y,r+


−Vm

n,0,r−+
(s2

0,M− s2
0,h)

2

(
Vm

n,+2,r− e+2iφ+Vm
n,−2,r− e−2iφ

)
−i (

s2
0,M− s2

0,h)
2

(
Vm

n,+2,r− e+2iφ−Vm
n,−2,r− e−2iφ

)
−is0,h

(
Vm

n,+1,r− e+iφ−Vm
n,−1,r− e−iφ

)


+βm
n,y,r−


−Vm

n,0,r+
+(s2

0,M− s2
0,h)

2

(
Vm

n,+2,r+
e+2iφ+Vm

n,−2,r+
e−2iφ

)
−i (

s2
0,M− s2

0,h)
2

(
Vm

n,+2,r+
e+2iφ−Vm

n,−2,r+
e−2iφ

)
−is0,h

(
Vm

n,+1,r+
e+iφ−Vm

n,−1,r+
e−iφ

)

.

(39)

4 COMPUTATION OF THE POINT-SPREAD
FUNCTION IN A MULTILAYER USING
THE ENZ IMAGING METHOD

In Section 3 of this paper we have presented expressions,
Eqs. (36)–(39), to calculate the forward and backward prop-
agating electromagnetic field components in a given layer of
a multilayer stack in the image region of an optical system.
In the present section, we will apply these new expressions to
some optical systems in which layered configurations in im-
age space play an important role and we will verify our re-
sults by comparing them with an existing method based on
a numerical evaluation of the Richards and Wolf diffraction
integral [14].

4.1 Mult i layer effects in l i thographic resist
images

Our first example illustrates the importance of multilayer
modelling in deep UV high numerical aperture optical lithog-
raphy (λ = 193 nm, NA= 1.368 (water immersion)). In Fig-
ure 4, three different possible models for the wafer stack con-
figuration are shown. In configuration a, it is assumed that
the light has to cross a single material interface before im-
age formation takes place in a half space of photoresist (n =
1.76). In configuration b, a more realistic wafer stack is con-
sidered in which the effect of a highly reflective silicon sub-
strate (n = 0, 78 + 2, 46i) is taken into account. Configuration c
shows a more advanced stack in which an anti-reflective coat-
ing (ARC) is included. This ARC acts as an optical gradient to
minimize the light reflections coming from the substrate.
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Water

2λ
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Photoresist

Water

2λ

{
M

ul
til

ay
er
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n=1.85 + 0.10i

n=1.85 + 1.00i

n=1.83 + 0.56i

30nm

30nm

30nm

Photoresist

Water

a cb

FIG. 4 Three stack configurations in image space that occur in optical lithographic

imaging.

For all three configurations we have computed the through-
focus point-spread function (PSF) that is formed in the resist
layer. The geometric best-focus position was put one wave-
length inside the layer of resist (z = 0 in Figure 5), mean-
ing that focal shifts introduced by the layer transitions were
not corrected for. The results are shown in Figure 5, where
the first column contains data obtained with the ENZ method
presented in this paper and, for comparison, the second col-
umn contains data for the same configurations, this time ob-
tained by means of numerical integration. As can be seen from
these figures, there is a very good agreement between the ENZ
method and its numerical integration counterpart (a more de-
tailed comparison of the accuracy of the two approaches is
presented in Section 4.3). Comparing the results at different
rows in Figure 5, we see that the simplified representation of
the wafer stack given by configuration a accurately predicts
the focal shift, relative to the geometrical best focus position,
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introduced by the medium transition. However, by compar-
ing rows one and two we see that neglecting the influence of
the substrate is not allowed. As a matter of fact, the stand-
ing wave pattern observed for configuration b is unacceptable
from a lithographer’s point of view and therefore in practice
they often apply an anti-reflective coating (ARC). An ARC has
been included in configuration c and it can be seen that it ef-
fectively reduces the standing wave non-uniformity down to
an acceptable value.
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FIG. 5 Comparison between the ENZ method (left column) and a fully numerical inte-

gration method (right column). The figures show, from top to bottom, the intensity of

the x-polarized point-spread distribution in the resist layer for the configurations a,

b and c, presented in Figure 4. The geometric best focus in water would have been

found at the axial position z = 0.

4.2 Air-gap effects when imaging with a
sol id immersion lens

Our second example involves a proposed next-generation op-
tical disk read-out system. In this system, a high refractive in-
dex ‘solid’ immersion lens is placed very closely to the disk in
order to improve the read-out resolution by optical tunnelling
of high spatial frequencies corresponding to evanescent plane
waves. The thin layer of air between the lens and the spinning
disk should be as small as possible for resolution purposes
but large enough to avoid the risk of mechanical contact dur-
ing play-back of a disk. The width of the air gap strongly in-
fluences the performance of the system. In Figure 6 we have
plotted the through-focus intensity profile of the point-spread
function that, in this example, serves as the read-out spot. Var-
ious effects introduced by the air-gap can be observed. A fo-
cal shift is present which should be accounted for in the ac-
tual design of the system. For large air-gaps, the average in-
tensity of the light spot goes down and the full width at half
maximum of the scanning light spot gradually increases. This
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FIG. 6 Point-spread formation in a layer of PC (n = 1.62) using a solid immersion lens

(n =2.086) for various values of the air-gap thickness (NA = 1.45, λ = 405 nm).

The colour shading in each graph has been adapted to the maximum energy density

occurring in the graph.

means that there is an optimum air-gap width for which the
read-out beam still has a sufficiently small size whilst the spot
intensity is adequate for read-out with a good signal-to-noise
ratio. Figure 6 applies to a solid immersion lens with a nu-
merical aperture of 1.45. It is seen that the full width at half
maximum of the lateral intensity profile starts to increase sub-
stantially once the air gap width exceeds 40 nm. A practical
compromise between disk storage capacity, optical transmis-
sion through the gap and mechanical robustness of the system
was found to be a gap width of typically 25 nm [21].

4.3 Accuracy of the ENZ approach as
compared with numerical integration

In previous work [17, 22]–[24], an extensive study has been
carried out on the correctness and the convergence of the ENZ
semi-analytic expressions. In several cases, with exact ana-
lytic results available for comparison, it has been shown that
the ENZ method can achieve an accuracy of 10−6 in ampli-
tude with a relatively modest number of terms included in
the basically infinite summation series. In [22], it is shown
that for a total defocus range of eight Rayleigh focal depths,
the number of terms in each summation can be typically lim-
ited to 20. Much larger focal depths can be handled by ap-
plying a double Bessel expansion with respect to the lateral
and the axial excursion from the centre of the point-spread
function. The results for strongly varying exit pupil functions,
both in amplitude and/or phase, are determined by the accu-
racy of the complex Zernike expansion of the pupil function.
In [24] and [20], it is shown how rather strongly oscillating
pupil functions can be adequately matched by Zernike expan-
sions with maximum radial and azimuthal indices of typically
20. The amplitude matching is generally correct down to a
relative value 10−6; only in the case of discontinuities in the
pupil function itself or its derivatives, the residual error may
amount to a value of, for instance, 10−3. The resulting ENZ
calculations, chosen to be accurate themselves down to 10−6,
will now be limited by the accuracy of the Zernike fit of the
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exit pupil field components. It was observed that the final ac-
curacy of the field components in the image region was better
than it would be expected on the basis of the accuracy of the
Zernike fit of the field components in the exit pupil. This can
be ascribed to an averaging effect when performing the Debye
integral to obtain each field component in image space.

We have examined the differences between the results of
the ENZ calculation scheme and of the numerical integra-
tion method. The geometry of the test problem was the one
labelled c in Figure 4. The ENZ approach first requires a
calculation-intensive tabulation of the V-integrals of Eq. (35).
Once this preparatory work has been done, the Zernike coeffi-
cients of the field components in the exit pupil are calculated
and the field distribution in the focal region is then obtained
in a very fast way by using the tabulated values of the V-
integrals. In practice, this latter step is orders of magnitude
faster than a numerical evaluation of the Debye diffraction
integral. The summations in the ENZ calculations were trun-
cated so as to achieve an accuracy of 10−6 in the amplitude
of the field components. The error tolerance of the numerical
integration procedure was set to 10−5. This error tolerance for
numerical integration was chosen because of memory and cal-
culation time limitations. The differences between the results
of the two methods for the dominating x- and z-field compo-
nents in the focal region were of the order of 1.10−5 with re-
spect to a normalized maximum amplitude of unity. This im-
plies that the accuracy was not limited by the ENZ approach
but determined by the error setting of the numerical integra-
tion procedure.

5 DISCUSSION AND CONCLUSIONS

We have shown that the Extended Nijboer-Zernike diffraction
theory can be adapted to allow for the image formation in
a stratified image space, as is encountered often in imaging
applications like microscopy, optical lithography and optical
data storage. With the aid of the angular plane wave spectrum
of the transmitted and reflected wave field in a particular layer
of the stratified medium, we are able to construct the effective
transmitted and reflected fields in the exit pupil of the imaging
system. We obtain the transmitted and reflected plane wave
spectra in a specific layer by standard means, for instance, by
using thin layer matrix theory. The transmitted and reflected
fields are each used as input for the Debye diffraction inte-
gral that is then solved using the semi-analytic ENZ theory.
With respect to standard numerical integration of the Debye
integral, we have shown that the ENZ approach is highly ac-
curate. Without loss of speed, the solution of the diffraction
integral can easily be made accurate up to a level of 10−6

in amplitude. Numerical methods often have a typical accu-
racy of 10−3 up to 10−4 in amplitude if reasonable calculation
times are desired. The accuracy of the ENZ method is limited
in practice by the accuracy of the Zernike fit of the transmit-
ted and reflected fields in a sublayer, as projected backwards
towards the exit pupil. This accuracy degrades if the effec-
tive pupil function shows sharp oscillations or discontinuities.
Practical Zernike fit errors in our examples remained below a
level of 10−5. It was shown that a numerical solution of the
diffraction integral can be made accurate to 10−5. However,

the calculation time becomes excessively large with respect to
the ENZ approach. The use of numerical integration could be
acceptable for a single field point evaluation. When repeated
evaluations are needed like in object mask optimization for
optical lithography, the ENZ approach will offer a superior
performance, both in speed and accuracy.

Another advantage of the tabulation possibility of the ENZ
method in a multilayer geometry is the following. For a given
aperture angle in a selected sublayer in image space, the set
of Zernike coefficients and V-integrals needs to be evaluated
only once. The actual through-focus calculations in the layer
are then obtained very quickly by using the prepared tabu-
lated values of coefficients and integrals. This advantage is
maintained for a specific sublayer when the aperture angle is
left unchanged. Changes in other sublayers do not affect the
tabulated data for the V-integrals in the layer under consid-
eration. The changes only affect the plane wave spectra be-
longing to the forward and backward propagating waves in
the sublayer and their corresponding Zernike coefficients. It
is only when switching to another layer with a different aper-
ture angle that a new tabulation is needed. The tabulation ad-
vantage is especially appreciated when many image calcula-
tions in the same medium are needed. Again, the optimiza-
tion of object mask patterns to obtain a desired image pattern
in the photoresist recording layer is a good example of such a
repeated calculation with unchanged values of the tabulated
V-integrals.

As we already pointed out in the introduction, an extra ad-
vantage a Zernike-based method is that accurate Zernike coef-
ficients become available for the forward and backward prop-
agating fields in a particular layer of the stratified medium
in image space. The complex Zernike coefficients yield in-
formation about the imaging quality in the particular sub-
layer. Correction of the effective aberration state in a specific
sublayer can then obtained by an appropriate design of the
optical imaging system. For high-numerical-aperture imag-
ing, the complex Zernike expansion define the polarization-
dependent amplitude and phase deviations in a sublayer.
These can then be corrected with the aid of birefringent means
to obtain perfect imaging at a given position in the sublayer.

The stratified medium in image space may contain absorbing
layers or layers where frustrated total reflection takes place
via evanescent fields or plasmon creation. However, our im-
plementation so far does not allow to calculate the field in a
sublayer that itself shows appreciable absorption or where the
plane wave spectrum comprises evanescent components. We
actually work on an extension of the multilayer ENZ method
so as to cover these cases as well.
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A EXPRESSIONS FOR THE FORWARD AND
BACKWARD PROPAGATING FIELD
COMPONENTS IN LAYER h

In this Appendix we produce the expressions for the electric
field components in layer h of the stratified medium in image
space. These components follow from the substitution of the
composite Zernike coefficients of Eq. (30) into the Eqs. (19)–
(21). We then split the Cartesian components into their for-
ward and backward propagating parts, denoted by the upper
indices t and r, respectively. Shorthand notation for goniomet-
ric quantities according to Eq. (9) is used to improve the read-
ability of the expressions.

Et
h,x(ρ, θ) =

f1 cos1/2(α1)
2Rp cos3/2(α0)

√
n0

n1
∑
n,m

R|m|n (ρ) exp(imθ)

×
{

βm
n,x,t+ [cos(αh)+cos(α0)]+βm

n,x,t− [cos(αh)−cos(α0)] +(
βm

n,x,t+ [cos(αh)−cos(α0)]+βm
n,x,t− [cos(αh)+cos(α0)]

)
cos 2θ+(

βm
n,y,t+ [cos(αh)−cos(α0)]+βm

n,y,t− [cos(αh)+cos(α0)]
)

sin 2θ

}
(40)

Er
h,x(ρ, θ) =

f1 cos1/2(α1)
2Rp cos3/2(α0)

√
n0

n1
∑
n,m

R|m|n (ρ) exp(imθ) (−1)m

×
{
−βm

n,x,r+ [cos(αh)−cos(α0)]−βm
n,x,r− [cos(αh)+cos(α0)] +(

−βm
n,x,r+ [cos(αh)+cos(α0)]−βm

n,x,r− [cos(αh)−cos(α0)]
)

cos 2θ+(
−βm

n,y,r+ [cos(αh)+cos(α0)]−βm
n,y,r− [cos(αh)−cos(α0)]

)
sin 2θ

}
(41)

Et
h,y(ρ, θ) =

f1 cos1/2(α1)
2Rp cos3/2(α0)

√
n0

n1
∑
n,m

R|m|n (ρ) exp(imθ)

×
{

βm
n,y,t+ [cos(αh)+cos(α0)]+βm

n,y,t− [cos(αh)−cos(α0)] +(
−βm

n,y,t+ [cos(αh)−cos(α0)]−βm
n,y,t− [cos(αh)+cos(α0)]

)
cos 2θ+(

βm
n,x,t+ [cos(αh)−cos(α0)]+βm

n,x,t− [cos(αh)+cos(α0)]
)

sin 2θ

}
(42)

Er
h,y(ρ, θ) =

f1 cos1/2(α1)
2Rp cos3/2(α0)

√
n0

n1
∑
n,m

R|m|n (ρ) exp(imθ) (−1)m

×
{
−βm

n,y,r+ [cos(αh)−cos(α0)]−βm
n,y,r− [cos(αh)+cos(α0)] +(

βm
n,y,r+ [cos(αh)+cos(α0)]+βm

n,y,r− [cos(αh)−cos(α0)]
)

cos 2θ+(
−βm

n,x,r+[cos(αh)+cos(α0)]−βm
n,x,r−[cos(αh)−cos(α0)]

)
sin 2θ

}
(43)

Et
h,z(ρ, θ) =

f1s0,h cos1/2(α1)
Rp cos3/2(α0)

√
n0

n1
∑
n,m

ρ R|m|n (ρ) exp(imθ)

×
{[

βm
n,x,t+ + βm

n,x,t−

]
cos θ +

[
βm

n,y,t+ + βm
n,y,t−

]
sin θ

}
(44)

Er
h,z(ρ, θ) =

f1s0,h cos1/2(α1)
Rp cos3/2(α0)

√
n0

n1
∑
n,m

ρ R|m|n (ρ) exp(imθ)

× (−1)m
{
−
[

βm
n,x,r+ +βm

n,x,r−

]
cos θ−

[
βm

n,y,r+ +βm
n,y,r−

]
sin θ

}
.

(45)

B SERIES EXPANSION FOR Vm
n,j,t±

In this Appendix we present a method for obtaining a series
expansion for the integral Vm

n,j,t± (r, f ) given by

Vm
n,j,t± (r, f )=

∫ 1

0
ρ|j|

{(
1− s0,h

2ρ2) 1
2±
(

1− s2
0,Mρ2

) 1
2
}

(
1− s02ρ2

) 1
4
(

1− s2
0,Mρ2

) 3
4

−|j|+1

× exp
[

i f
u0,h

(
1−

√
1− s2

0,hρ2
)]

R|m|n (ρ)Jm+j(2πrρ)ρdρ. (46)

We use the identity(
1− s0,h

2ρ2
) 1

2±
(

1− s2
0,Mρ2

) 1
2

=



(
1− s0,h

2ρ2
) 1

2 +
(

1− s2
0,Mρ2

) 1
2 , + case

(s2
0,M−s2

0,h)ρ2

(1−s0,h
2ρ2)

1
2 +(1−s2

0,Mρ2)
1
2

, − case

=
((

1−s0,h
2ρ2
) 1

2 +
(

1−s2
0,Mρ2

) 1
2
)σ((

s2
0,M−s2

0,h

)
ρ2
)1−σ

2

,

(47)

where σ = ±1 indicates both sign possibilities, to write
Eq. (46) in the form

Vm
n,j,t± (r, f ) =

(
s2

0,M − s2
0,h

) 1
2 (1−σ)(−|j|+1)

×

∫ 1

0
ρ1−σ+σ|j|

{(
1− s0,h

2ρ2
) 1

2 +
(

1− s2
0,Mρ2

) 1
2

}
(

1− s02ρ2
) 1

4
(

1− s2
0,Mρ2

) 3
4

σ(−|j|+1)

× exp
[

i f
u0,h

(
1−

√
1− s2

0,hρ2
)]

R|m|n (ρ)Jm+j(2πrρ)ρdρ.

(48)

Next, we follow a similar approach as in [20], Appendix A, to
write the integral in Eq. (48) as a series expansion given by

Vm
n,j,t± (r, f ) =

(
s2

0,M − s2
0,h

) 1
2 (1−σ)(−|j|+1)

× exp{g′}
p

∑
s=0

∞

∑
t=0

CsBtT
m+j
1−σ+σ|j|+|m|+2s+2t(r, f ′) , (49)

where for integer k, l with l − |k| even

Tk
l (r, f ′) =

∫ 1

0
ρlei f ′ρ2

Jk(2πrρ)ρdρ . (50)
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To arrive at Eq. (49) we have used

exp
[

i f
u0,h

(
1−

√
1− s2

0,hρ2
)]

×

{(
1− s0,h

2ρ2
) 1

2 +
(

1− s2
0,Mρ2

) 1
2

}

(1− s02ρ2)
1
4
(

1− s2
0,Mρ2

) 3
4

σ(−|j|+1)

= exp
{

g′ + i f ′ρ2
} ∞

∑
t=0

Btρ
2t . (51)

Furthermore, the coefficients g′, f ′ and Bt, as well as Cs in
Eq. (49) can be obtained starting from Eq. (51) and follow-
ing the recipe given in [20], Appendix A, Eqs. (A3-A22). The
Tk

l given in Eq. (50) have already been computed in [18] for
l − |k| ≥ 0, however in Eq. (49) values l − |k| < 0 can also oc-
cur. We therefore derive a computation scheme for Tk

l , that is
valid for general integer values of l and k, below. We assume
k ≥ 0 (note that J−k = (−1)k Jk).

We have Bauer’s formula

exp (i f ′ρ2) = exp ( i
2 f ′)

∞

∑
q=0

(2q + 1) iq jq( 1
2 f ′)R0

2q(ρ) , (52)

so that

Tk
l (r, f ′) = exp ( i

2 f ′)
∞

∑
q=0

(2q + 1) iq jq( 1
2 f ′)

×
∫ 1

0
ρl R0

2q(ρ)Jk(2πrρ)ρdρ . (53)

The series in Eq. (53) has excellent convergence properties,
with no loss of digits, and taking the terms with q ≤ 3

4 | f ′|+ 5
yields in all cases sufficient accuracy.

Next we consider the integrals
∫ 1

0 ρl R0
2q(ρ)Jk(2πrρ)ρdρ. There

is the Zernikek expansion

Jk(2πrρ)=
∞

∑
t=0

2(k+2t+1)(−1)t Jk+2t+1(2πr)
2πr

Rk
k+2t(ρ), (54)

and this Zernikek expansion is also excellent convergent. It is
sufficient to include all terms with l ≤ max{0, 3

2 |πr|+ 4− 1
2 k}

to get sufficient convergence. Therefore,

Tk
l (r, f ′) = 2 exp ( i

2 f ′)

×
∞

∑
q,t=0

(2q + 1) (k + 2t + 1) iq(−1)t jq( 1
2 f ′)

Jk+2t+1(2πr)
2πr

Elkqt ,

in which

Elkqt =
∫ 1

0
ρl R0

2q(ρ)Rk
k+2t(ρ)ρdρ . (55)

These Elkqt can be computed as follows. We write k = l + 2r,
where r is integer and can be positive, zero or negative, but in
all cases l + r ≥ 0 and r ≤ k. Then we write

Elkqt =
∫ 1

0
ρl+rR0

2q(ρ)ρ−rRl+2r
k+2t(ρ)ρdρ . (56)

Now for integer N, M, K with N, M ≥ 0 and N − M even
and ≥ 0 and K = −M,−M + 1, · · · , we show below that (P =
(N −M)/2, Q = (N + M)/2)

ρKRM
N (ρ) =

P

∑
j=0

Cj(N, M, K)RM+K
N+K−2j(ρ) , (57)

where, using Pochhammer’s symbol (x)j = 1 (j = 0), = x(x +
1) · · · (x + j− 1), j = 1, 2, · · · ,

Cj(N, M, K) =

N + K− 2j + 1
N + K− j + 1

(
P
j

)
(Q + K− j)!(N − j)!

Q!(N + K− j)!
(K− j + 1)j .

(58)

Using Eq. (57) with K = l + r, M = 0, N = 2q and K = −r,
M = l + 2r, N = k + 2t, respectively, in Eq. (56), we get

Elkqt =
∫ 1

0

q

∑
j1=0

Cj1(2q, 0, l + r)Rl+r
l+r+2q−2j1

(ρ)

×
t

∑
j2=0

Cj2(k + 2t, l + 2r,−r)Rl+r
l+r+2t−2j2

(ρ)ρdρ

=
min(q,l+r)

∑
j=max(0,q−t)

Cj(2q, 0, l + r)Cj+t−q(k + 2t, l + 2r,−r)
2(l + r + 2q− 2j + 1)

. (59)

Here it has also been used that (orthogonality)

∫ 1

0
Rl+r

l+r+2s(ρ)Rl+r
l+r+2t(ρ)ρdρ =

δst

2(l + r + 2s + 1)
,

s, t = 0, 1, · · · . (60)

We still owe the reader a proof of Eqs. (57)–(58). The formula
in Eqs. (57)-(58) take the form

ρKRM
N (ρ)=

min(K,P)

∑
j=0

N+K−2j+1
N+K− j+1

(
P
j

)(
Q + K− j

Q

)
(

N + K− j
K

) RM+K
N+K−2j(ρ)

(61)
when K = 0, 1, · · · , and takes the form

1
ρL RM

N (ρ)=
P

∑
j=0

(−1)j N−L−2j+1
L+ j

(
P
j

)(
N − j
L− 1

)
(

Q
L + j

) RM−L
N−L−2j(ρ)

(62)
for K = −L = −M,−M + 1, · · · ,−1. This can be shown by
elementary manipulations with binomials and Pochhammer
symbols.

The formula in Eq. (61) can be shown as follows. We have

RM
N (ρ) = ρMP(0,M)

P (2ρ2 − 1) with P(α,β)
k the general Jacobi

polynomial of degree k with parameters α, β, see [25], Ch. 22.
Since RM+K

N+K−2j(ρ) = ρM+KP(0,M+K)
P−j (2ρ2 − 1), the formula in

Eq. (61) shows how to write P(0,M)
P as a linear combination

of P(0,M+K)
P−j , j = 0, 1, · · · , P. The required coefficients can be

found from [26], Theorem 7.1.2 on p. 358 with

α = 0, δ = M, k = j, n = P, β = M + K , (63)

and some further rewriting from Pochhammer symbols
in [26], Theorem 7.1.2 to binomials in Eq. (61).

Similarly, Eq (62) shows how to write P(0,M)
P as a linear combi-

nation of P(0,M−L)
P−j , j = 0, 1, · · · , P. Again [26], Theorem 7.1.2

provides the solution, now with

α = 0, δ = M, k = j, n = P, β = M− L . (64)
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