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Abstract - An extensive overview of the field of image fusion is 
presented in this paper. The study firstly delves into the 
problem of multiple modalities that form the motivation for 
fusion, and discusses the main advantages of image fusion. 
Further, it discusses in detail the history of fusion algorithms 
that comprise various transform-domain and data driven 
methods. A section on image fusion applications, ranging from 
geo-spatial, medical to security fields, is also presented. Overall 
the paper aims to bring to light the advances and state-of-the-
art within the image fusion research area so as to benefit other 
fields.    
Keywords: Image fusion, data and information fusion, multi-
modal, multi-sensor. 
 

I. FUSION FOR MULTI-MODALITY SENSORS 
 
    In real world applications where various optical sensors 
are used for image acquisition, it is often difficult to obtain a 
good quality image from a single sensor alone. Decisions 
pertaining to system conditions are very rarely made upon 
the measurement of a single parameter. This condition 
remains true across many branches of modern technology be 
it medicine, geography or the military.  
    The term ‘good quality’ itself tends to encompass various 
elements of the image scenery: illumination, sharpness, noise 
and contrast among others. There exists a multitude of sensor 
tools which include the optical camera, millimeter wave 
(MMW) camera, infrared (IR) and near-infrared (NIR), X-
ray, radar, magnetic resonance imaging (MRI) among others, 
each of which tends to emphasise a different aspect of a 
captured image. In addition to sensor modalities, the 
pluralistic nature of input images is also necessary due to 
many other factors - occlusion of objects of interest due to 
smoke, fog and other unwanted objects, changing 
illumination in a scenery for photography applications e.g. 
daylight exposure at different times of day, and adjustable 
parameters within the sensors themselves, such as focal 
length.  
    Notwithstanding the above, large amounts of data tend to 
contribute to problems common in signal processing 
including storage requirements, computation time, limited 
bandwidth and inconsistency with decisions pertaining 
sensor systems [1], as well as the lack of a standard 
assessment criteria to measure sensors belonging to different 
modalities. It therefore makes sense to reduce these multi-

dimensional data into just a compact single image that 
preserves relevant information and whose quality exceeds 
any of its inputs. The successful merging of contrasting, but 
complementary, features from multiple sensors should 
therefore be the goal of the image acquisition system.  
    A simple example would be of the UN Camp sequence set 
in Figure 1. A landscape is captured during night time using 
two image acquisition techniques. An NIR camera that 
detects strong thermal presence (within the 1.5-15µm 
spectrum) such as humans comprise one input. In general 
though, NIR sensors suffer from lower image resolution, 
prevalent image noise and the lack of availability of data sets 
which render them unsuitable for solitary use [2]. The second 
input is a standard image of the same scene, which is taken 
by a visual camera that captures strong textural background 
details (in the 0.45-0.7µm spectrum) but is severely limited 
in sparse illumination conditions. In this case the purpose is 
to enhance the lighting conditions in the scene and improve 
image qualities, so as to facilitate the detection of various 
moving objects and isolate pre-specified objects of interest 
i.e. tracking. 

 

   
 

 
 

Figure 1. Example of Visual-NIR image fusion 
 

    Depending on user requirements, a good image must 
possess the ability to detect the human figure against the 
detailed backdrop of terrain and forestry. The formation of a 
good quality image is crucial as it enables us to have a proper 
understanding of the scenery context, which may prove 

1 Image provided by TNO Human Factors Research 
Institute 

2014 Fifth International Conference on Intelligent Systems, Modelling and Simulation

2166-0662/14 $31.00 © 2014 IEEE

DOI 10.1109/ISMS.2014.58

306



decisive in real world surveillance and target recognition 
systems. 
    Therein lays the concept of fusion. As part of the grand 
challenge in image processing, image fusion aims to merge 
the salient aspects of two or more source images from these 
sensors to produce a singular output image, that contains all 
pertinent image features [3] and has a higher visual and 
numerical quality than any input, which may be essential in 
critical applications such as military surveillance. In this 
case, a simple correlation of pixels will not suffice due to the 
extremely diverse modalities employed for image 
acquisition.  
    The purpose of fusion transcends the output image quality 
alone. It essentially enables users to visualise different sets of 
data under one scene. An important factor why fusion has 
been so successful is that engineers, developers and users are 
able to save costs by utilising signal processing techniques in 
lieu of designing an expensive system for image acquisition. 
Fusion reduces data dimensionality while preserving salient 
information content, thus reducing storage costs [4].  
    Sensory systems [2] focus mainly on how information can 
be extracted from sensory data. Fusion is therefore desired so 
as to improve visual accuracy and imply specific inferences 
that could not be achieved by a single sensor. The fusion 
framework resembles the way humans locate their 
surroundings by using various cues from multiple modatilies. 
For instance, humans utilise binocular vision whereby they 
combine visual content from both the left and right eyes for 
visual processing.  
    Fusion also improves system reliability by reducing 
uncertainty in variables, thereby increasing accuracy [4] and 
aiding situational awareness [2]. It enables better decision 
making, localisation and discrimination of objects of interest 
- due to the potentiality of more complete information [2]. 
Most importantly, it enhances and enables us to distinguish 
complementary information for the purpose of detection and 
segmentation in many security applications. 

 

II. HISTORY OF IMAGE FUSION  
 
    The advent of multisensory applications in the 1980's 
particularly in the field of remote sensing, coinciding with 
extensive research discoveries in pyramid-based transform 
methods, introduced image fusion as a research area for the 
acquisition of higher quality images for human visualization 
[5].  
    As a research topic, image fusion can be uniquely 
perceived as in two ways: firstly abstraction-wise, as a sub-
branch of data fusion, which also includes fusion of other 
data types such as audio, video, multi-dimensional and 
complex numerical data [6]. Several examples have been 
put in practice, namely an intrusion detection system in 
cyberspace which fuses network data. In advanced vehicles, 
location estimates from a global positioning system (GPS) 
chip are merged with the on-board diagnostics (OBD) 
system of the car for automated navigation [6]. In medicine, 
electroencephalography (EEG) signals are combined with 

electrooculography (EOG) and respiratory signals for 
fatigue modelling of patients [7].  
    Algorithm-wise, fusion is an extension of image analysis 
methods that also comprise other image processing tools 
such as compression and coding, feature extraction, 
registration, recognition and segmentation. As it is, many of 
the image fusion approaches discussed here can generally be 
applied towards other image and signal processing 
applications. Examples include ICA for blind source 
separation of EEG and ECG signals in medicine [8] and for 
facial recognition [9] and the wavelet transform for 
dimensionality reduction for use in image coding. 
 

A. Early Fusion Systems 
    The primary purpose of fusion was initially restricted to 
human observation and decision making. The earliest and 
most basic form of fusion is pixel averaging, whereby each 
pixel of all input images is individually summed up and 
their average pixel value is incorporated into the fused 
image. However this method is extremely crude and its 
results proved unsatisfactory. The averaging method 
introduces artifacts especially when features present in only 
one input image is ‘superimposed’ on the fused output, as 
can occur in photographic multiple exposure. It also causes 
pattern cancellation and contrast reduction in the case where 
two inputs have features of equal salience but opposite 
contrast.     
    Most approaches are thus categorised under intermediate 
level fusion (ILF), also called fusion of features as the 
process involves extracting relevant features from the image 
using techniques such as multi-resolution analysis (MRA) 
and signal decomposition [4]. In [10], Nikolov et al. has 
classified image fusion algorithms into spatial and transform 
domain methods. Almost all fusion algorithms have since 
been based on a specific type of the transform domain, 
whereby a transform is performed on each input image and 
the transform coefficients undergo a fusion step. The 
resulting composite image is obtained by applying the 
inverse transform of the coefficients. The central idea of 
transform-based fusion methods is to modify the magnitude 
of the source image coefficients, so that edges and gradients 
are maximised. 

 

B. Pyramid-based Methods 
    A more tangible approach to image fusion is by pyramid 
decomposition. An image pyramid, an early form of multi-
resolution analysis (MRA), comprises a set of filtered and 
scaled representations of the image. Fusion is performed 
through selection of coefficients at every scale from the 
source image pyramids, followed by the inverse transform 
of the resulting pyramid [11]. 
    The pyramid method was first proposed by Burt (1984) 
[12], who introduced the low-pass Laplacian pyramid for 
binocular fusion. A Laplacian pyramid is the bandpass 
equivalent of the Gaussian pyramid, and is obtained by the 
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subtraction between two successive lowpass Gaussian 
pyramid levels. In ratio of low-pass (RoLP) pyramid the 
level is scaled to a ratio of two from its preceding level, 
whilst contrast pyramids are similar to RoLP but measure the 
ratio of luminence of a certain region within an image to the 
local background luminence. Eventually a host of improved 
pyramid-based schemes, including filter-subtract-decimate 
(FSD), morphological and gradient pyramids [13] have been 
proposed and used in fusion literature.  
    1988 saw the first application of fusion on visible, thermal 
and infrared images through works by Lillquist, 
Nandhakumar and Aggarwal and Rogers et al. [14], whilst 
Ajjimarangsee and Huntsberger have suggested utilising 
neural networks for fusion of these modalities. A weakness 
of the neural network method is the large overhead entailed 
from processing whole images. MRA techniques overcome 
this by decomposing images into details and average 
channels, where fusion can be performed in the wavelet 
coefficient space. 
    To that end, pyramid decomposition approaches have been 
in widespread use within the image fusion community, 
though it is not without drawbacks. It was often found that 
fused images tend to contain blocking artifacts particularly in 
regions where the multi-sensory input data are significantly 
different in modality. Another problem of pyramids is their 
lack of flexibility, i.e. lack of anisotropy and directional 
information. 

 

C. Wavelet-based Methods 
    In 1993 Hunstberger and Jawerth [15] introduced us to a 
wavelet-based image fusion approach. Thereafter in 1995 a 
study by Li et al. [16] also used wavelets as alternative basis 
functions for multisensor image fusion, which is able to 
overcome the limitations of pyramid-based schemes by 
virtue of its directionality. This means an image is 
decomposed into its low frequency approximation and 
horizontal, vertical and diagonal edges. Essentially, 
wavelets enable spatial information to be incorporated into 
the transform process. These efforts and another work by 
Chipman et al. [17] kick-started a trend of using wavelet 
transforms for image fusion, on which a majority of current 
fusion algorithms in existence is based.  
    As opposed to the non-local and non-finite sinusoidal 
representations used by Fourier analysis, wavelets can be 
suitably used in finite domains and are a good fit for 
approximating data with sharp discontinuities or edges. 
The wavelet transform works on the same premise as the 
pyramid, where the sub-band coefficients of the 
corresponding frequency content are merged and the 
subsequent inverse transform generates a synthesised fused 
image. Wavelet methods that are based on critically-
sampling image signals, namely the discrete wavelet 
transform (DWT), suffer from shift variance whereby a 
discontinuity by a source signal could adversely affect its 
transform equivalent. This is a direct consequence of the 
down-sampling operation of wavelet transforms. An 
alternative to this is to use oversampled schemes, though 

that would increase redundancy and add to the processing 
time and cost. A more feasible solution was proposed by 
Rockinger [18] in 1997 for a shift-invariant DWT (SI-
DWT) method which discards the subsampling step, 
therefore rendering it overcomplete. Further, Chibani [19] 
introduced a redundant wavelet transform (RWT), using an 
undecimated form of the dyadic filter tree which is best 
implemented via the à trous algorithm. Elsewhere the Haar 
wavelet solves the shift variant DWT by circumventing the 
down-sampling move in the decomposition process and 
utilising a set of new filters throughout the process of each 
decomposition. 
    The development of complex-based wavelet transforms, 
namely the dual-tree complex wavelet transform (DT-CWT) 
was able to overcome poor directional and frequency 
selectivity issues surrounding previous wavelet models, in 
addition to reducing over-completeness and easily achieving 
perfect reconstruction. Its complex property means the 
phase information derived from the transformation can be 
utilised for further analysis if necessary. Offshoots derived 
from the wavelet transform include contourlet, ridgelet and 
curvelet transforms that incorporate anisotropic behaviour 
and directional sensitivity to better facilitate the analysis of 
essential image features like edges. 
 

D. Data Driven Methods 
    A perceived weakness of the wavelet transform, and 
similar transforms such as Fourier and Gabor, is the 
constant dependence of the basis functions on a fixed 
mathematical property that bears no relation statistically to 
the input data at hand, which often are non-linear and non-
stationary. In this regard, independent component analysis 
(ICA) [cvejic07ICA], empirical mode decomposition 
(EMD) and other non-parametric and data-driven methods 
are considered superior as its features are directly derived 
from the training of data. For instance, instead of a standard 
bases system using wavelets, a set of bases that are suitable 
for particular types of images may be trained for ICA. 
    In contrast, EMD is an entirely adaptive fusion approach 
that makes no assumptions of the data. EMD works in the 
spatial domain where it recursively deconstructs an image 
into intrinsic mode functions (IMF) at different frequencies. 
The decomposition method utilises envelopes associated 
with the local maxima and minima respectively. Fusion 
takes place through a weighted combination of IMF's of 
input images. Compared to wavelet coefficients, the IMF's 
are not fixed and can be suited to fit the data at hand. 
    ICA and EMD are both examples of non-parametric 
regression that requires a larger sample size of data, which 
in turn supplies the model structure and model estimates. 
The works on data modelling have since prompted a study 
into using biologically-inspired models, namely colour 
vision for fusion in 1995 by Waxman and colleagues [20], 
in which opponent processing was applied on fusing visible 
and infrared images. Since then, new directions in image 
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fusion have led to the development of a number of 
biological models, which are based on the way the human 
brain processes and combines information obtained by many 
different senses. ICA, for example, assumes the solution to 
the ‘cocktail party’ problem in which auditory signal 
sources are distinguished by the human cognitive system. 
 

E. State-of-the-art in Image Fusion 
    Another emerging trend in image fusion is the application 
of region-based methods. This approach is borne from the 
understanding that regions, or wholesome objects within an 
image, tend to carry information of interest. It therefore 
makes sense to focus on regions as opposed to just 
individual pixels, since pixels can be processed more 
efficiently if they are treated as a collective group within a 
region rather than separate entities. Region-based fusion 
may therefore help to overcome some drawbacks of pixel-
based fusion, like blurring, susceptibility to noise and 
misregistration. 
    Other notable approaches for image fusion include those 
based on statistical and estimation theory, as first proposed 
by Sharma et al. [21] using Bayesian fusion. Particle models 
and Bayesian-based fusion achieve superior performance 
with high requirement applications, though this often comes 
at a cost of higher computational complexity. 
    Today a plethora of image fusion methods are in 
existence, each with their advantages and suitability 
designed for certain fusion applications. Significant 
improvements have taken place to close the gap between 
computer vision and the human perception of image quality. 
However, the search for the gold standard in fusion remains. 
 

III. IMAGE FUSION APPLICATIONS 
 
    It is generally acknowledged that all imaging applications 
that comprise analysis of multiple image inputs may benefit 
from image fusion. Indeed, image fusion has been found to 
be very useful in a variety of critical applications such as 
remote sensing, medical imaging, industrial defect detection 
and military surveillance. 
    Remote sensing (RS) applications are concerned with the 
acquisition of geo-spatial images using aerial photography 
by satellites and airborne sensors, such as SPOT, 
QuickBird, IKONOS and IRS. RS aims to deliver high 
quality geographic images in terms of both spatial and 
spectral resolutions for purposes such as urban planning, 
agriculture and geology. Developing a high performance 
sensor camera to perform such tasks is unfeasible due to 
factors such as the radiation energy absorbed by the sensor 
and the limited data transfer rate from satellite platform to 
ground. Rather, signal processing methods are utilised to 
achieve similarly high quality results. 
    In [22] a detailed review of fusion techniques for RS was 
presented. In pan-sharpening, acquired data of a given scene 
comprise two modalities: a panchromatic (PAN) image 

depicting the scene in a high spatial resolution but in a 
single frequency, and a multispectral/hyperspectral 
(MS/HS) image that captures the landscape in a multitude of 
spectral resolutions across the wavelength spectrum though 
at 1:4 the spatial resolutions of PAN. Fusion offers a 
practical and cost effective method to aid in distinguishing 
objects with salient information from RS imagery; by means 
of injecting the detailed spatial resolutions of PAN into a 
resampled version of multispectral images using methods 
such as the wavelet transform.  
    Classical fusion techniques in RS applications also 
include the intensity-hue-saturation (IHS) method in which 
the red-green-blue (RGB) coloured domain of the original 
MS imagery is transformed into IHS to obtain a better 
separation of colour for fusion with PAN images, though it 
often produces spectral degradation.  
    Others include the principal component analysis (PCA), 
in which the MS image is decorrelated into several 
components. Fusion occurs by replacing the first/principal 
MS component with the PAN image, coupled with the 
Brovey transform that multiplies each MS band by the PAN 
image, and finally by the division of each product by the 
sum of the MS bands. However these methods tend to 
ignore the need for high quality outputs of spectral 
information, which has proven essential in applications such 
as lithology and soil and vegetation analysis. High pass 
filtering (HPF) or modulation (HPM) of PAN inputs added 
to multispectral images are able to overcome this drawback. 
More recently, given the conciliatory nature of RS fusion 
between spatial resolution of PAN and spectral resolution of 
MS images, wavelet-based fusion techniques were found to 
be better equipped to handle this trade-off.  
    In medicine, image fusion and other technological 
advances are increasingly being relied upon for diagnostics 
and treatment of patients. An overview of medical image 
fusion was given by Pattichis et al. [23]. Fusion aids medical 
imaging by providing a complementary composite of various 
image formats stemming from multiple modalities, such as 
ultrasound, magnetic resonance image (MRI), computed 
tomography (CT), positron emission tomography (PET), and 
single photon emission computed tomography (SPECT), 
which in turn helps to delineate and distinguish targeted 
objects of interest such as tumours and blood vessels. In 
radiation oncology, a treatment plan for radiotherapy 
involves CT data primarily for patients’ dose calculation, 
while the outlines of tumour are better represented in MRI. 
For medical diagnosis, CT best illustrates denser tissues with 
low distortion, while MRI offers more comprehensive 
information on soft tissues with higher distortion and PET 
provides better information on blood flow with a generally 
low spatial resolution [7]. Using image fusion helps to 
distinguish important anatomical objects of interest of both 
sources. 
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IV. CONCLUSION 
 
    An introduction and background study of the field of 
image fusion has been presented in this study. It aims to 
brief the general reader as to the basics of fusion and its 
motivation. The history of fusion, the advent of which 
coincides with the development of pyramd-based 
decomposition methods in the 1980’s, has also been 
discussed. The paper concludes with a discourse on the 
contribution of fusion in diverse fields of technology, 
ranging from remote sensing to medicine. 
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