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ABSTRACT

We present a novel methodology for the fusion of multiple

(two or more) images using the multivariate extension of

empirical mode decomposition (MEMD). Empirical mode

decomposition (EMD) is a data-driven method which decom-

poses input data into its intrinsic oscillatory modes, known

as intrinsic mode functions (IMFs), without making a priori

assumptions regarding the data. We show that the multivari-

ate and multidimensional extensions of EMD are suitable

for image fusion purposes. We further demonstrate that

while multidimensional extensions, by design, may seem

more appropriate for tasks related to image processing, the

proposed multivariate extension outperforms these in image

fusion applications owing to its mode-alignment property

for IMFs. Case studies involving multi-focus image fusion

and pan-sharpening of multi-spectral images are presented to

demonstrate the effectiveness of the proposed method.

Index Terms— Empirical mode decomposition (EMD),

Multivariate EMD (MEMD), Bidimensional EMD, Multi-

focus image fusion, Pan-sharpening.

1. INTRODUCTION

Image fusion is the process of combining multiple images to

produce a single image which carries more information than

any of the images used for blending [1]. Fusion techniques

are useful for cases where the limitations of optical sensors

and imaging conditions make it difficult to view multiple ob-

jects clearly in a single image. In such cases, multiple images

are obtained with each containing partial information about

a scene. Multi-focus and Multi-exposure images are two ex-

ample classes in which the relevant objects may be obscured

as a result of either being out of focus or not being prop-

erly exposed to the light source. These sets of images can be

merged to present the complete information in a single image

via multi-focus or multi-exposure image fusion.

Similarly, in remote sensing applications, we often require

both high spatial and spectral information in a single image

which is not physically possible to obtain via available sen-

sors. In such cases, fusion of high spatial resolution panchro-

matic image (PAN) and low spatial resolution (but high spec-

tral resolution) multispectral (MS) images is performed to ob-

tain the desired high spatial and spectral resolution MS image.

This process is also called Pan-sharpening [2].

Image fusion methods may be characterized as pixel-level

fusion, multi-scale fusion and hybrid fusion techniques. The

key steps of pixel level fusion include: i) generation of a quan-

titative map of information content for each image; ii) com-

parison of information content at pixel level; iii) assigning

weights to individual pixels (or a set of pixels) based on in-

formation content; iv) and weighted recombination to obtain

fused image. The advantages of such class of methods in-

clude their low computational cost and simplicity, while the

main disadvantage is their susceptibility to noise. Multi-scale

techniques, on the other hand, operate by first decomposing

input images in terms of their frequency components which

are then combined to obtain a single fused image. Here, the

main steps include: i) converting input images into transform

domain coefficients; ii) assigning weights to the coefficients

based on information content; iii) selecting the relevant coeffi-

cients; and iv) taking the inverse transform. Typical examples

are the methods based on Gaussian pyramids, Fast Fourier

Transform (FFT), Discrete Cosine Transform (DCT) [3], and

Discrete Wavelet Transform (DWT) [4].

We propose a hybrid (multi-scale and pixel-level) and

data-driven scheme for image fusion based on multivariate

extensions of empirical mode decomposition (MEMD) al-

gorithm [6]. We also compare our results with the standard

bi-dimensional EMD (BDEMD) [7] based fusion approach.

The EMD based fusion methods are employed since they

are fully data adaptive, enable fusion of intrinsic scales at

local level, and allow fusion of matched spatial frequency

content between input images. Standard multiscale methods

(based on Fourier and wavelet transform) employ static filter

banks and predefined basis functions which hinder the fusion

of matched spatial frequency content between input images.

We demonstrate the potential of the proposed scheme in two

application scenarios: a) multi-focus image fusion; and b)

pan-sharpening of MS images. In both cases, the fusion re-

sults obtained from the proposed scheme outperforms the

results obtained by BDEMD both qualitatively and quantita-

tively.



2. EMD AND ITS MULTIVARIATE AND

MULTIDIMENSIONAL EXTENSIONS

2.1. Standard EMD

Empirical mode decomposition (EMD) [5] is a data-driven

method which decomposes an arbitrary signal x(k) into a set

of multiple oscillatory components called the intrinsic mode

functions (IMFs) via an iterative process known as sifting al-

gorithm [6]. The IMFs represent the intrinsic temporal modes

(scales) that are present in the input data which when added

together reproduce the input x(k), as shown in eq. (1) below:

x(k) =
M∑

m=1

cm(k) + r(k) (1)

The residual r(k) does not contain any oscillations and repre-

sents a trend within the signal.

The recursive sifting algorithm operates by defining the

upper and lower envelopes of an input signal by interpolat-

ing its extrema. The local mean m(k) is then estimated by

averaging these envelopes, which is subsequently subtracted

from the input signal x(k) to obtain the fast oscillating sig-

nal d(k) = x(k) − m(k). Next, d(k) is checked for an IMF

condition; if it is not satisfied, the process is repeated until

the condition for IMF is satisfied and we obtain an IMF. The

sifting process stops when d(k) has inadequate extrema.

2.2. Bi-dimensional EMD (BDEMD)

Bi-dimensional EMD (BDEMD) [7] is a generic extension

of EMD for images. Various algorithms for computing

BDEMD decomposition exist which mainly differ in the way

the extrema are interpolated to obtain upper and lower en-

velopes. Radial basis functions (tensor product) or B-splines

are commonly used methods for interpolation [7], whereas

the method by Linderhed [8] uses thin-plate splines for the

interpolation of the extrema.

2.3. Multivariate EMD (MEMD)

Multivariate EMD (MEMD) algorithm extends the function-

ality of EMD to signals containing multiple channels [6]. The

rationale behind the MEMD is to separate inherent rotations

(rather than oscillations) within a signal. This is achieved by

estimating the local mean of a multivariate signal in multidi-

mensional spaces where the signal resides. For multivariate

signals, however, the concept of extrema cannot be defined

in clear terms and therefore envelopes cannot be obtained as

a trivial extension of univariate case. To address this issue,

MEMD operates by projecting an input multivariate signal in

V uniformly spaced directions on a unit p-sphere; the extrema

of the so projected signals are then interpolated to obtain mul-

tiple envelopes which are subsequently averaged to obtain the

local mean.

3. MEMD VS BDEMD: MODE ALIGNMENT

Fig. 1 shows correlations of normalized IMFs for two multi-

focus images (Fig. 3(a) and Fig. 3(c)), obtained using the
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Fig. 1: Cross-correlation of normalised IMFs for multi-focus

images (left) BDEMD (right) MEMD.
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Fig. 2: The proposed scheme illustrating the local fusion of

P arbitrary images to yield a single fused image Î using the

MEMD algorithm.

BDEMD (left) and MEMD (right). Note that the MEMD

produced diagonally dominant correlograms of IMFs as com-

pared to the BDEMD, proving that the same-indexed IMFs

generated from MEMD are highly correlated, a major require-

ment in most fusion applications. This mode alignment prop-

erty of MEMD is a result of direct processing of input images

within MEMD, whereas the lack of it in BDEMD is due to

the fact that it processes multiple input images separately.

4. MEMD- AND BDEMD-BASED IMAGE FUSION

The proposed algorithm based on MEMD operates by first

converting the P input images into a vector form by concate-

nating their rows/columns. The resulting vectors are then put

together to form a multivariate signal containing P number of

data channels. MEMD is next applied to the resulting signal

yielding M number of IMFs for each channel; let us denote

the m−th IMF of the p−th channel (input image) by Ipm(a, b),
where m = 1 . . .M ; n = 1 . . . P ; and a and b represent

the spatial coordinates. To perform fusion at the pixel level,



(a) Image 1 (b) Image 3 (c) Image 7 (d) BDEMD (e) MEMD

Fig. 3: Multi-focus image fusion results for data set 1.

sub-images Ipm(a, b) are divided into small windows of size

N ×N and their variances ξpm(a, b) are computed. Next, the

sub-images Ipm(a, b) are assigned local weights, WF p
m(a, b),

based on ξpm(a, b) by using the following relation:

WF p
m(a, b) =

ξpm(a, b)
∑P

p=1
ξ
p
m(a, b)

(2)

This means that the IMFs exhibiting greater variance are as-

signed higher weights WF p
m(a, b) than those exhibiting lower

variances, thereby maximising their contribution to the fused

image. To obtain the m−th IMF of the fused image, the

IMFs of all P input images {Ipm(a, b)}Pp=1
are multiplied by

their respective weight factors {WF p
m(a, b)}Pp=1

and added

together to obtain:

Îm(a, b) =

P∑

p=1

WF p
m(a, b)× Ipm(a, b) (3)

This procedure is repeated for all M IMFs to obtain a set of

fused IMFs {Îm(a, b)}Mm=1
which are added together to yield

the fused image Î .

Î(a, b) =

M∑

m=1

Îm(a, b) (4)

The block diagram of the proposed multivariate EMD based

fusion algorithm is shown in Fig. 2.

The BDEMD based fusion algorithm operates similarly to

the MEMD algorithm illustrated above. The only difference

is that instead of a single operation of MEMD on all input

images, BDEMD is applied separately on P input images to

obtain Mp IMFs, where p = 1 . . .M . Note that owing to

the empirical nature of the EMD algorithm, typically differ-

ent number of IMFs are obtained for multiple input images

resulting in mismatched IMFs, thus hindering the fusion pro-

cess.

5. CASE STUDY 1: MULTI-FOCUS IMAGE FUSION

As a case study, we first performed fusion of multi-focus im-

ages using MEMD and compared the results with those ob-

tained from BDEMD based fusion approach. For this pur-

pose, multiple images of 30 different scenes were used; seven

images were taken of each scene with different parts of the

scene out-of-focus in each image.

For quantitative evaluation of the fusion results, we

have employed Entropy (E) [11], objective image fusion

(QABF ) [10] and the spatial frequency (SF ) [9] perfor-

mance measures. Collectively, these measures served to

quantify the spatial distortion as well as the information

present in the fused image. The parameters used in MEMD

algorithm were: number of direction vectors V = 8 and the

square window length of N = 9. The standard BDEMD

algorithm given in [7] was implemented for fusion purposes.

Fig. 3 shows a subset of input multi-focus images and the
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Fig. 4: Quantitative comparison of the proposed fusion

schemes on 30 input multi-focus images. (Left column)

Bar graphs of the values of quantitative measures, including

%Entropy, %SF, and QABF shown respectively from top to

bottom, obtained for the MEMD- (dark green), and BDEMD-

(yellow) based fusion methods. (Right column) Pie charts

of the quantitative measures highlighting the relative perfor-

mance of the MEMD (dark green), and BDEMD (yellow).

fused images obtained from the two methods; only three out

of seven input images are shown due to the space restrictions.

Note from Figs. 3(a-c) that each input image has some spe-

cific objects within focus: Image 1, for instance, focuses on

the nearest objects such as the coin, whereas the Image 2 and

Image 3 focus on the middle and the farthest objects respec-
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Fig. 5: Fusion results for Pleiades Tolouse Image.

tively. The proposed MEMD-based fusion algorithm resulted

in a single output image, shown in Fig. 3(d), which has all

objects within focus. Similarly, the BDEMD-based fused

image also yielded an improved image, though not as sharp

as the one obtained via MEMD: Please observe the improved

sharpness of the word ‘DUTCH’ written on the key chain in

the MEMD-fused image. Similar trend was observed in most

of the 30 input multi-focus data sets used in our experiments,

with MEMD outperforming BDEMD-based fusion. This is

evident from Fig. 4 (left) which shows the bar graphs of the

values of the quantitative performance measures (E, SF , and

QABF ) for all data sets. To complement that, Fig. 4 (right)

shows pie-charts highlighting the number of cases in terms

of percentage where each method performed best. It can be

observed that for E and SF measures, the MEMD yielded

superior results for approximately all input data sets, whereas

for QABF , the MEMD produced better results for 83% of

the input data sets.

6. CASE STUDY 2: PAN-SHARPENING

We next performed experiments for Pan-sharpening of mul-

tispectral (MS) images using the existing BDEMD-based

fusion and the proposed MEMD-based fusion algorithms.

Their performance was compared against a multiscale Pan-

sharpening algorithm called àtrous wavelet transform (AWT)

method [12]. The simulated Pleiades data set consisting of

1024× 1024 pixels of i) Strasbourg and ii) Tolouse was used

in our experiments. All the input MS images contained four

bands i.e. blue (B), green (G), red (R) and near-infrared

(NIR). The ground truth for both data sets was also available

(not shown in Fig. 5 due to space restrictions) and was used

for the quantitative analysis of the fusion results.

Pan-sharpening of MS images via MEMD and BDEMD

was performed as follows: the intensity plane I of the in-

put MS image was first obtained by averaging the bands of

the MS image. The so obtained intensity image I was then

fused with the high resolution panchromatic image to obtain

the ‘detailed’ intensity image Î . The details added by the fu-

sion process were extracted by subtracting the original inten-

sity plane I from Î , which were then separately added to the

B, G, R, and NIR components of the MS image to obtain the

Pan-sharpened MS image.

Figs. 5(a-b) show the source MS and PAN images of

Strasbourg city taken from the Pleiades sensor. The fused im-

ages obtained using AWT, BDEMD and MEMD algorithms

are shown in Figs. 5(c-e) respectively. It can be noticed that

the spectral performance of the images obtained from the pro-

posed MEMD-based method, shown in Fig. 5(c), matches the

result of the state-of-the-art AWT technique. The proposed

method, however, showed much improved spatial perfor-

mance as compared to both AWT and BDEMD based fusion

methods.

Table 1: Quantitative Results of Pan-sharpening

Pleiades Strasbourgh Pleiades Tolouse

AWT BD.. MEMD AWT BD.. MEMD

S 2.91 4.96 2.90 4.70 5.23 5.01

ER 4.247 6.52 2.981 5.74 5.72 3.52

Q4 89.31 54.36 93.89 94.2 59.22 94.98

The improved performance of MEMD can be further val-

idated by the quantitative results of pan-sharpening on both

data sets. We employed the following set of performance

metrics for this purpose: i) Relative dimensionless global er-

ror in synthesis (ER, ideally 0), ii) Spectral Angle Mapper

(S, ideally 0), and iii) Quaternion Index (Q4, ideally 100%)

[2]. The results of the quantitative analysis are presented in

Table I with the best value for each quality measure are la-

beled in bold. Please observe that in both data sets the pro-

posed scheme performed better than AWT and BDEMD fu-

sion methods for all performance metrics with an exception to

S value for the Tolouse image where AWT performed better.

Superiority of MEMD over BDEMD can be attributed to data

adaptive and local nature of its decomposition which mani-

fested in improved spatial performance in both case studies.

7. CONCLUSIONS

We have presented a method for the fusion of multiple images

using multivariate empirical mode decomposition (MEMD)

algorithm. The superiority of the method has been demon-

strated on a large data set for two applications: i) multi-focus

fusion, and ii) pan-sharpening of multi-spectral images. In

addition to the qualitative analysis, we have also employed a

wide range of quantitative performance measures to compare

the fusion results obtained from the two approaches.
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