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Image Fusion with Guided Filtering
Shutao Li, Member, IEEE, Xudong Kang, Student Member, IEEE, and Jianwen Hu

Abstract— A fast and effective image fusion method is proposed
for creating a highly informative fused image through merging
multiple images. The proposed method is based on a two-scale
decomposition of an image into a base layer containing large
scale variations in intensity, and a detail layer capturing small
scale details. A novel guided filtering-based weighted average
technique is proposed to make full use of spatial consistency
for fusion of the base and detail layers. Experimental results
demonstrate that the proposed method can obtain state-of-the-art
performance for fusion of multispectral, multifocus, multimodal,
and multiexposure images.

Index Terms— Guided filter, image fusion, spatial consistency,
two-scale decomposition.

I. INTRODUCTION

IMAGE fusion is an important technique for various image

processing and computer vision applications such as fea-

ture extraction and target recognition. Through image fusion,

different images of the same scene can be combined into a

single fused image [1]. The fused image can provide more

comprehensive information about the scene which is more

useful for human and machine perception. For instance, the

performance of feature extraction algorithms can be improved

by fusing multi-spectral remote sensing images [2]. The fusion

of multi-exposure images can be used for digital photogra-

phy [3]. In these applications, a good image fusion method

has the following properties. First, it can preserve most of the

useful information of different images. Second, it does not

produce artifacts. Third, it is robust to imperfect conditions

such as mis-registration and noise.

A large number of image fusion methods [4]–[7] have

been proposed in literature. Among these methods, multi-

scale image fusion [5] and data-driven image fusion [6]

are very successful methods. They focus on different data

representations, e.g., multi-scale coefficients [8], [9], or data

driven decomposition coefficients [6], [10] and different image

fusion rules to guide the fusion of coefficients. The major

advantage of these methods is that they can well preserve the

details of different source images. However, these kinds of

methods may produce brightness and color distortions since
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spatial consistency is not well considered in the fusion process.

To make full use of spatial context, optimization based image

fusion approaches, e.g., generalized random walks [3], and

Markov random fields [11] based methods have been proposed.

These methods focus on estimating spatially smooth and edge-

aligned weights by solving an energy function and then fusing

the source images by weighted average of pixel values. How-

ever, optimization based methods have a common limitation,

i.e., inefficiency, since they require multiple iterations to find

the global optimal solution. Moreover, another drawback is

that global optimization based methods may over-smooth the

resulting weights, which is not good for fusion.

To solve the problems mentioned above, a novel image

fusion method with guided filtering is proposed in this

paper. Experimental results show that the proposed method

gives a performance comparable with state-of-the-art fusion

approaches. Several advantages of the proposed image fusion

approach are highlighted in the following.

1) Traditional multi-scale image fusion methods require

more than two scales to obtain satisfactory fusion results.

The key contribution of this paper is to present a fast

two-scale fusion method which does not rely heavily on

a specific image decomposition method. A simple aver-

age filter is qualified for the proposed fusion framework.

2) A novel weight construction method is proposed to

combine pixel saliency and spatial context for image

fusion. Instead of using optimization based methods,

guided filtering is adopted as a local filtering method

for image fusion.

3) An important observation of this paper is that the roles of

two measures, i.e., pixel saliency and spatial consistency

are quite different when fusing different layers. In this

paper, the roles of pixel saliency and spatial consistency

are controlled through adjusting the parameters of the

guided filter.

The remainder of this paper is organized as follows. In

Section II, the guided image filtering algorithm is briefly

reviewed. Section III describes the proposed image fusion

algorithm. The experimental results and discussions are pre-

sented in Section IV. Finally, Section V concludes the paper.

II. GUIDED IMAGE FILTERING

Recently, edge-preserving filters [12], [13] have been an

active research topic in image processing. Edge-preserving

smoothing filters such as guided filter [12], weighted least

squares [13], and bilateral filter [14] can avoid ringing artifacts

since they will not blur strong edges in the decomposition

process. Among them, the guided filter is a recently proposed

edge-preserving filter, and the computing time of which is

independent of the filter size. Furthermore, the guided filter
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Fig. 1. Illustration of window choice.

is based on a local linear model, making it qualified for

other applications such as image matting, up-sampling and

colorization [12]. In this paper, the guided filter is first applied

for image fusion.

In theory, the guided filter assumes that the filtering output

O is a linear transformation of the guidance image I in a local

window ωk centered at pixel k.

Oi = akIi + bk ∀i ∈ ωk (1)

where ωk is a square window of size (2r +1)× (2r +1). The

linear coefficients ak and bk are constant in ωk and can be

estimated by minimizing the squared difference between the

output image O and the input image P .

E(ak, bk) =
∑

i∈ωk

(

(akIi + bk − Pi)
2

+ ǫa2
k

)

(2)

where ǫ is a regularization parameter given by the user.

The coefficients ak and bk can be directly solved by linear

regression [15] as follows:

ak =

1

|ω|

∑

i∈ωk
IiPi − µkP k

δk + ǫ
(3)

bk = P k − akµk (4)

where µk and δk are the mean and variance of I in ωk

respectively, |ω| is the number of pixels in ωk, and P k is the

mean of P in ωk. Next, the output image can be calculated

according to (1). As shown in Fig. 1, all local windows

centered at pixel k in the window ωi will contain pixel i.

So, the value of Oi in (1) will change when it is computed in

different windows ωk. To solve this problem, all the possible

values of coefficients ak and bk are first averaged. Then, the

filtering output is estimated as follows:

Oi = aiIi + bi (5)

where ai = 1

|ω|

∑

k∈ωi
ak, bi = 1

|ω|

∑

k∈ωi
bk. In this paper,

Gr,ǫ (P, I) is used to represent the guided filtering operation,

where r and ǫ are the parameters which decide the filter size

and blur degree of the guided filter, respectively. Moreover,

P and I refer to the input image and guidance image,

respectively.

Furthermore, when the input is a color image, the filtering

output can be obtained by conducting the guided filtering

(a) (b) (c) (d)

Fig. 2. Two examples of guided filtering. (a) and (c) are two input images
of the guided filter. Image (b) is the filtered image (r = 15, ǫ = 0.3), with
image (a) serving as the input image and the guidance image simultaneously.
Image (d) is the filtered image (r = 10, ǫ = 10

−6), with images (a) and (c)
serving as the guidance image and the input image, respectively.

on the red, green, and blue channels of the input image,

respectively. And when the guidance image I is a color image,

the guided filter should be extended by the following steps.

First, equation (1) is rewritten as follows:

Oi = aT
k Ii + bk ∀i ∈ ωk (6)

where ak is a 3 × 1 coefficient vector and Ii is a 3 × 1 color

vector. Then, similar to (3)–(5), the output of guided filtering

can be calculated as follows:

ak = (Σk + ǫU)

(

1

|ω|

∑

i∈ωk

Iipi − µkpk

)

(7)

bk = pk − aT
k µk (8)

Oi = aT
i Ii + bi (9)

where Σk is the 3× 3 covariance matrix of I in ωk, and U is

the 3 × 3 identity matrix.

For instance, Fig. 2(a) shows a color image of size

620×464. Guided filtering is conducted on each color channel

of this image to obtain the color filtered image shown in

Fig. 2(b) (for this example, Fig. 2(a) serves as the guidance

image and the input image simultaneously). As shown in the

close-up view in Fig. 2(b), the guided filter can blur the

image details while preserving the strong edges of the image.

Fig. 2(c) and (d) give another example of guided filtering

when the input image and guidance image are different. In

this example, Fig. 2(c) and (a) serve as the input image and

the color guidance image, respectively. It can be seen that the

input image shown in Fig. 2(c) is noisy and not aligned with

object boundaries. As shown in Fig. 2(d), after guided filtering,

noisy pixels are removed and the edges in the filtered image

are aligned with object boundaries. It demonstrates that those

pixels with similar colors in the guidance image tend to have

similar values in the filtering process.

III. IMAGE FUSION WITH GUIDED FILTERING

Fig. 3 summarizes the main processes of the proposed

guided filtering based fusion method (GFF). First, an average

filter is utilized to get the two-scale representations. Then, the

base and detail layers are fused through using a guided filtering

based weighted average method.

A. Two-Scale Image Decomposition

As shown in Fig. 3, the source images are first decomposed

into two-scale representations by average filtering. The base

layer of each source image is obtained as follows:

Bn = In ∗ Z (10)
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Fig. 3. Schematic diagram of the proposed image fusion method based on guided filtering.

where In is the nth source image, Z is the average filter, and

the size of the average filter is conventionally set to 31× 31 .

Once the base layer is obtained, the detail layer can be easily

obtained by subtracting the base layer from the source image.

Dn = In − Bn. (11)

The two-scale decomposition step aims at separating each

source image into a base layer containing the large-scale

variations in intensity and a detail layer containing the small-

scale details.

B. Weight Map Construction With Guided Filtering

As shown in Fig. 3, the weight map is constructed as

follows. First, Laplacian filtering is applied to each source

image to obtain the high-pass image Hn.

Hn = In ∗ L (12)

where L is a 3 × 3 Laplacian filter. Then, the local average

of the absolute value of Hn is used to construct the saliency

maps Sn.

Sn = |Hn| ∗ grg,σg
(13)

where g is a Gaussian low-pass filter of size

(2rg + 1) (2rg + 1), and the parameters rg and σg are set to 5.

The measured saliency maps provide good characterization

of the saliency level of detail information. Next, the saliency

maps are compared to determine the weight maps as follows:

P k
n =

{

1 if Sk
n = max

(

Sk
1 , Sk

2 , . . . , Sk
N

)

0 otherwise
(14)

where N is number of source images, Sk
n is the saliency value

of the pixel k in the nth image. However, the weight maps

obtained above are usually noisy and not aligned with object

boundaries (see Fig. 3), which may produce artifacts to the

fused image. Using spatial consistency is an effective way

to solve this problem. Spatial consistency means that if two

adjacent pixels have similar brightness or color, they will tend

to have similar weights. A popular spatial consistency based

fusion approach is formulating an energy function, where

the pixel saliencies are encoded in the function and edge

aligned weights are enforced by regularization terms, e.g.,

a smoothness term. This energy function can be then mini-

mized globally to obtain the desired weight maps. However,

the optimization based methods are often relatively inefficient.

In this paper, an interesting alternative to optimization based

methods is proposed. Guided image filtering is performed on

each weight map Pn with the corresponding source image In

serving as the guidance image.

WB
n = Gr1,ǫ1 (Pn, In) (15)

WD
n = Gr2,ǫ2 (Pn, In) (16)

where r1, ǫ1, r2, and ǫ2 are the parameters of the guided filter,

WB
n and WD

n are the resulting weight maps of the base and

detail layers. Finally, the values of the N weight maps are

normalized such that they sum to one at each pixel k.

The motivation of the proposed weight construction method

is as follows. According to (1), (3) and (4), it can be seen that

if the local variance at a position i is very small which means

that the pixel is in a flat area of the guidance image, then ak

will become close to 0 and the filtering output O will equal

to P k, i.e., the average of adjacent input pixels. In contrast,

if the local variance of pixel i is very large which means that

the pixel i is in an edge area, then ak will become far from
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Fig. 4. Illustrations of nine pairs of testing images of the Petrović database.

zero. As demonstrated in [12], ∇O ≈ a∇I will become true,

which means that only the weights in one side of the edge will

be averaged. In both situations, those pixels with similar color

or brightness tend to have similar weights. This is exactly the

principle of spatial consistency.

Furthermore, as shown in Fig. 3, the base layers look

spatially smooth and thus the corresponding weights also

should be spatially smooth. Otherwise, artificial edges may

be produced. In contrast, sharp and edge-aligned weights are

preferred for fusing the detail layers since details may be lost

when the weights are over-smoothed. Therefore, a large filter

size and a large blur degree are preferred for fusing the base

layers, while a small filter size and a samll blur degree are

preferred for the detail layers.

C. Two-Scale Image Reconstruction

Two-scale image reconstruction consists of the following

two steps. First, the base and detail layers of different source

images are fused together by weighted averaging

B =

N
∑

n=1

WB
n Bn (17)

D =

N
∑

n=1

WD
n Dn. (18)

Then, the fused image F is obtained by combining the fused

base layer B and the fused detail layer D

F = B + D. (19)

IV. EXPERIMENTS AND DISCUSSION

A. Experimental Setup

Experiments are performed on three image databases, i.e.,

the Petrović database [16] which contains 50 pairs of images

including aerial images, outdoor images (natural, industrial)

and indoor images (with different focus points and expo-

sure settings), the multi-focus image database which contains

10 pairs of multi-focus images, and the multi-exposure and

multi-modal image database which contains 2 pairs of color

multi-exposure images and 8 pairs of multi-modal images.

The testing images have been used in many related papers

[3]–[10], [17]–[21]. Fig. 4 shows 9 pairs of images of the

Petrović database. Fig. 5 shows the multi-focus database.

Fig. 5. Multifocus image database composed by ten pairs of multifocus
images.

Fig. 6. Multiexposure and multimodal image database composed by two
pairs of multiexposure images and eight pairs of multimodal images.

Further, Fig. 6 shows the multi-exposure and multi-modal

database.

The proposed guided filtering based fusion method (GFF)

is compared with seven image fusion algorithms based

on Laplacian pyramid (LAP) [8], stationary wavelet trans-

form (SWT) [9], curvelet transform (CVT) [19], non-

subsampled contourlet transform (NSCT) [20], generalized

random walks (GRW) [3], wavelet-based statistical sharpness

measure (WSSM) [21] and high order singular value decompo-

sition (HOSVD) [10], respectively. The parameter settings of

these methods are as follows. Four decomposition levels, the

“averaging” scheme for the low-pass sub-band, the absolute

maximum choosing scheme for the band-pass sub-band and

the 3 × 3 window based consistency check are adopted for

the LAP, CVT, SWT, and NSCT method. Four decomposition

levels with 4, 8, 8, 16 directions from coarser scale to finer

scale are adopted for the NSCT method. Furthermore, the

default parameters given by the respective authors are adopted

for the GRW, WSSM and HOSVD based methods.

B. Objective Image Fusion Quality Metrics

In order to assess the fusion performance of different

methods objectively, five fusion quality metrics, i.e., informa-

tion theory based metric (QMI [22]), structure based metrics

(QY [23] and QC [24]) and feature based metrics (QG [25]

and QP [26]) are adopted. A good survey and compara-

tive study of these quality metrics can be found in Z. Liu

et al.’s work [27]. The default parameters given in the related

publications are adopted for these quality indexes.

1) Normalized mutual information QMI [22] is an informa-

tion theory based metric. One problem with traditional

mutual information metric [28] is that it is unstable

and may bias the measure towards the source image

with the highest entropy. Hossny et al. modified it to

the normalized mutual information [22]. In this paper,

Hossny et al.’s definition is adopted.

QMI = 2

[

MI (A, F )

H (A) + H (F )
+

MI (B, F )

H (B) + H (F )

]

(20)
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where H(A), H(B) and H(F ) are the marginal entropy

of A, B and F , and MI(A, F )is the mutual information

between the source image A and the fused image F .

MI(A, F ) = H(A) + H(F ) − H(A, F ) (21)

where H(A, F ) is the joint entropy between A and F ,

H(A) and H(F ) are the marginal entropy of A and

F , respectively, and MI(B, F ) is similar to MI(A, F ).
The quality metric QMI measures how well the original

information from source images is preserved in the fused

image.

2) Yang et al.’s metric QY uses structural similarity

(SSIM ) [29] for fusion assessment. It is defined as

follows:

QY =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

λwSSIM (Aw , Fw) + (1 − λw)SSIM (Bw, Fw),
if SSIM (Aw, Bw|w) ≥ 0.75

max {SSIM (Aw, Fw),SSIM (Bw, Fw)} ,

if SSIM (Aw, Bw|w) < 0.75
(22)

where w is a window of size 7 × 7, A, B are the input

images and F is the fused image, SSIM is the structural

similarity [29] and the local weight λw is calculated as

follows:

λw =
s(Aw)

s(Aw) + s(Bw)
(23)

where s(Aw) and s(Bw) are the variance of source

images A and B within the window w, respectively.

QY measures how well the structural information of

source images is preserved.

3) Cvejic et al.’s metric QC [24] is calculated as follows:

QC = µ(Aw, Bw, Fw)UIQI(Aw, Fw)

+ (1 − µ (Aw, Bw, Fw))UIQI(Bw, Fw) (24)

where µ(Aw, Bw, Fw) is calculated as follows:

µ(Aw , Bw, Fw) =

⎧

⎪

⎨

⎪

⎩

0, if σAF

σAF +σBF
< 0

σAF

σAF +σBF
, if 0 ≤ σAF

σAF +σBF
< 1

1, if σAF

σAF +σBF
> 1

(25)

σAF and σBF are the covariance between A, B and F ,

UIQI refers to the universal image quality index [30].

The QC quality metric estimates how well the important

information in the source images is preserved in the

fused image, while minimizing the amount of distortion

that could interfere with interpretation.

4) The gradient based index QG evaluates the success of

edge information transferred from the source images to

the fused image [25]. It is calculated as follows:

QG =

N
∑

i=1

M
∑

j=1

(

QAF (i, j)τA(i, j)+QBF (i, j)τB(i, j)
)

N
∑

i=1

M
∑

j=1

(

τA(i, j)+τB(i, j)
)

(26)

where QAF = QAF
g QAF

o . QAF
g (i, j) and QAF

o (i, j) are

the edge strength and orientation preservation values at

Fig. 7. Separate image database composed by two pairs of multispectral
images, two pairs of multifocus images, four pairs of multimodal images, and
two pairs of multiexposure images.

location (i, j), respectively, N and M are the width and

height of the images, QBF (i, j) is similar to QAF (i, j).
τA(i, j) and τB(i, j) reflect the importance of QAF (i, j)
and QBF (i, j), respectively.

5) The last quality metric is the phase congruency based

index QP [26]. The phase congruency and the principal

moments (maximum and minimum) which contain the

information for corners and edges, are used to define the

QP metric.

QP = (Pp)
α(PM )β(Pm)γ (27)

where p, M and m denote phase congruency, maximum

and minimum moments, respectively. α, β, and γ are

the exponential parameters which are all set to 1 in

this paper. The QP index computes how well the salient

features of source images are preserved [26]. The larger

the values of the five quality metrics described above

are, the better the fusion results will be.

C. Analysis of Free Parameters

In this subsection, the influences of different parameters to

objective fusion performances are analyzed with a separate

image database shown in Fig. 7. Most images of which are

public available1. The fusion performance is evaluated by the

average values of five fusion quality metrics, i.e., QMI , QY ,

QC , QG and QP . When analyzing the influence of r1, other

parameters are set to ǫ1 = 0.3, r2 = 7, and ǫ2 = 10−6. Then,

when analyzing the influence of ǫ1, other parameters are set to

r1 = 45, r2 = 7, and ǫ2 = 10−6. Next, r2 and ǫ2 are analyzed

in the same way. As shown in Fig. 8, when fusing the base

layers, it is preferred to have a big filter size r1 and blur degree

ǫ1. When fusing the detail layers, the fusion performance will

be worse when the filter size r2 is too large or too small. In

this paper, the default parameters are set as r1 = 45, ǫ1 = 0.3,

r2 = 7, and ǫ2 = 10−6. This fixed parameter setting can obtain

good results for all images used in this paper, because the GFF

method does not depend much on the exact parameter choice.

D. Experimental Results and Discussion

1) Comparison With Other Image Fusion Methods:

Fig. 9(a1)–(a10) show two multi-spectral images and the fused

images obtained by different methods. Furthermore, a close-

up view is presented in the right-bottom of each sub-picture.

As shown in Fig. 9(a10), the fused image obtained by the

proposed guided filtering based fusion method (GFF) can well

preserve the complementary information of different source

1http://imagefusion.org
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(a) (b)

(c) (d)

Fig. 8. Performance of the GFF method with different parameters, i.e.,
(a) r1, (b) ǫ1, (c) r2, and (d) ǫ2.

images such as the meniscus shaped road and the lines in

the roof area (see Fig. 9(a1) and (a2)). However, the meniscus

shaped road is not clear in the fusion results produced by other

methods (see Fig. 9(a3)–(a9)). Fig. 9(b) gives an example of

infrared and visual image fusion. From this figure, it can be

seen that the GFF method can well preserve the brightness of

the pedestrians, while other methods may decrease the bright-

ness and contrast of the pedestrians (see Fig. 9(b3)–(b6)), pro-

duce serious artifacts (see Fig. 9(b8)) or lose important features

(see Fig. 9(b7) and (b9)). Fig. 9(c1) and (c2) show two med-

ical images captured using computed tomography (CT) and

magnetic resonance imaging (MRI) respectively. The first one

displays the bone structure and the other reveals the soft tissue

of a human’s head. From Fig. 9(c3)–(c6), it can be seen that the

results produced by the CVT, SWT, LAP, and NSCT method

may decrease the brightness of soft-tissue structures, and thus

make some details invisible. As shown in Fig. 9(c7), the GRW

based method does not work for this example, because fusion

weights are over-smoothed in the global optimization process.

The WSSM based method introduces serious artifacts to the

fused image (see Fig. 9(c8)). The HOSVD based method loses

some important bone structures (see Fig. 9(c9)). However, the

GFF method can preserve these features and details without

producing visible artifacts and brightness distortions.

Fig. 10(a1) and (a2) show two color multi-focus images

captured by a hand-hold camera. In this example, the source

images are not perfectly registered due to camera movement.

As shown in the close-up views of Fig. 10(a3)–(a9), the SWT,

CVT, LAP, NSCT, GRW, and HOSVD based image fusion

methods produce artificial edges in the fused images. Further-

more, some areas in the fused image obtained by the HOSVD

based method are blurred (see the magnified leaf area of

Fig. 10(a9)). However, as shown in Fig. 10(a8) and (a10), the

WSSM based method and the GFF method can well preserve

the focused areas of different source images without intro-

ducing any artifacts. This demonstrates that the GFF method

and the WSSM based method are more robust to image mis-

registration. Fig. 10(b1) and (b2) show two color multi-focus

images which contain moving objects. From Fig. 10(b3)–(b9),

it can be seen that other image fusion methods introduce

different levels of artifacts in the girl area. Among these

methods, the WSSM based method is more robust to image

mis-registration, since the wavelet based saliency measure

method performs well in detecting the real focused object.

However, only considering pixel saliency, the resulting weights

may be noisy and not aligned with real object boundaries

and thus some artifacts are still visible in their fused image

(see Fig. 10(b8)). The GFF method performs much better

for Fig. 10(b), since it can make full use of the strong

correlations between adjacent pixels to refine these noisy and

inaccurate weights estimated by the saliency measure. This

makes great contribution in removing the influence of image

mis-registration. At last, Fig. 10(c1) and (c2) show two multi-

exposure images captured with different exposure settings. As

shown in the close-up views of Fig. 10(c3)–(c9), it can be

seen that other fusion methods cause brightness and color

distortions in the window and wall area. By contrast, the fused

image obtained by the GFF method can well preserve the color

and detail information in these areas (see Fig. 10(c10)). Based

on the comparison above, it can be concluded that traditional

multi-scale image fusion methods usually perform well in

preserving image details while they may cause brightness or

color distortions. The GRW based method can obtain good

fusion results for multi-exposure images but may fail in other

image fusion applications. The WSSM based method can well

preserve the complementary information of different source

images. However, it may produce serious edge artifacts when

fusing multi-modal or multi-exposure images. The HOSVD

based method can usually obtain fused images without arti-

facts and color distortions, but it may lose some important

complementary information. By contrast, the GFF method can

well preserve the complementary information of source images

without producing artifacts and distortions.

Next, an artificial multi-focus image fusion example is pre-

sented in Fig. 11. For this example, the source images are cre-

ated by respectively blurring the foreground and background

objects of the cameraman image. As shown in Fig. 11(c), the

SWT based method produces ringing artifacts around strong

boundaries. The WSSM based method does not work well for

this example since it cannot obtain edge-aligned weights (see

Fig. 11(h)). For clearer comparison, the difference image in

the box area is obtained by first subtracting each fused image

from the reference all-focused image and then calculating the

absolute values. The difference image is visualized by using

a color map (blue means small differences, red means large

differences) and presented in the right bottom of each image.

As shown in Fig. 11(c)–(j), the result produced by the GFF

method is much closer to the ideal reference image, whereas

the results produced by other methods have different levels of

distortions around edge areas.

At last, the objective performances of different methods

are shown in Table I. It can be seen that, for the Petrović
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(a1) Source 1 (a2) Source 2 (a3) SWT (a4) CVT (a5) LAP

(a6) NSCT (a7) GRW (a8) WSSM (a9) HOSVD (a10) GFF

(b1) Source 1 (b2) Source 2 (b3) SWT (b4) CVT (b5) LAP

(b6) NSCT (b7) GRW (b8) WSSM (b9) HOSVD (b10) GFF

(c1) Source 1 (c2) Source 2 (c3) SWT (c4) CVT (c5) LAP

(c6) NSCT (c7) GRW (c8) WSSM (c9) HOSVD (c10) GFF

Fig. 9. Gray source images and the fused images obtained by different methods.

image database, the HOSVD based method gives the largest

quality indexes for QY , QP , and QMI . Moreover, the QMI

value of the HOSVD based method is always the largest for

all image databases. This means that the HOSVD method

can well preserve the original information of different source

images. However, the QMI index cannot measure whether

the complementary information of different source images is

well preserved. In other words, if the fused image looks very
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(a1) Source 1 (a2) Source 2 (a3) SWT (a4) CVT (a5) LAP

(a6) NSCT (a7) GRW (a8) WSSM (a9) HOSVD (a10) GFF

(b1) Source 1 (b2) Source 2 (b3) SWT (b4) CVT (b5) LAP

(b6) NSCT (b7) GRW (b8) WSSM (b9) HOSVD (b10) GFF

(c1) Source 1 (c2) Source 2 (c3) SWT (c4) CVT (c5) LAP

(c6) NSCT (c7) GRW (c8) WSSM (c9) HOSVD (c10) GFF

Fig. 10. Color source images and the fused images obtained by different methods.

close to one of the source images (fusion is turned off), the

QMI value will also be very large and thus a very big QMI

is not always a good thing. In our opinion, the five quality

metrics should be considered together to evaluate the real

fusion performance. It should be noticed that the HOSVD

based method gives a very unstable and bad performance of
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Fig. 11. Artificial multi-focus images and fused images obtained by different methods. The inset box in the lower right corner is the difference image
between the fused image and the reference image (visualized by using a color map). (a) Source 1. (b) Source 2. (c) SWT. (d) CVT. (e) LAP. (f) NSCT.
(g) GRW. (h) WSSM. (i) HOSVD. (j) GFF.

(a) (b) (c) (d)

Fig. 12. Performance comparison of different weight map construction methods. (a) AVG-ABS. (b) AVG-GD. (c) GB-ABS. (d) GB-GD.

QC (ranking as the second worst) for the Petrović image

database. Moreover, the QP and QG of the HOSVD based

method are also relatively bad (ranking as the fourth and fifth,

respectively) for the multi-exposure and multi-modal database.

This means that the HOSVD based method may perform not

good in some aspects. As shown in Figs. 9 and 10, the HOSVD

based method fails in preserving the important complementary

information in most of the examples. By contrast, although

the objective performance of the GFF method is not always

the best, it has a very stable performance in terms of all five

quality metrics (always ranking as top second). Thus, it is

demonstrated that state-of-the-art fusion performance can be

achieved by the GFF method.

2) Comparison With Classic Weight Construction Methods:

Fig. 12 shows the fused images obtained by different weight

construction approaches, i.e., taking the average of the base

layers (AVG), selecting the absolute maximum of the detail

layers (ABS), the proposed guided filtering based base layer

fusion method (GB), and the proposed guided filtering based

detail layer fusion method (GD). As shown in Fig. 12(a)

and (c), the AVG-ABS and GB-ABS methods produce

artificial points and edges in the window area. This means that

the ABS scheme is not qualified for the proposed method since

it cannot produce edge aligned weights which can effectively

avoid edge artifacts. Further, as shown in Fig. 12(a) and (b),

the wall area looks quite dark in the fusion results obtained

by the AVG-GD and AVG-ABS methods. It demonstrates that

the AVG scheme is not a good method for fusing the base

layers since it may produce color and brightness distortions.

However, the fused image obtained by the GB-GD method (see

Fig. 12(d)) can well preserve the color and edge information

of the source images shown in Fig. 10(c1) and (c2). Therefore,

the proposed weight construction method is quite helpful

in improving fusion performance. Specifically, the GB

method ensures the well preservation of brightness and color

information, while the GD method ensures that the details of

source images can be well preserved without causing artifacts.

The proposed weight construction approach is also com-

pared against classical fusion rules through using fusion

quality indexes. Experiments are performed on all 70 test-

ing images shown in Figs. 4–6. As shown in Table II,

the proposed weight construction method gives the largest
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TABLE I
QUANTITATIVE ASSESSMENT OF DIFFERENT IMAGE FUSION METHODS. THE NUMBERS IN

PARENTHESES DENOTE THE NUMBER OF IMAGE PAIRS THAT THIS METHOD BEATS OTHER METHODS

Source Images Index SWT CVT LAP NSCT GRW WSSM HOSVD GFF

Petrović database

QY 0.862(0) 0.813(0) 0.868(0) 0.864(0) 0.696(0) 0.809(0) 0.967(38) 0.934(12)

QC 0.745(0) 0.724(0) 0.744(0) 0.751(2) 0.645(0) 0.708(1) 0.691(7) 0.804(40)

QG 0.632(1) 0.560(0) 0.644(0) 0.633(1) 0.446(0) 0.617(1) 0.648(24) 0.657(23)

QP 0.525(2) 0.439(0) 0.516(1) 0.510(0) 0.355(0) 0.347(0) 0.628(30) 0.594(17)

QMI 0.391(0) 0.380(0) 0.398(0) 0.390(0) 0.383(0) 0.710(5) 0.910(42) 0.570(3)

Multifocus

database

QY 0.915(0) 0.894(0) 0.922(0) 0.911(0) 0.761(0) 0.877(0) 0.955(4) 0.964(6)

QC 0.818(0) 0.798(0) 0.816(0) 0.829(1) 0.724(0) 0.779(0) 0.847(7) 0.835(2)

QG 0.681(0) 0.661(0) 0.698(1) 0.673(0) 0.519(0) 0.668(0) 0.685(1) 0.714(8)

QP 0.734(0) 0.721(0) 0.772(1) 0.744(0) 0.559(0) 0.698(0) 0.740(0) 0.801(9)

QMI 0.849(0) 0.814(0) 0.904(0) 0.840(0) 0.778(0) 0.865(1) 1.063(7) 0.953(2)

Multiexposure

and

multimodal

database

QY 0.717(0) 0.738(0) 0.792(0) 0.798(0) 0.717(0) 0.827(1) 0.953(9) 0.914(0)

QC 0.648(0) 0.674(0) 0.695(0) 0.715(0) 0.674(0) 0.741(2) 0.764(3) 0.801(5)

QG 0.605(0) 0.575(0) 0.693(1) 0.672(0) 0.474(0) 0.638(2) 0.620(1) 0.704(6)

QP 0.540(0) 0.501(0) 0.602(0) 0.588(0) 0.439(0) 0.362(0) 0.551(3) 0.661(7)

QMI 0.509(0) 0.538(0) 0.542(1) 0.542(0) 0.552(0) 0.755(0) 1.015(9) 0.597(0)

TABLE II

QUANTITATIVE ASSESSMENTS OF DIFFERENT WEIGHT MAP

CONSTRUCTION METHODS

Indexes AVG-ABS GB-ABS AVG-GD GB-GD

QY 0.824 0.853 0.923 0.934

QC 0.739 0.755 0.807 0.808

QG 0.651 0.652 0.672 0.672

QP 0.498 0.502 0.631 0.632

QMI 0.489 0.573 0.540 0.630

TABLE III

RUNNING TIME IN SECONDS (THE SECOND ROW) AND MEMORY

CONSUMPTION IN MB (THE THIRD ROW) OF DIFFERENT ALGORITHMS

ON A PAIR OF IMAGES OF SIZE 512 × 512. ALL METHODS ARE

IMPLEMENTED IN MATLAB FOR COMPARISON

SWT CVT LAP NSCT GRW WSSM HOSVD GFF

1.61 2.6 0.02 12.16 0.04 155.5 66.5 1.16

7.8 4.2 1.4 22 1.2 4 1.3 2.2

average values of all five fusion metrics. However, it should

be noticed that the differences of some objective qual-

ity indexes, i.e., QY , QC , QG, and QP are quite small

when comparing the AVG-GD method with the GB-GD

method. The reason is that the differences between Fig. 12(b)

and (d) appear as brightness and color differences. Structure

and feature based indexes are not sensitive to such differences

and thus fail in detecting the improvement of fusion perfor-

mance (see Fig. 12(b) and (d)). However, the QMI metric still

works in this situation since it can measure the preservation

of brightness information. It can be seen that, compared with

the AVG-GD method, the GB-GD method gives much better

fusion performance in terms of QMI . This example shows that

there is no objective fusion metric that totally coincides with

subjective perception. In other words, different fusion metrics

reflect different aspects of a fusion algorithm.

3) Computational Efficiency Analysis: The computing time

and memory consumption of different image fusion methods

are compared in Table III. Experiments are performed on a

computer equipped with a 2.50 GHz CPU and 4 GB memory.

The codes of the proposed GFF2 method, LAP3, GRW4, and

WSSM5 based methods are available online. As shown in

Table III, the GFF method is not as efficient as the LAP

method and the GRW method due to the inefficient MATLAB

implementation of the guided filter. Encouragingly, the C++

implementation of the GFF method takes only 0.04 seconds

for fusing an image of size 512× 512× 2. More importantly,

through exploiting integral image technique [31], the GFF

method actually has a linear time complexity O(N) and

thus can be implemented in real-time through GPU program-

ing. Furthermore, the memory consumption (the maximum

of data which needs to be kept in memory) is also an

important factor affecting the computing time. If the input

image is of size 512 × 512, a four-scale NSCT will trans-

form it into a multi-scale and multi-orientation representa-

tion of size 512 × 512 × 37. In contrast, for an image of

the same size, the GFF method transforms it into a two-

scale representation of size 512 × 512 × 2 which is very

small.

4) Color Image Sequence Fusion: Furthermore, Fig. 13

gives a multi-exposure image sequence fusion example.

Fig. 13(a) shows eight images of the multi-exposure

sequence. As shown in Fig. 13(b), the fused image obtained

by the GFF method can well preserve the color and detail

information of different exposures. This example demonstrates

that the GFF method works well when there are more than

two source images.

2http://xudongkang.weebly.com
3http://www.metapix.de/toolbox.htm
4http://www.ualberta.ca/~rshen/papers/tip11/
5http://www.mathworks.com/matlabcentral/fileexchange/36231
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(a) (b)

Fig. 13. Image sequence fusion with more than two source images. (a) Eight
images of the original multiexposure sequence (sixteen images in total).
(b) Fused image of the sequence. Image courtesy of Paul Debevec.

V. CONCLUSION

We have presented a novel image fusion method based on

guided filtering. The proposed method utilizes the average

filter to get the two-scale representations, which is simple

and effective. More importantly, the guided filter is used in a

novel way to make full use of the strong correlations between

neighborhood pixels for weight optimization. Experiments

show that the proposed method can well preserve the original

and complementary information of multiple input images.

Encouragingly, the proposed method is very robust to image

registration. Furthermore, the proposed method is computa-

tionally efficient, making it quite qualified for real applica-

tions. At last, how to improve the performance of the proposed

method by adaptively choosing the parameters of the guided

filter can be further researched.
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