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Abstract

Paradigm shifts in surgery arise when surgeons are empowered to perform surgery faster, better,

and/or less expensively. Optical imaging that exploits invisible near-infrared fluorescent light has

the potential to improve cancer surgery outcomes while minimizing anesthesia time and lowering

healthcare costs. Because of this, the last few years have witnessed an explosion of proof-of-

concept clinical trials in the field. In this review, we introduce the concept of near-infrared

fluorescence imaging for cancer surgery, review the clinical trial literature to date, outline the key

issues pertaining to imaging system and contrast agent optimization, discuss limitations and

leverage, and provide a framework for making the technology available for the routine care of

cancer patients in the near future.
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Introduction

Improvements in preoperative imaging techniques have made a meaningful impact on

cancer patient care. However, during actual cancer surgery, the eyes and hands of the

surgeon remain the dominant ”imaging modalities” used to decide which tissue needs to be

resected, i.e., malignant cells, and which tissue needs to be avoided, i.e., normal cells.

Palpation and visual inspection are not always sufficient for discriminating between tissue

types, though, leading to irradical resections or unnecessary removal of healthy tissue. In

breast cancer, for example, many of which are non-palpable, margin positivity rates range

from 5 to 49%.1,2 In some cases, ultrasound and/or x-ray fluoroscopic imaging are used
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during cancer surgery, but these modalities lack the possibility of using targeted contrast

agents to specifically visualize certain cell types, expose patient and caregiver to ionizing

radiation, and/or require direct contact with the body. Intraoperative MRI and CT scanning

have played a significant role as well, especially in the field of neurosurgical image

guidance.3 However, intraoperative systems are costly and complex, and are currently used

mainly for neurosurgery at major medical centers.

Over the past several years, intraoperative imaging using invisible near-infrared (NIR)

fluorescent light has entered the surgical theatre to fill the gap between preoperative imaging

and intraoperative reality.4,5 Whereas visible light penetrates tissue on a micron scale, NIR

light (700 nm – 900 nm) can travel millimeters, up to centimeters, through tissue.6 Because

tissue exhibits almost no autofluorescence in the NIR spectrum, the signal-to-background

can be maximized using NIR fluorescent contrast agents, creating “white stars in a black

sky”.7 In addition, it does not use ionizing radiation, making it an inherently safe technique

provided that attention is paid to laser illumination levels. And, as NIR light is invisible to

the human eye, it does not alter the look of the surgical field, thus minimizing the learning

curve.

Specialized intraoperative imaging systems for open surgery,8–14 laparoscopy,15,16

thoracoscopy,17,18 and robotic surgery19,20 have recently become available for clinical

trials.21 Using these systems, NIR fluorescent contrast agents can be visualized with

acquisition times in the millisecond range, enabling real-time guidance during surgery

(Figure 1).

To date, NIR fluorescent contrast agents specific for many different targets have been

developed, including agents for cancer cells,22–24 sentinel lymph nodes,25–27, neurological

diseases, 28,29 cardiovascular diseases,30,31 skeletal processes,32 renally cleared agents for

ureter imaging,33 and hepatically cleared agents for bile duct imaging.34 Optically-active

nerve cell agents35,36 have also been described, but are yet to achieve NIR wavelengths.

Although these research results lay the foundation for a future revolution in patient care,

excitement in the field needs to be tempered with the reality of the underlying physics. Like

visible light, NIR light is attenuated by absorption and scatter in living tissue. In fact, total

attenuation (the sum of attenuation due to absorption and scatter) is exponential as a

function of depth. Thus, only 1-millionth to 1-billionth of the photons launched into a tissue

as fluorescence excitation is even potentially recoverable as fluorescence emission, and only

10–25% of these photons are truly recoverable because of the finite quantum yield of most

NIR fluorophores. Taken together, depth of detection for even bright targets will be

constrained to ≈ 5 mm, but could be slightly more or less depending on the particular

tissue’s optical properties. While this is more than adequate for tumor margin detection and

many surgical applications, it requires leveraging of the technology with other imaging

modalities in some clinical situations (discussed below).

Absorption and scatter also limit the ability to quantify NIR fluorescent signals. Without

knowing (or measuring) absorption, scatter, and anisotropy of the tissue being imaged, only

qualitative information can be inferred (reviewed in 37). Correction for attenuation of

excitation light38 can certainly assist with target detection, although over-compensation can

also cause false-positives. Full correction for optical properties can provide quantitative

measurements of NIR fluorescent signal.39,40 However, the use of quantitative metrics for

intraoperative decision-making is still in its infancy. In the case of cancer margin detection,

a qualitative present/absent is the relevant metric, and for perfusion studies, relative signal

over time after injection of a tracer provides quantitative information without requiring the

measurement of tissue optical properties.41,42
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This review focuses on the clinical applications of NIR fluorescence imaging in cancer

surgery, recent developments, and the long-term potential benefit for patients.

Clinical applications of NIR fluorescence imaging

Intraoperative NIR fluorescence imaging depends on the availability of a NIR fluorescent

contrast agent and an intraoperative imaging system to visualize the otherwise invisible

contrast agent during surgery.4 Indocyanine green (ICG) is the only 800 nm NIR fluorescent

contrast agent that is approved for this clinical indication by the Food and Drug

Administration (FDA) and the European Medicines Agency (EMEA). Methylene blue (MB)

has been applied clinically for many years as a visible (dark blue) contrast agent. As MB

was introduced into clinical practice in an era when no formal approval was needed, no

evaluation by the FDA, EMEA, or comparable authorities has been performed, but it

remains widely used. When sufficiently diluted, MB acts as a 700 nm fluorophore and has

recently been used in NIR fluorescence clinical studies.43–45.

5-aminolevulinic acid (5-ALA) is the major substrate for protoporphyrin synthesis and has

been used clinically for tumor detection (fluorescence imaging) and tumor treatment

(photodynamic therapy). 5-ALA (typically administered in a topical or oral form) induces

synthesis and accumulation of the fluorescent molecule protoporphyrin IX (PpIX) in

epithelia and neoplastic tissues, among them malignant gliomas and meningiomas.46–48

PpIX has two major fluorescence emission peaks with approximately half of its fluorescence

emission centered ≈ 700 nm (i.e., NIR). 5-ALA has been studied extensively in the field of

neurosurgery as described below.

Interestingly, because MB, 5-ALA-induced PpIX, and ICG have distinct spectral properties,

they could theoretically be used simultaneously in the same patient, provided that the

imaging system is capable of discriminating one from the other. Neither ICG, MB, nor 5-

ALA are ligand-targeted contrast agents. The first clinical report of non-targeted (non-NIR)

fluorescence surgical imaging dates back to 1948, when Moore et al used fluorescein in

neurosurgical interventions for the localization of brain tumors.49 The first clinical report of

targeted (non-NIR) fluorescence surgical imaging dates back to 1992, when Folli and

colleagues used carcinoembryonic antigen-targeted antibodies labeled with fluorescein to

visualize colorectal carcinomas in vivo in patients.50 In 2012, Van Dam and colleagues

described the successful use of folate conjugated to fluorescein for intraoperative

visualization of ovarian cancer cells for debulking surgery.51 While these landmark studies

provided essential proof-of-principle, fluorescein and other visible fluorophores are not

optimal for cancer surgery because high absorption and scatter result in interrogation of only

the surface layer, and, importantly, high autofluorescence from surrounding tissue reduces

contrast.

Nevertheless, using the existing major NIR fluorophores, ICG, MB, and 5-ALA-induced

PpIX, proof of principle clinical studies in several types of surgery have been performed in

recent years (Table 1).

Sentinel lymph node mapping

Sentinel lymph node (SLN) mapping is standard-of-care in a variety of cancers, including

breast cancer and cutaneous melanoma. Currently, most centers perform SLN mapping

using a radioactive tracer, a visible blue dye such as isosulfan blue or patent blue, or a

combination of the two. Although in most cases acceptable results are obtained using these

methods, they both have some drawbacks. Visible blue dyes stain the patient and the

surgical field and cannot be visualized below the surface of tissue. Radioactive tracers

expose patients and caregivers to ionizing radiation, are expensive, and imaging suffers from
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poor spatial and temporal resolution. For SLN mapping using NIR fluorescence imaging,

contrast agents are injected at a low concentration with no staining of the surgical field, no

ionizing radiation is used, and an improvement is observed over blue dyes in terms of depth

sensitivity. For SLN mapping, targeted contrast agents are not necessary, and because ICG

is clinically available, many SLN studies were undertaken as soon as the first intraoperative

imaging systems became available (Figure 2; Table 1).5 To date, NIR fluorescence-guided

SLN mapping has been extensively studied in breast cancer,11,52–56 as well as in colorectal

cancer, 15,57–61 skin cancer,62,63 cervical cancer,13,64,65 vulvar cancer, 66–68 head and

neck, 63,69,70 lung cancer, 17,71 penile cancer, 69 endometrial cancer,72 gastric cancer, 73,74

and esophageal cancer. 75

These first studies demonstrate the feasibility of NIR fluorescence imaging during surgery.

Comparison of NIR fluorescence imaging to blue dyes indicates that NIR fluorescence

imaging may substitute blue dyes, as it outperforms the blue dyes due to increased tissue

penetration depth and lack of staining of the patient and the surgical field.53,76,77 In

particular in countries were radiotracers are not allowed or available, NIR fluorescence

imaging could replace blue dyes as routine SLN mapping methodology. However, as current

imaging systems in combination with ICG show depth penetration less than 1 centimeter,

ongoing studies are assessing the non-inferiority of NIR fluorescence compared to

radioactivity, which is of particular clinical significance when lymph nodes are located

deeper within the patient, for example in more obese patients.

Combination of radioactivity and NIR fluorescence—To overcome the issue of

limited depth penetration, a combination of NIR fluorescence and radioactivity has been

reported for SLN mapping.16,27,69,78 This combination is complementary: the superior depth

penetration of radioactivity is used to perform gross navigation to the SLN, after which the

superior spatial and temporal resolution of NIR fluorescence facilitates image-guided

identification and resection of the SLN. When a preoperatively injected, combined NIR

fluorescent and radioactive tracer is used, no intraoperative injection of tracer is necessary

and the preoperative injection by the nuclear medicine physician suffices for both

preoperative lymphoscintigraphy and intraoperative SLN detection, reducing the duration of

surgery and anesthesia and potentially reducing costs.16,27,69,78

Targeted SLN tracers—An optimal tracer for SLN mapping migrates quickly from the

injection site to the lymph node and remains in the first draining node without migrating to

higher tier nodes. To prevent migration to higher tier nodes, radiotracers are commonly

conjugated to a colloid to increase the hydrodynamic diameter or to a ligand to increase

retention. In the United States, a sulfur-based colloid is most widely used, whereas in

Europe, an albumin-based colloid is commonly used. Indocyanine green cannot be

conjugated covalently to sulfur colloid without altering its chemical structure, although non-

covalent adsorption of ICG to albumin and albumin nanocolloid appears to work well. 25,79

A novel strategy for lymph node retention has been developed by Vera and colleagues by

creating a lymphatic tracer that is specific for a receptor (mannose-binding protein) found on

reticuloendothelial cells of lymph nodes.80 While this tracer was primarily designed for

radiolabeling, recent studies have been published in which this tracer is conjugated to a

fluorescent label. 26,81

Tumor imaging

Although ICG’s use in SLN mapping has paved the way for NIR fluorescence imaging in

the operating room, one of the key applications in cancer surgery is intraoperative tumor

visualization. In order to visualize tumors using NIR fluorescence imaging, a contrast agent

should accumulate in or around a tumor. Although a variety of tumor specific NIR
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fluorescent contrast agents have been developed and applied preclinically, none of these has

obtained full clinical approval by either the FDA or the EMEA. Using the clinically

available contrast agents ICG, MB, and 5-ALA first-in-human intraoperative tumor imaging

studies have been described in various cancer types.

ICG—After intravenous administration, ICG is cleared by the liver, potentially enabling

intraoperative identification of liver lesions. Indeed, Ishizawa and colleagues were the first

to demonstrate clear visualization of both colorectal liver metastases and hepatocellular

carcinomas (HCC).82 In their study and subsequent studies, several hours to days after

intravenous injection of ICG, a fluorescent rim could be visualized intraoperatively around

the tumors, with almost no background signal in the surrounding healthy liver

parenchyma.83–85 Tumors that could be visualized using NIR fluorescence imaging were all

relatively superficial (less than 8 mm below the liver surface), tumors located deeper could

not be visualized by NIR fluorescence imaging.

Several clinical studies reported on NIR fluorescence imaging in patients suffering from

HCCs using ICG.10,82 Surprisingly, ICG accumulated in the HCCs itself, as opposed to the

accumulation in a rim around colorectal liver metastases. Intraoperative ultrasound is

routinely used before resection of liver tumors in order to identify tumors that were missed

preoperatively. It is also used intraoperatively in conjunction with inspection and palpation.

One of the main limitations of intraoperative ultrasound is the hampered detection of

superficial and small tumors.86 NIR fluorescence performs well in superficial and small

tumors, but is unable to visualize deeper tumors. Therefore, in liver surgery, NIR

fluorescence imaging can be seen as a potential adjunct to conventional imaging techniques

for the preoperative and intraoperative detection of primary liver tumors and hepatic

metastases. Satou and colleagues used NIR fluorescence imaging after ICG injection to

identify extrahepatic metastases of HCC.87 They report the detection of 5 metastases that

were otherwise not detected in 2 out of 17 patients (11.7%), confirming the complementary

value of NIR fluorescence imaging. Yokoyama and colleagues demonstrated that NIR

fluorescence imaging after ICG injection identified hepatic metastases of pancreatic

carcinoma that were otherwise not detected in 8 out of 49 patients (16.3%), potentially

preventing those patients from unnecessary radical resections and associated morbidity.88 A

recent study by our group89 found that in 5 of 40 patients (12.5%), ICG-based NIR

fluorescence imaging detected colorectal metastases in liver that were otherwise

undetectable by preoperative CT, intraoperative ultrasound, palpation, and visualization. As

might be expected, all detectable metastases were less than 8 mm from the liver surface.

A novel and rapidly growing field of NIR fluorescence guided cancer surgery is related to

neurosurgery. ICG has been used to intraoperatively identify high-grade gliomas,

meningiomas, hemangioblastomas and pituitary tumors.90–92 The previously mentioned

tumors could be visualized by intravenously administering 5 to 25 mg ICG.

After intravenous injection, ICG binds to plasma proteins, thereby increasing its

hydrodynamic diameter. This potentially enables ICG to accumulate in tumors due to

enhanced permeability and retention. In 2006, Horowitz and colleagues presented the use of

ICG via this mechanism for intraoperative detection of ovarian cancer metastases.93

MB—MB has previously been described to stain parathyroid glands and insulinomas the

color blue after high-dose intravenous and intra-arterial injection, respectively.94,95 Winer

and colleagues demonstrated preclinically that dilute MB can be used as an NIR fluorescent

contrast agent for identifying insulinomas.43 Although clinical use of MB for insulinomas

has not yet been reported, it was successfully used to visualize a rare solitary fibrous tumor

of the pancreas in a patient.45
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5-ALA—5-ALA-induced PpIX has been studied extensively in the field of neurosurgery,

mostly to intraoperatively identify brain tumors such as malignant gliomas. Stummer et al.

showed that visualization of PpIX fluorescence after 5-ALA administration (oral

administration) led to a significant increase in the incidence of complete resection (65%

compared to 36%), improved progression-free survival at 6 months (41% compared to

21%), fewer reinterventions, and delayed onset of neurological deterioration.48,96

Furthermore, 5-ALA-induced PpIX has been used to identify the hardly visible urothelial

bladder cancer during fluorescence guided cystoscopies which was reviewed by Jocham et

al.97

Topical contrast agents—Besides systemically injected contrast agents, topical

application of NIR fluorescence contrast agents can be of benefit, for example in

colonoscopic or cystoscopic procedures. The successful use of 5-ALA and derivatives has

been described in bladder cancer.98–100 Although visible (red) light fluorescence was used

for imaging in these studies, the tumor cell-synthesized Protoporphyrin IX actually has half

its emission spectrum in the NIR.

Imaging of vital structures

Iatrogenic damage to vital structures occurs frequently during cancer surgery. For example,

nerve damage is relatively common and can result in postoperative pain or loss of specific

functions, such as incontinence or impotence, especially in rectal cancer or prostate cancer

surgery. Damage to ureters or bile ducts is relatively rare, but both are associated with

severe complications, such as renal dysfunction and biliary peritonitis. Damage to these

structures is usually a result of inadequate identification during surgery. For this purpose,

NIR fluorescence imaging has also been described for intraoperative identification of vital

structures. As ICG is cleared by the liver and excreted into the bile ducts, studies have

described intraoperative NIR fluorescence cholangiographies after intravenous

administration of ICG.20,101 Using MB, which is cleared predominantly by the kidneys,

ureters could be identified intraoperatively using NIR fluorescence imaging (Figure 2).44

Due to their pelvic location, ureters can be difficult to visualize, in particular when tumor or

inflamed tissue is covering them. The increased depth penetration of NIR fluorescence can

therefore be of added value over visible light imaging. NIR fluorescence imaging can be of

particular benefit in laparoscopic and robotic surgery, where there is diminished tactile

feedback. NIR fluorescence-capable fiberscopic systems are now readily available for these

applications. Finally, subcutaneously administered ICG has been used in multiple clinical

studies to visualize lymphatic flow in real-time, which will likely aid in understanding the

mechanism of lymphedema, a morbid complication of several cancer surgeries.55,102

Vascularization

Vascular perfusion of anastomoses—Anastomotic leaks after intestinal surgery for

cancer remain a relatively common and severe complication.103 Occurrence of anastomotic

leaks is presumably caused by insufficient perfusion of an intestinal anastomosis. NIR

fluorescence can be used to visualize blood perfusion after intravenous injection of ICG.

Several groups reported on its ability to assess anastomotic blood perfusion after intestinal

surgery. 104–106 Although retrospectively studied, Kudszus and colleagues described a

reduction in the risk of revision due to anastomotic leak by 60% in patients whose

anastomosis was examined using NIR fluorescence angiography compared to historically

matched patients without imaging.104

Vascular perfusion of flaps in reconstructive surgery—Vessel identification and

selection is essential during cancer reconstructive surgery using free or pedicled flaps. NIR

fluorescence imaging provides the opportunity to identify vessels intraoperatively and to
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assess perfusion in these flaps.107,108 In breast reconstructive surgery, NIR fluorescence

angiography has been used for vessel identification and selection, and to monitor venous

outflow.109,110 Newman and colleagues describe in their study that arterial and venous

problems were identified intraoperatively in 4 out of 8 (50%) patients, which changed the

operative plan in 3 of 4 cases, leading to a 100% flap survival outcome.109

Key parameters: target, contrast agent dose, and timing

Optimal visualization is achieved by maximizing the signal-to-background ratio, thus

maximizing contrast. In order to do so, the chosen target, the type of contrast agent, the

route of administration (i.e. intravenous, local injection, topical spray), and the imaging goal

(i.e. sentinel lymph node mapping, tumor imaging, etc.) all have to be factored in.

Perhaps the most important parameter for imaging is the target. Is it an abundant receptor on

the cell surface, a sub-cellular organelle, or the substrate for a membrane transporter?

Because all fluorescent techniques rely on concentration, the abundance and availability of

the target are key concerns. Keep in mind, for example, that a cell surface receptor with a

total number of receptors per cell (BMax) of 104 can only achieve a fluorophore

concentration of ≈ 17 nM, assuming a 1:1 ratio of targeted NIR fluorophore to receptor.

Even the most highly abundant receptors, with a BMax of 105–106 can only achieve ≈ 1 μM

concentration.

Within the first few seconds after intravenous injection, NIR fluorescent contrast agents

highlight the arterial then venous systems (Figure 3). Over the next minutes to hours, hepatic

and/or renal clearance will occur in parallel with tissue biodistribution and target binding.

Some NIR fluorophores, such as MB, accumulate in certain cells by unknown mechanisms.

Others are either targeted to particular receptors or membrane transporters, or accumulate

passively due to structural abnormalities in the tissue (e.g., the enhanced permeability and

retention or EPR effect).111

As the contrast agent clears from the bloodstream and normal tissues, and hopefully retained

in tumor tissue, the SBR at the target site increases. In order to determine the necessary dose

and timing, dosing, biodistribution, and pharmacokinetic studies are therefore essential. For

example, an imaging time too short relative to clearance will result in a low SBR due to high

background. Conversely, an imaging time too long relative to target binding will result in a

low SBR due to loss of signal.

In SLN mapping, the contrast agent migrates from the injection site to the sentinel lymph

node. Depending on the contrast agent’s characteristics, flow to higher tier nodes might

occur over time. To prevent misidentification of the SLN, dynamic imaging can be

employed, starting directly after injection. Although counterintuitive, injection of a

concentration of fluorophore that is too high results in a decrease of SLN signal due to

quenching.4 In dose-finding studies for SLN mapping, an ICG injection concentration of

500 μM in a volume of 1.6 mL was found to be optimal, although these numbers may vary

among tumor types, and the distance between injection site and the SLN.12

Current developments

Clinical studies have demonstrated the feasibility of intraoperative imaging using near-

infrared fluorescence in various applications. These studies, however, are based on contrast

agents that were already available clinically. In order to determine the true clinical benefit of

this technique, development and clinical assessment of contrast agents tailored to specific

applications is essential.
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Contrast agent development and optimization

Development of novel NIR fluorescent contrast agents is dependent on the availability of

clinically-compatible fluorophores. Although many fluorophores have been evaluated in a

preclinical setting, to date only two fluorophores have been reported to be in the process of

clinical translation: IRDye 800CW (LI-COR Biosciences, Lincoln, NE) and ZW800-1 (The

FLARE Foundation, Wayland, MA). Both compounds are small molecules, characterized as

non-toxic in initial toxicity studies and are conjugatable to targeting moieties. In addition to

their ability to be conjugated to various targeting ligands, the purely renal clearance of

ZW800-1, and the combined renal and hepatic clearance of IRDye 800CW, enable these

agents to be used for imaging of ureters and bile ducts.

As recently reviewed by Scheuer and colleagues,112 clinically approved targeted antibodies

are available for various tumors and tumor markers, for example bevacizumab (Genentech,

San Francisco, CA) against the vascular endothelial growth factor A, cetuximab against the

epidermal growth factor receptor (Bristol-Myers Squibb, New York City, NY, and Eli Lilly,

Indianapolis, IN), and trastuzumab against the human epidermal growth factor receptor 2

(Genentech, San Francisco, CA). Combining these already approved antibodies with a NIR

fluorophore could usher in a new generation of NIR fluorescent contrast agents. Indeed, the

first clinical trial using bevacizumab conjugated to IRDye 800CW has been approved and is

accruing patients.113 In addition to antibodies, other targeting molecules, such as peptides,

have been successfully translated into the clinical using radiolabeling and suggest potential

for NIR fluorescence imaging. For example integrin αVβ3 targeting using cyclic arginine-

glycine-aspartic acid (cRGD) has been demonstrated clinically in positron emission

tomography studies.114 A fluorophore conjugated to this peptide has been described

preclinically for tumor imaging (cRGD-ZW800-1).23 To overcome disadvantages of intact

antibodies, investigational contrast agents are being developed using smaller antigen binding

fragments such as nanobodies.115 Nanobodies have a smaller hydrodynamic diameter and

can therefore extravasate more easily than intact antibodies, even in areas of high interstitial

pressure (i.e., solid tumors). Indeed, nanobodies against the epidermal growth factor

receptor have been shown to outperform whole antibodies for tumor imaging.116 As

heterogeneity in tumors is an important problem when selecting a targeting ligand,117 it is

likely that a cocktail of several targeted NIR fluorophores will be employed once more

tumor-specific ligands are developed and tested.

In order to visualize nerves, several research groups are developing specific contrast agents.

One approach is focused on a family of fluorescent dyes that bind to the myelin of

nerves.118 However, these contrast agents currently fluoresce in the non-optimal visible

spectrum. Another approach is the use of NIR fluorescent peptides that bind to nerve

sheaths.35 No clinical trial has yet been reported on nerve-specific agents, although the field

eagerly awaits such a development.

A distinct class of NIR fluorescent contrast agents encompasses activatable agents. These

agents are non-fluorescent or low-fluorescent in the unactivated state, and become

fluorescent after activation by a molecular target, such as a tumor-specific enzyme.

Preclinical studies show adequate tumor detection after intravenous injection of activatable

agents. 22,24,119–121 Other reports show rapid tumor visualization after topical application of

activatable agents.122 Several of these agents are in the process of obtaining regulatory

approval for proof-of-principle trials, however, to date no such trials are approved and

accruing patients.
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Imaging system development and optimization

Over the last few years, various imaging systems have been developed for intraoperative

NIR fluorescence imaging by academic and industry groups.8–11,13–20,120 Besides imaging

systems for open surgery, NIR fluorescence imaging systems are available for laparoscopic,

thoracoscopic, and robotic surgery. Most of these systems mark the first production grade

development iteration, with optimized successors being developed.

Key issues that inform imaging system design are the fluorescence excitation light, the

optics, usability (ergonomics), and cost. Maximizing the fluence rate of the excitation light

increases tissue penetration depth. However, for laser-based light sources, skin/eye

exposure, irreversible photochemical bleaching of the NIR fluorophore, and tissue heating

are the limiting factors. In general, fluence rates are limited to the 10–25 mW/cm2 range in

order to avoid these issues and the need for laser goggles. Initial imaging system prototypes

were often assembled using off-the-shelf optics, which can distort and attenuate NIR light,

causing suboptimal detection of NIR fluorescence.4 Current versions of NIR fluorescence

imaging systems are manufactured with optimized optics for NIR light and do not suffer

from these problems. The possibility of visualizing multiple contrast agents simultaneously,

for example for tumor identification and nerve visualization, would be beneficial. For this

purpose, imaging systems are in development that can simultaneously acquire multiple

wavelengths. 11,13 Furthermore, techniques are being implemented to discriminate between

contrast agents that emit at a similar wavelength. 123,124 Finally, ergonomics, both physical

and the use of software and advanced algorithms to improve the efficiency of clinical

workflow, should be a focus of attention during imaging system design.

Limitations and leverage

Despite improved tissue penetration when compared to visible light, an essential limitation

of NIR fluorescence imaging remains the inability to visualize structures more than

approximately 5 – 8 mm below the surface using current reflectance-based systems. Rather

than introduce more complex optical methods, such as tomography, into surgery, the field

has been migrating towards the combination of reflectance optical imaging with other

modalities. Imaging modalities based on radioactive tracers, such as preoperative PET and

SPECT, and intraoperative gamma probes and gamma cameras, have depth sensitivity to

several cm but cannot provide real-time and precise visualization. Intraoperative ultrasound

imaging also has superior depth penetration when compared to NIR fluorescence, but

requires tissue contact and has problems visualizing smaller and superficial lesions.

Combining NIR fluorescence imaging with these modalities leverages the key benefits,

whilst overcoming the limited penetration depth of NIR light (Figure 4).125 Another major

limitation is the lack of clinically-available targeting agents. This is due to the high cost126

and complex regulatory requirements surrounding drug development. Nevertheless, several

academic and commercial groups have made progress on clinical translation and it is

expected that several first-in-human clinical trials of new NIR fluorophores will commence

within the next 2–3 years.

Path to routine patient care

NIR fluorescence imaging has been proven feasible during surgery in many clinical studies.

The main question, however, is when will it become part of routine patient care? In the past,

the adoption of a new technology had to satisfy only two major criteria. It needed to “change

patient management,” that is, make a meaningful impact on care, and it had to be “clinically

realistic,” that is, it couldn’t disrupt normal workflow.4 Nowadays, though, as insurance

companies and governments try to reign in healthcare spending, technology must also make

patient care faster, better, and cheaper. Optical imaging is one of the few technologies with
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the potential to satisfy all three criteria. NIR fluorescence enables intraoperative imaging in

real-time, without impeding the current clinical workflow. If surgeons are able to find

tumors or avoid normal structures more easily then operating room time could be shortened.

This in turn reduces anesthesia time and its associated risks, and means that surgeons can

operate on more patients each day and hospitals can increase resource utilization. If

improved tumor resection and/or normal tissue avoidance lowers recurrences and

complication rates, then the healthcare system will enjoy huge cost savings. Quantification

of these potential benefits, though, will require well-designed and well-executed clinical

trials.

Conclusions

NIR fluorescence image-guidance during cancer surgery has the potential to improve patient

management by visualizing tissue demarcation in real-time, thereby increasing the

completeness of surgery and decreasing the morbidity associated with damage to normal

structures. Intraoperative imaging requires a synchronous interplay between contrast agents,

tumor biology, imaging systems, and algorithms. Results to date using available contrast

agents and first generation imaging systems are extremely promising. Due to the relatively

low depth penetration, NIR fluorescence imaging will likely be a complementary adjuvant to

other imaging modalities, such as ultrasound and radioscintigraphy, in some clinical

applications. Although studies focused on patient outcome and healthcare resource

utilization should begin using existing imaging systems and non-targeted contrast agents, the

era of targeted contrast agents for specific cancers remains on the precipice. Given the

interest in the field, the next decade should clarify the role of NIR fluorescence imaging in

cancer surgery and the extent to which it empowers surgeons to improve patient outcome.
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Key points

• NIR fluorescence imaging has been demonstrated to be feasible during cancer

surgery using available imaging systems and contrast agents

• Clinical applicability has been described in sentinel lymph node mapping, tumor

imaging, visualization of vital structures, and imaging of vascularization and

perfusion

• NIR fluorescence image-guided surgery has properties that make it a good

candidate for clinical acceptance: fulfills a clinical need, is relatively

inexpensive, and fast

• Targeted contrast agents, necessary for full evaluation of this technique, are in

advanced stages of clinical approval

• Upcoming years are essential, with novel contrast agents and optimized camera

systems the technique should prove its true clinical value
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Figure 1. The mechanics of NIR fluorescence imaging
A NIR fluorescent contrast agent is administered intravenously, topically, or

intraparenchymally. During surgery, the agent is visualized using a NIR fluorescence

imaging system of the desired form factor, i.e., above the surgical field for open surgery or

encased within a fiberscope for minimally-invasive and robotic surgery (open surgery form

factor shown). All systems must have adequate NIR excitation light, collection optics and

filtration, and a camera sensitive to NIR fluorescence emission light. An optimal imaging

system includes simultaneous visible (i.e., white) light illumination of the surgical field,

which can be merged with NIR fluorescence images. The surgeon display can be one of

several forms factors including a standard computer monitor, goggles, or a wall projector

(monitor form factor shown). Current imaging systems operate at a sufficient working

distance that enables the surgeon to operate and illuminates a sizable surgical field.
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Figure 2. Examples of intraoperative NIR fluorescence imaging
a. Example of SLN mapping using NIR fluorescence imaging in a patient with cutaneous

melanoma. Displayed are the color images (left), NIR fluorescence images (middle), and

pseudocolored (NIR fluorescence in lime green) merges of the two (right). The lymphatic

channel (arrowhead) and SLNs (arrows) can be clearly identified percutaneously and in real-

time (top panel). Identification of a SLN (bottom panel) is demonstrated using 800 nm NIR

fluorescence imaging 15 min after injection of 1.6 mL of 1000 μM ICG admixed with

human serum albumin around the tumor. All images were acquired in real time using the

mini-FLARE12 imaging system. NIR excitation fluence rate was approximately 8 mW/cm2

and camera exposure time was 10 ms. Scale bars represent 1 cm. Reproduced with

permission.63

b. Example of NIR fluorescence imaging of the ureter during lower abdominal surgery in a

patient with ovarian carcinoma. Intraoperative imaging of the ureter (arrow), 45 min after

administration of 1 mg/kg methylene blue. Displayed are the color images (left), 700 nm

NIR fluorescence images (middle), and a pseudocolored (NIR fluorescence in lime green)

merge of the two (right) acquired with the mini-FLARE imaging system. NIR excitation

fluence rate was approximately 1 mW/cm2 and camera exposure time was 150 ms. Scale

bars represent 1 cm. Reproduced with permission.137

c. Example of fluorescence imaging in brain surgery during resection of a glioblastoma

multiforme (+) using oral 5-ALA-induced PpIX. White light image (left), visible

fluorescence (middle) and quantitative fluorescence images overlayed onto white light

images (right) are displayed. Reproduced with permission.39
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Figure 3. Administration, Biodistribution, and Clearance of a NIR fluorescent contrast agent
Schematic (top row) and clinical example (middle row) of the four key phases of NIR

fluorescence imaging after intravenous administration of a NIR fluorophore. Top-row:

Shown from left-to-right are the different phases over time: first, a NIR fluorescent probe is

administered. After intravenous administration, for example, NIR fluorescence signal is

visualized in the vasculature (second panel). Then, the contrast agent is distributed to all

tissues in the body (third panel) but the target remains obscured. After adequate clearance

time (right panel), adequate contrast between target and surrounding tissue is achieved.

Bottom-row: Left: administration of NIR fluorescent contrast agent. Second panel: ICG

fluorescence as observed in the vasculature of an abdominal tissue flap to be used for breast

reconstructive surgery. Third panel: ICG fluorescence distribution in the liver. Right panel:

ICG clearance from the liver over time, revealing a metastatic colon cancer metastasis

(arrow). Shown in all panels are pseudocolored (lime green) merges of NIR fluorescence

and color video acquired using the mini-FLARE imaging system. Scale bars represent 1 cm.

Bottom row: schematic of the four key phases of NIR fluorescence imaging after

administration of 5-ALA. Shown from left to-right are the different phases over time: first,

the non-fluorescent 5-ALA is orally administered (first panel). After uptake in the

bloodstream via the gastrointestinal tract, the substance accumulates in tumor cells (second

panel), where it is metabolized to the fluorescent protoporphyrin IX (third panel). After

metabolism, tumor demarcation can be visualized using the inherent fluorescent properties

of protoporphyrin IX (fourth panel).
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Figure 4. NIR fluorescence imaging alone or in combination with other imaging modalities
Left panel: In this example, two superficially located targets, up to 5–8 mm deep, can be

located using NIR fluorescence imaging. However, a deeper target at 25 mm would be

invisible using by NIR fluorescence imaging alone.

Middle panel: Combining NIR fluorescence imaging with radioscintigraphy enables

visualization of all three targets. However, spatial and temporal resolution of

radioscintigraphy is poor. Once overlying tissue is removed, as guided by radioscintigraphy,

NIR fluorescence can be used for more precise image guidance (see also Figure 2).

Right panel: Intraoperative ultrasound can visualize targets that are located deeper within

tissue, but fails to find superficially located targets because of high acoustic reflectance.

These superficial targets, though, can be visualized by NIR fluorescence thereby

complementing intraoperative ultrasound. Of note, the ultrasound probe must be in direct

contact with the tissue being imaged, thus precluding simultaneous imaging with NIR

fluorescence.
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Table 1

Overview of Clinical Applications

Application Cancer Type Imaging System Contrast Agent Clinical Status*

SLN mapping Breast Open ICG11,52–56 Clinical

Melanoma Open ICG62,63, MMl69 Clinical

Head and Neck Open ICG63,70, MMl27 Clinical

Lung VATS ICG17,71 Clinical

Esophagus Open ICG75,127 Clinical

Stomach Open ICG74,128 Clinical

Lap ICG73,129 Clinical

Colorectal Open ICG9,130, HSA800 (ex vivo)59,60 Clinical

Lap ICG15,58,61 Clinical

Cervix Open ICG13,64,65 Clinical

Vulvar Open ICG66–68 Clinical

Endometrial Lap ICG72 Clinical

Prostate Lap/Rob ICG131, MMI16 Clinical

Penile Open MMI69 Clinical

Tumor imaging (in vivo) Colorectal liver metastases Open ICG82,83,89 Clinical

Hepatocellular carcinoma Open ICG10,82 Clinical

Lap ICG132 Preliminary

Ovarian cancer metastases Open ICG93 Preliminary

Breast cancer Open Bevacizumab-800CW113 Preliminary

Insulinoma Open MB43 Preclinical

Primary solitary tumor of the pancreas Open MB45 Preliminary

Bladder cancer Lap 5-ALA97 Clinical

Brain tumors Open 5-ALA,46–48, ICG91,92 Clinical

Tumor imaging (topical) Bladder cancer Cyst 5-ALA99, HAL100 Clinical

Colon cancer Endo gGlu-HMRG122 Preclinical

Vital structures imaging Bile ducts Open ICG133,134 Clinical

Lap ICG101,135,136 Clinical

Ureters Open MB44 Preliminary

Lymph Flow Open ICG55,102 Clinical

Nerves Open Various35,118 Preclinical

Vascularization Bowel anastomoses Open ICG104,105 Clinical

Lap ICG106 Clinical

Reconstructive surgery Open ICG108–110 Clinical

*
Clinical = Multiple independent groups have reported successful application; Preliminary = Initial clinical application has been reported;

Preclinical = Application has only been demonstrated in a preclinical setting.
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Abbreviations: 5-ALA = 5-aminolevulinic acid; Bevacizumab-800CW = IRDye 800CW conjugated to Bevacizumab; gGlu-HMRG = g-glutamyl

hydroxymethyl rhodamine green; ICG = indocyanine green; HAL = hexyl aminolevulinate; HSA800 = IRDye 800CW conjugated to human serum

albumin; Lap = laparoscopic surgery; MB = methylene blue; MMI = multimodal imaging agent ICG-99mTechnetium-nanocolloid; Rob = robotic

surgery; SLN = sentinel lymph node; VATS = video-assisted thoracoscopic surgery;
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