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Image Guided Personalization of Reaction-Diffusion

Type Tumor Growth Models Using Modified

Anisotropic Eikonal Equations
Ender Konukoglu∗, Olivier Clatz, Bjoern H. Menze, Marc-André Weber, Bram Stieltjes, Emmanuel Mandonnet,

Hervé Delingette and Nicholas Ayache

Abstract

Reaction-diffusion based tumor growth models have been widely used in the literature for modeling the growth of brain
gliomas. Lately, recent models have started integrating medical images in their formulation. Including different tissue types,
geometry of the brain and the directions of white matter fiber tracts improved the spatial accuracy of reaction-diffusion models.
The adaptation of the general model to the specific patient cases on the other hand has not been studied thoroughly yet. In this
work we address this adaptation. We propose a parameter estimation method for reaction-diffusion tumor growth models using
time series of medical images. This method estimates the patient specific parameters of the model using the images of the patient
taken at successive time instances. The proposed method formulates the evolution of the tumor delineation visible in the images
based on the reaction-diffusion dynamics therefore it remains consistent with the information available. We perform thorough
analysis of the method using synthetic tumors and show important couplings between parameters of the reaction-diffusion model.
We show that several parameters can be uniquely identified in the case of fixing one parameter, namely the proliferation rate of
tumor cells. Moreover, regardless of the value the proliferation rate is fixed to, the speed of growth of the tumor can be estimated
in terms of the model parameters with accuracy. We also show that using the model-based speed we can simulate the evolution
of the tumor for the specific patient case. Finally we apply our method to 2 real cases and show promising preliminary results.

I. INTRODUCTION

Brain tumors that start from glial cells, gliomas, form the major class of primary intracranial cancer, [1], [2]. These tumors

show a high variability in their malignancy. As some of them remain rather benign, i.e. pilocytic astrocytoma, patients suffering

from the most malignant forms, glioblastoma multiforme, have an average life expectancy of 1 year [3]. During the last 20 years

there has been vast amount of research on mathematical descriptions of the growth dynamics of gliomas both at microscopic

and macroscopic scales. Cellular interactions, effects of intra-cellular dynamics and microscopic invasion have been studied

by mathematical models at the microscopic scale [4]–[9]. Large scale dynamics such as the average behavior of the tumor, its

spatial evolution and its mass effect on the brain have been addressed by macroscopic models [3], [5], [6], [10]–[17]. These

latter models have included in their formulation different anatomical information that are available in medical images. Different

tissue types and white matter fiber directions are used as general parameters. However, personalizing these parameters for each

patient case and adapting the generic model to specific patient data has not been thoroughly studied yet.

Personalizing the parameters of a tumor growth model for each patient would clinically be important in two aspects: the

parameters and the patient-specific model. The parameters of the model could be used to characterize the tumor and help the

diagnosis process by providing the speed of growth or quantifying its morphology. The model combined with the personalized

parameters, the “patient-specific” model, would give us the opportunity to simulate the evolution of the specific tumor, adapt

the therapy to the patient and predict the further evolution.

For the last 5 years specific attention has been given to one class of macroscopic models, the reaction-diffusion models, in the

attempt to link tumor growth models to medical images [3], [12], [13], [16], [18]–[20]. These models describe the evolution

of the pathology via proliferation of tumor cells and infiltration into the surrounding tissue. Their formulation consists of

reaction-diffusion type partial differential equations (PDEs) with the reaction term (first term in Equation 1) representing the

proliferation and the diffusion term representing the infiltration [21]. The system

∂u

∂t
= ∇ · (D(x)∇u) + ρu(1 − u) (1)

D∇u · −→n ∂Ω = 0 (2)

This work has been partly supported by the European Health-e-Child project (IST-2004-027749), by the CompuTumor project (http://www-
sop.inria.fr/asclepios/projects/boston/) and by Microsoft Research, Cambridge.

∗E. Konukoglu is with the INRIA, Asclepios Research Project, 2004, route des Lucioles, BP 93, 06902 Sophia-Antipolis, France
(email:ender.konukoglu@sophia.inria.fr).

O. Clatz, H. Delingette and N. Ayache are with the INRIA, Asclepios Research Project, Sophia-Antipolis, France.
B.H. Menze is with the Surgical Planning Laboratory, Harvard Medical School, Boston, MA.
M.-A. Weber and B. Stieltjes are with the German Cancer Research Center (DKFZ), Heidelberg, Germany.
E. Mandonnet is with Hôpital Lariboisère and INSERM U678, Paris, France.



2

is the general building block of such reaction-diffusion models, where u is the tumor cell density, D is a local diffusion tensor

(i.e. symmetric positive definite 3x3 matrix), ρ is the proliferation rate, Ω is the brain domain and ∂Ω represents the boundaries

of the brain. Equation 1 describes the temporal evolution of the tumor cell density distribution while Equation 2 represents the

no-flux boundary conditions.

A. Previous Works on Reaction-Diffusion Type Models

Tracqui et al. proposed one of the first reaction-diffusion models integrating information coming from medical images [15],

namely the geometry of the brain and the size of the tumor. In their model, the tumor cells were assumed to diffuse isotropically

with a constant rate in the brain and two reaction terms were included to take into account the proliferation and the cell death.

They applied their methodology to 2D slices of CT images. A different simulation was run for each slice. In [16], Cruywagen et

al. built on this idea and proposed to use two populations of tumor cells. Swanson et al. in [18] included the differential motility

of tumor cells in reaction-diffusion models based on the observations of Giese et al. in [22] showing that tumor cells migrate

faster on myeling sheaths. This new model formulated the higher motility of tumor cells in the white matter than in the grey

matter, using the tissue segmentation coming from anatomical images [18]. They used a spatially varying isotropic diffusion

tensor, which took two different values: one in grey and a much higher one in the white matter. Extending this idea of

differential motility, Clatz et al. in [12] and later Jbabdi et al. in [13] have included fiber directions (anisotropy) to introduce

the directional preference in the diffusion mechanism of tumor cells. In both studies the models rely on anatomical Magnetic

Resonance Images (MRIs) and Diffusion Tensor (DT) MRIs to take into account the geometry and the fiber directions. Clatz et

al. also have coupled their diffusive model with a linear elastic mechanical model of the brain to be able to describe the mass

effect of the tumor. Recently Hogea et al. have extended the anisotropic model and integrated the observation that proliferating

tumor cells push each other. This observation is formulated by an extra advection term added to the base equation given in

Equation 1 [23]. In order to explain the mass effect of the tumor they also coupled their diffusive model with a mechanical

one using nonlinear elasticity. Besides the research on improving the models themselves, several other works showed potential

clinical applications of these models by applying them for different purposes. In [24], [25] the authors applied tumor growth

models to register anatomical atlases of healthy subjects onto patient images bearing tumors. In some other works [26],

[27] growth models have been used to create synthetic images bearing tumors which are then used to evaluate segmentation

algorithms.

The reaction-diffusion models provide a general framework allowing the integration of information coming from medical

images. Once such an integration is achieved the next step is to adapt the model to specific patients data, in other words to

personalize the model. This can be done via estimating the parameters of the general model which best simulates the evolution

of the tumor observed in the time series of images. The difficulty in this estimation is due to the sparsity of the available

information. The reaction-diffusion models describe the temporal evolution of tumor cell density distributions while, in the

images we only observe the evolution of the boundaries of the visible part of the tumor. Therefore, the reaction-diffusion

models are not directly applicable in this adaptation. The tumor boundary is assumed to correspond to an “iso-density” contour

of the tumor cell density distribution [3], as shown in Figure 1. In this article we use the terms “tumor boundaries”, “tumor

delineation” and “tumor front” interchangeably to describe the boundary of the visible part of the tumor in the medical images.

(a) (b)

Fig. 1. MR Flair images of a grade II astrocytoma: (a) image at the first examination (b) image at the second examination. In the anatomical MR images
we observe the evolution of the boundary of the visible part of the tumor rather than the tumor cell densities.
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B. Previous Works on Parameter Estimation

The task of estimating parameters from time series of images in the context of tumor growth models is a rather unexplored

problem. A first attempt was made by Tracqui et al. in [15] where they optimized the parameters of their model by comparing

the area of the tumor observed in CT images at different times and the area of the simulated tumor. The drawback of this

approach was to use tumor cell densities which requires an initialization of tumor cell density distribution throughout the brain.

Since this is not observable in the images assumptions about the tumor cell density distribution has to be made. Moreover,

tissue inhomogeneities and observed directional preference of tumor infiltration is not included. In [28], Hogea et al. propose

a PDE based method where they invert their model equations and solve a constrained PDE optimization problem to estimate

the parameters. Their work takes into account both the growth model for the glioma and its mass effect on the brain tissue.

They propose two ways to optimize for the parameters: using tumor cell distributions and using observed deformation based on

landmarks. However, there are certain drawbacks of their method. First of all, their first method uses the knowledge of tumor

cell density distribution in the brain. As we have mentioned above this information is not available in medical images. The

authors mention a probabilistic method to estimate the density distribution while the details of this method may remain open.

Moreover, considering that images mask the low density values, estimating the tumor cell distribution is another open problem.

Their second method on the other hand links the observed deformation to the tumor growth parameters. This depends strongly

on the assumed coupling between mechanical and diffusion models. The uniqueness of the solution for this method is not

addressed. Secondly, although they propose the method for 3D they only provide detailed experiments in 1D without including

real images, brain geometry, tissue inhomogeneities or other available anatomical information such as fiber directions.

Recently Swanson et al. in [29] proposed a parameter estimation method for the diffusion process in petri-dish. This method

is consistent with the observables in the images as it uses the boundaries of the visible tumor rather than tumor cell densities.

Authors have derived analytical approximations for the evolution of the tumor delineation for 2D circular growth. Using

these solutions they estimated the diffusion coefficient for the petri-dish experiments. The difficulty in applying this method

to medical images is that the analytical solutions derived (hence the method itself) assumes radial symmetric growth. This

does not have to be the case for brain tumors. The evolution of the tumor is affected by the brain geometry, different tissues

and the fiber structures. Besides this, the existence of a reaction term results in a different evolution than pure diffusion.

Therefore, this method need to be modified to take into account the reaction term. In another work, Swanson et al., in [19]

address the parameter estimation problem from a different perspective. In this work they use the asymptotic properties of the

reaction-diffusion equations and link them to the information in the images for estimating the parameters. The advantage of

this approach, like the previously mentioned work, is that it also uses the tumor delineations visible in the images. However,

one of the drawbacks of this method is the mapping of the tumor delineations to spheres with the same volume and using

these spheres in the computations. Given tissue inhomogeneity, patient specific geometry of both the brain and the tumor

and the differential motility of tumor cells, this may be seen as a very strong assumption. As a result, tumors with different

parameters are mapped to the same sphere. The second drawback comes from the fact that authors assume tumor cell density

values for the extents of the enhancing regions in the MRIs. This is a reasonable assumption unless the values are used in

the estimation process. Unfortunately, exact values and their inter- and intra-patient variability are not known. Setting them

to arbitrary values introduces a bias on the estimated parameters. Authors also do not provide an analysis of their method.

In our preliminary work [30], we proposed a method to estimate the speed of growth of the tumor, also consistent with the

observations in the images. Taking into account the brain geometry, tissue inhomogeneity and fiber directions, the estimated

speeds in the white and in the gray matter were given in terms of the model parameters. In order to achieve this, starting from

the asymptotic properties of reaction-diffusion models we proposed to use a first order anisotropic Eikonal approximation

to describe the evolution of the tumor delineation (i.e. the visible tumor front in the images). Using this approximation we

formulated the parameter estimation problem. However, the Eikonal approximation proposed in this previous work was first

order and did not include higher order effects (i.e. the curvature of the tumor front and the time dependence of the evolution

speed) which influence the values of the parameters. Moreover, the formulation of the parameter estimation problem did not

utilize all the information available in the images (i.e. the size of the initial tumor). Finally, the method and the estimated

parameters for the given results were not analyzed, which is an essential part of the parameter estimation.

In this work, we propose and analyze a parameter estimation method for reaction-diffusion based tumor growth models

using time series of medical images. The method is based on the evolution of the tumor delineation rather than tumor cell

densities and in this respect it is consistent with the observations in the images. This evolution is formulated using a modified

anisotropic Eikonal model which formulates the motion of the tumor delineation taking into account its curved front and

the effect of time on its speed. Unlike the previous works, the method presented in this article takes into account tissue

inhomogeneities, fiber structures and the real geometry of both the patient’s brain and the tumor while keeping consistent with

the image information. We also provide extensive analysis of the method and in general the parameter estimation problem for

reaction-diffusion models in the context of glioma modeling. Finally, we show preliminary results of the parameter estimation

and the “personalization” of growth models on 2 real cases. In Section II, we explain our method, detail the anisotropic Eikonal

approximation we use for describing the temporal evolution of the tumor delineation and formulate the parameter estimation
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problem. In Section III, we evaluate the performance of our method in retrieving the parameters of the reaction-diffusion growth

models. We perform thorough analysis of the estimated parameters and the sensitivity to these parameters. In addition to this,

we apply our methodology to real images and show preliminary results. Finally, we conclude by discussing these results, the

method and the future work in Section IV.

II. METHOD

The parameter estimation methodology and the choice of the estimated parameters depend on the exact formulation of the

underlying reaction-diffusion model. In this work we focus on the formulation proposed in [12], [13]. However, due to the

similarities of reaction-diffusion models the ideas we present here can be easily adjusted to work for other formulations as

well. The model for tumor growth proposed in [12] is formulated by the system given in Equations 1 and 2. The diffusion

tensor D, in this model, is constructed based on the observations coming from petri-dish experiments and patient images.

Giese et al. in [22] showed that glioma cells move faster on the myelin sheaths, the structural element in the white matter.

In addition to this, observations from medical images show that tumor cells follow the fiber tracts. On the grey matter on the

other hand, tumor cells move slower and observations do not suggest a preferential diffusion direction. Diffusion information

coming from the DTI suggests mostly isotropic (close to isotropic) tensors in the grey matter. As a result, in the formulation

given in [12] D is constructed as an anisotropic tensor taking into account two different phenomena: differential motility of

tumor cells in different tissues and directional preference of tumor cell diffusion in the white matter. The construction of D,

which is obtained from the DT-MRI, is as follows:

D(x) =

{
dgI , x ∈ gray matter

dwDwater , x ∈ white matter
(3)

where tumor cells are assumed to diffuse isotropically in the grey matter with a rate dg and diffuse along the fiber tracts in the

white matter proportional to the diffusion tensor of the water molecules Dwater through a coefficient dw. In this construction

Dwater is obtained from DT-MRI and normalized such that the highest diffusion rate in the brain would be 1. We note that

in [12] the authors also couple the evolution of the tumor with its mass effect on the brain but in the present study, as a first

step, we focus only on the reaction-diffusion part ignoring the mechanical effect. Once the problem for the growing tumor is

solved and understood then the parameter estimation can also take into account the mechanical model.

The reaction-diffusion model given by Equations 1, 2 and 3 describes the temporal evolution of local tumor cell densities.

As we have noted before, this creates an inconsistency with the observables in the images making the direct application of

these models unsuitable for the parameter estimation problem, see Figure 1. In order to solve the parameter estimation problem

we need a formulation consistent with the images. The evolution of the tumor delineation should be the phenomenon that is

mathematically described instead of the evolution of the tumor cell densities. In section II-A we detail the construction of a

formulation, which captures the same dynamics as the reaction-diffusion model but focuses only on the tumor delineation.

Once such a formulation is available then one can optimize the parameters using different error measures and optimization

schemes. In section II-B we detail our choice for the error measure and the optimization scheme.

A. An Eikonal Approximation for Reaction-Diffusion Models

The asymptotic properties of the reaction-diffusion equations under certain conditions allow us to construct a traveling time

formulation for the tumor delineation. In our previous works we have proposed to use such formulations in the context of

tumor growth models [30], [31]. Here we build on those ideas and improve our formulation.

Reaction-diffusion equations and their asymptotic properties have been well studied in the literature [32], [33]. These

properties have been used for different applications [21], [34]–[36]. The most important result for our purposes is the existence

of a traveling wave solution in the infinite cylinder and in the case of constant coefficients (spatially and temporally constant

diffusion tensor D and ρ). Moreover, any initial condition with compact support converges to this solution in time. The traveling

wave solution of Equation 1 has the form u(x, t) = u(x − vt) = u(ξ), where ξ is the moving frame and v is the asymptotic

speed of this frame, the wavefront. When this solution is plugged into the reaction-diffusion equation we obtain the ordinary

differential equation

n
′Dn

d2u

dξ2
+ v

du

dξ
+ ρu(1 − u) = 0, (4)

where n is the direction of motion in the infinite cylinder and the equation describes the traveling wave solution. This is a

constant coefficient nonlinear equation and in order to have admissable solutions, the asymptotic speed v should depend on

the diffusion tensor D and ρ [21]. This speed is given by the simple relationship: v = 2
√

ρn′Dn. Such a property states that

all iso-density contours of u at large times under certain conditions will move with a speed of v. Although this information is

very useful it is not complete because the convergence of the observed speed to v is slow, in O(1/t). Following the studies of

Ebert et al. we can include the effect of this slow convergence and have a time varying estimate of the speed of the moving

frame v(t) =
√

n
′Dn(2

√
ρ−3/(2t

√
ρ)) [33]. As the speed of the moving frame converges to v, the profile of u also converges

which implies that until convergence different iso-density contours will move at different speeds. The time varying speed v(t)
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is the estimate for the origin of the moving frame set at u = 0.5 iso-density contour, and different iso-density contours have

slightly different convergence properties. However, the effect of the value of the iso-density contour on v(t) is shown to be

O(1/t2) and therefore we ignore it [33].

The difference between the observed speed of the moving frame, the asymptotic speed and time varying estimate is shown

in Figure 2(a). In Figure 2(b) we show the integrals of these speeds starting from the same initial condition to demonstrate

the effect of the convergence on the location of the moving frame (which corresponds to the tumor delineation in the context

of our work). At this point we can readily formulate a preliminary traveling time formulation for the tumor delineation using
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Fig. 2. The reaction-diffusion equation in infinite cylinder admits a traveling wave solution resulting in a tumor front moving at constant speed. (a) The
traveling wave has an asymptotic speed shown in dashed curve however, when we observe the speed of the iso-density contour u = 0.5 in time we notice
the low rate of convergence to this speed (see the solid curve). An approximation of the speed of the iso-density contour including the convergence effect
yields a closer curve to the the observed on (see point-dashed curve). (b) Starting from the same point the integrals of the speed curves, the distances to the
initial point, are shown. Notice that we get a much better approximation when we add the convergence effect. All axis are in non-dimensional coordinates.

v(t) as

√
∇T ′D∇T =

2
√

ρT

4ρT − 3
(5)

T (x) = T0 ∀x ∈ Γ (6)

where T (x) is the function representing the time when the tumor delineation passes through the point x, Equation 6 represents

the Dirichlet type boundary condition stating the initial tumor delineation we start evolving from Γ and T0 is the time elapsed

since the tumor has started diffusing until the acquisition of the first image, see Appendix A for details. We observe that if we

do not consider the convergence effect and use the asymptotic speed v then the T dependence of the right hand side in the

Equation 5 is removed and we could easily replace T0 by any value we like in Equation 6. The value of T0 is not available

in the images but it can be regarded as another model parameter to be estimated for.

The formulation given in Equations 5 and 6 is valid in the infinite cylinder where the evolution is in one direction (in this

case the traveling wave is a plane). We can apply this formulation to more general cases (non-planar cases) in 3D by a local

linearization assuming that within a voxel the tumor front is planar and the coefficients are constant [31]. Then by starting

from the initial tumor delineation and sweeping the domain outwards we construct the solution where fronts at each voxel

would be patched together linearly. However, such a generalization does not take into account the effect of curvature. In [35]

Keener et al. demonstrate a way to take into account the effect of curvature (where they do not take into account the effect of

convergence) for slightly curved surfaces in the case of isotropic diffusion. Following the same principles we can derive the

general formulation for anisotropic diffusion including the effect of convergence (see Appendix B). This adds a new term in

Equation 5 and we obtain

{4ρT − 3

2
√

ρT
−∇ · D∇T√

∇T ′D∇T
}
√
∇T ′D∇T = 1 (7)

where the term ∇ · (D∇T/
√
∇T ′D∇T ) is the effect of the curvature. In the derivation of this term it is assumed that the

surface is slightly curved which requires the effect of curvature to be of a lower order than the term 2
√

ρ (see Appendix B).

In order to satisfy this we use a saturation function on this effect whose derivative is 1 near 0 and saturates at ±15% of 2
√

ρ.

Adding this to our Equation 7 we obtain the final traveling time formulation which describes the evolution of the tumor front

based on the reaction-diffusion formalism:

{4ρT − 3

2
√

ρT
− 0.3

√
ρ(1 − e−|κeff |/(0.3

√
ρ))}

√
∇T ′D∇T = 1 (8)

κeff = ∇ · D∇T√
∇T ′D∇T

(9)
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T (x) = T0 ∀x ∈ Γ (10)

where we have chosen to use the exponential form for the saturation function but any other choice would work as well. We

chose the value of saturation 15% by comparing the analytical solution of the reaction-diffusion equation with the traveling

time formulation given in Equation 8 for the spherically symmetric growth case [37]. This radial analysis showed that saturation

values between 5-20% provided the best fit between these two formulations with not much difference in this range. At this

point we also notice that the left hand side of Equation 8 can become negative, especially for low values of T . This is due to

the fact that the approximations for the time convergence and curvature effects get worse for lower T values [33] and small

tumor sizes [35]. In order to overcome this approximation error, in our scheme we do not let the left hand side become less

than

{4ρT − 3

2
√

ρT
− 0.3

√
ρ(1 − e−|κeff |/(0.3

√
ρ))} ≥ {0.1

√
ρ}, (11)

which serves as the minimum threshold for the speed of the tumor. As a result of this constraint we are sure to have a growing

tumor delineation at all times, consistent with the general reaction-diffusion formulation [12], [13], [18]. Equations 8, 9 and 10

combined with the constraint given by Inequality 11, define the formulation describing the evolution of the tumor delineation

in 3D, the traveling time formulation. This formulation is based on the hypothesis that the tumor delineation corresponds to an

iso-density contour of the tumor cell density u (the value is not specified) whose evolution is defined by the reaction-diffusion

model given in Equations 1 and 2.

The traveling time formulation is a second order partial differential equation (a static Hamilton-Jacobi equation) and numerical

solvers for such equations have been well studied in the literature [38]–[42]. In this work we have chosen to adapt the method

we proposed in [31] due to its fast computation time and its generality on different geometries. This algorithm starts from

the initial delineation and sweeps the domain outwards to compute the traveling time values. We provide the further details

of this algorithm in Appendix C. We also note that other methods can also be used to solve the traveling time formulation

numerically.

The Eikonal model explained above describes the evolution of the tumor delineation visible in the images and captures

the same growth dynamics as the reaction-diffusion models. In Figure 3 we show an example evolution simulated using the

Eikonal approximation to show that it captures the same growth dynamics as the reaction-diffusion model given in Equation 1.

In the figure, for a synthetic tumor we compare the evolution of the iso-density contour u = 0.4 (value consistent with the one

proposed in [15] as the imaging threshold) obtained using the reaction-diffusion model (white contours), which uses the tumor

cell density throughout the brain, and the evolution obtained using the traveling time formulation (black contours) starting from

the innermost white contour (initial location of the u = 0.4 contour). The Euclidean distance between these two evolutions

can be given by the distance between their corresponding contours. The average distance between the black and the white

contours for the case given in Figure 3 is 0.78 ± 0.69 mm. Considering the usual resolution of such images (1x1x2.6 mm3)

we see how similar these two evolutions are. This similarity demonstrates that in the case of medical images where we cannot

directly apply the reaction-diffusion models, the traveling time formulation given by Equations 8, 9 and 10 provides us an

alternative formulation based on the same dynamics and which can be directly applied to images.

B. The Parameter Estimation Problem

In the reaction-diffusion model given by Equations 1, 2 and 3 we have three different parameters, dw, dg and ρ. In addition

to these, in the previous section, by integrating the convergence characteristics of traveling wave solutions into the traveling

time formulation we added another parameter T0. This gives us 4 parameters to estimate for: (dw,dg,ρ,T0). In this work we

optimize these parameters such that the evolution we formulate using the traveling time formulation best fits the real evolution

observed in the images, which are taken at different times for the same patient.

In order to formulate the parameter estimation problem we need to define an error measure. In a series of N images taken

from the same patient at times t0, t1..., tN−1, we have N snapshots of the tumor delineation, one in every image. We do not

pose any constraints on the delineations as they could be extracted using any algorithm automatic, semi-automatic or simply

by manual delineation. (We only use the end results of this process therefore, we do not go into detail of the segmentation

here but refer the interested reader to some recent articles on the subject [43].) For a given parameter set, starting from the

first time image we can simulate the evolution of the tumor delineation and compare it with the real evolution observed in

these N images. We note that the value of t0 is not known and regarding the time instances we only know the time differences

between acquisitions ∆t0 = 0, ∆t1, ...,∆tN . Combining these we can define

C1(dw, dg, ρ, T0) =

N−1∑

1

dist(Γi, Γ̂i) (12)

Γ̂i = {x|T(dw,dg,ρ,T0)(x) = T0 + ∆ti} (13)

with T (x) = T0 ∀x ∈ Γ0
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(a) (b)

Fig. 3. Comparison between the reaction-diffusion model and the Eikonal Approximation: The temporal evolution of the iso-density contour is demonstrated
for a synthetic tumor. Contours are shown for days 400, 600, 800, 1000 and 1200 from the innermost to outermost respectively. The synthetic tumor is virtually
grown using the reaction-diffusion model. White contours are obtained by thresholding the tumor cell densities at u = 0.4 for the respective day values (400-
600-800-1000-1200). Then in order to simulate the evolution of the iso-density contour (assumed to correspond to tumor delineation in real images) starting
from day=400, without the knowledge of the tumor cell density distribution we use the traveling time formulation. Black curves are the contours we obtain at
days 600 (2nd innermost) to 1200 (outermost). The average Euclidean distance between the black and the white contours is 0.78± 0.69 mm. We notice that
the traveling time formulation is quite accurate in describing the evolution of the tumor delineation in the case of synthetic tumors. The tumors were grown
in the images of a healthy subject for whom we also have the DT-MRIs. Parameters: (dw = 0.25 mm2/day,dg = 0.01 mm2/day,ρ = 0.012 day−1)

where Γi is the surface enclosing the visible tumor in the image taken at ti and Γ̂i is the tumor delineation simulated by the

traveling time formulation at ti and dist() is the symmetric distance between two surfaces normalized by the surface area. For

two given surfaces ΓA and ΓB we define this distance as

̺ (ΓA, ΓB) =
1

♯ΓA

∑

∀x∈ΓA

||x − y(x)||2, y(x) = argy∈ΓB
min ||x − y||2 (14)

dist (ΓA, ΓB) =
1

2
[̺(ΓA, ΓB) + ̺(ΓB, ΓA)], (15)

where ||x − y|| is the Euclidean distance between two points in 3D and ♯ΓA represents the number of points in ΓA. In the

formulation given in Equation 12 we notice that T0 is the estimate of t0. The estimation of t0 places the time instances, for

which we only know the successive differences, on the convergence curve (like the example given in Figure 2).

One information we have not used completely in C1 is the size of the tumor delineation in the first image Γ0. In our

experiments we observed that in order to correctly map the time instances on the convergence curve (finding the right T0 based

on the convergence curve given in Figure 2) we need to include this size. The inquiry we make is whether it would have

been possible to obtain the delineation Γ0 at the time T0 using the traveling time formulation if we had started simulating

the evolution the moment the tumor started diffusing, namely at T = 0. The assumption we make here is that the tumor

started diffusing from a set of isolated small regions. These small regions actually correspond to the avascular masses that start

diffusing and speed up with vascularization. In order to include this in our error measure we run the traveling time formulation

backwards in time. The simulation starts from Γ0 and sweeps the domain within the delineation. We do this by solving the

Equation 8 within the visible tumor in the first image. This backward evolution provides us a minimum value of T , Tmin

and the corresponding starting point (or a set of points) xmin. We notice that if the parameter set dw, dg, ρ, T0 is consistent

with the size of Γ0 then Tmin = T0. Therefore, the error we need is a function of |Tmin − T0|. In order to have a measure

consistent with C1 we need to convert this time difference into a spatial distance. For this we use the minimum allowable

speed value (see Section II-A) vmin = 0.1
√

ρn′
maxD(xmin)nmax at the point xmin, where nmax is the principal eigenvector

of D(xmin) providing the highest diffusion rate and the factor 0.1 comes from the minimum threshold for the speed of the

tumor explained in Section II-A. Using vmin we obtain

C2(dw, dg, ρ, T0) = (vmin(Tmin)|Tmin − T0|)2 (16)

C = C1 + C2 (17)

Combining C1 and C2 we obtain the error criteria C we wish to minimize with respect to the model parameters.

The minimization of C is a multidimensional optimization problem and it can be handled using different methods. One

important criterion affecting the choice of the minimization algorithm is that explicit derivatives of C with respect to different

parameters are not easily available. Another point is that although the parameters have biologically relevant bounds (such as
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dw, dg, ρ, T0 > 0) these constraints are not restrictive. Based on these observations we have chosen to use the unconstrained

minimization algorithm proposed by Powell in [44]. The attractive feature of this algorithm is that it does not require derivatives

of the objective function. Instead, this function’s local quadratic approximations are used in the minimization. The algorithm

starts by computing several instances of the objective function, constructs the quadratic approximation using these instances

and updates the approximation as the minimization proceeds.

The computation time of the proposed parameter estimation method depends on the size of the tumor and more specifically

on how much it has grown. The biggest computational load is running the traveling time formulation several times within the

optimization algorithm. Depending on the size of the tumor each run can take up to 2 minutes on a 2.4 GHz Intel Pentium

machine with 1Gb of RAM. Consequently, the overall optimization takes on the average 40 to 60 minutes which is a short time

range, considering the complexity of the problem. This efficiency is obtained due to the advantage of modeling the evolution

of the tumor delineation rather than the cell densities.

III. RESULTS

In the evaluation phase of the parameter estimation method, we test the capabilities of the method for retrieving the real

parameters of the tumor growth. We first perform tests with synthetic tumors for which the parameters are known and then we

apply the method to real cases and show preliminary results. For the tests with synthetic tumors, we construct a dataset of 180

tumors using the reaction-diffusion model composed of 60 different parameter sets at 3 different locations in the brain. The

different parameter sets of the model were constructed using different combinations of dw, dg and ρ values given in the table

(in the columns to the right of the parameter name) below motivated by the typical values used in the literature [3], [12], [13].

dw [mm2/day] 0.025 0.05 0.1 0.25 0.5

dg [mm2/day] 0.005 0.01 0.025

ρ [1/day] 0.009 0.012 0.018 0.024

As can be seen from the values for each parameter the final parameter sets cover a large range of growth speed and anisotropy.

Each tumor was initialized in a single voxel and grown in the MR image of a healthy subject with a resolution of 1x1x2.6

mm. The diffusion tensor D was constructed using the DT-MRI of the same subject. In order to create the synthetic images

of these tumors, we assumed a simple imaging process where a voxel is visualized as tumoral if the number of tumor cells

exceeds 40% of the maximum tumor cell capacity the brain parenchyma can handle [15]. For each tumor, the detection and

the first image acquisition is made at the moment when the visible tumor size reaches a maximum diameter of 1.5 cm.

A. Problem of Non-Uniqueness

In the first set of experiments we tried to estimate all the parameters of the reaction-diffusion model (dw, dg, ρ) and the

first image acquisition time T0 (the time elapsed between the emergence of the tumor and its detection) using the traveling

time formulation. In these experiments we observed the non-uniqueness of the solution to this problem caused by the coupling

between proliferation and diffusion rates and the sparsity of the information contained in the images. The reaction-diffusion

model combined with the imaging process can result in very similar evolutions of the tumor delineation with very different

parameters. In Figure 4 we show the evolutions of two different tumors (green and red) for which the diffusion and proliferation

parameters are given in the accompanying table. The contours with the same color are the delineations of the same tumor

in different images taken at successive time instances. The inner contour is the delineation in the first image and the other

contours as we go outwards are from the images taken at 200, 300 and 400 days after the time of the first image acquisition

respectively. We observe that although the parameters are different the evolutions are almost the same. Quantitatively, the

difference between these two evolutions measured by the error criterion C (see Equation 17) is 0.644 mm2. On the other

hand, the closest tumor delineation evolutions we can get to these ones using the traveling time formulation with the optimum

parameters have errors of C = 1.28 mm2 for the red and C = 1.29 mm2 for the green tumor. This shows us that with

the current resolution of medical images we cannot distinguish between these two parameter sets if we observe either of the

evolutions. Therefore, we leave aside the question of estimating separately the diffusion and the proliferation rate.

One observation on the values of the parameters is that between the two cases in Figure 4 the products 2
√

ρdw and 2
√

ρdg

remain almost the same, around 0.1 mm/day and 0.03 mm/day respectively. We have seen in Section II-A that the asymptotic

speed of the traveling wave solutions of reaction-diffusion models is given by 2
√

ρn′Dn. Therefore, the example shown in the

Figure 4 suggests us that the similar volume evolution of these two tumors can be captured and quantified by the asymptotic

speed of the model in the white and the grey matter which are both given as functions of the model parameters.

B. Fixing ρ and the 3 Parameter Case

Since estimating all the parameters of the reaction-diffusion equation yielded a non-unique solution (under the given

constraints) we turn our attention to the case where we can fix a parameter. The proliferation rate ρ is a microscopic parameter

and its coupling with the diffusion rate creates the non-uniqueness of the solution. Here we assume that the value of ρ can

be estimated using biopsy results and microscopic analysis. More specifically, we rely on the works showing that the mitotic
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Red Green

dw 0.273 0.153

dg 0.024 0.014

ρ 0.012 0.0185

Fig. 4. In the image we show the evolution of two different synthetic tumors virtually grown using the reaction-diffusion model with different parameters.
The contours of the same color are the tumor delineations for the same tumor in 4 different images taken at 4 successive time instances (first image, 200, 300
and 400 days after the first image). The reaction-diffusion model parameters for these tumors are given in the table. We observe that although the diffusion and
proliferation rates of these tumors are different the evolutions are almost the same. The difference between these evolutions measured using C is 0.644mm2

which is lower than the minimum error we find by estimating the parameters using the traveling time formulation (C = 1.28 for red and C = 1.29 for
green). This shows that we cannot distinguish between these two parameter sets if we observe either of the evolutions. We also observe that the products dwρ
and dgρ are very close for the two tumors. This tells us that although distinguishing between dw, dg and ρ is not obvious estimating the product of these
values can be possible.

index (MI) can be computed through the labeling index (LI) and can be linked to the proliferation rate ρ by assuming an

average cell cycle duration for the patient [45], [46]. We continue our analysis under this assumption. In the first analysis we

assume that we know the real value of ρ and fix it in the parameter estimation, once it is fixed the problem becomes uniquely

solvable. In this case we are left with three parameters to estimate (dw, dg) and T0.

For each of the synthetic tumors previously described we create a dataset of 3 images, the first image taken at the time of

detection and two other images taken at 200 and 400 days after the detection. Using these images and the time difference

between acquisitions we estimate the diffusion parameters and T0. We show and discuss the obtained estimates based on two

different analyses. The first one is the proximity of the estimated parameters to the real ones and the sensitivity which tells us

if we are able to distinguish between two different tumors with close parameters. The second analysis focuses on the shape of

the minimization surface around the estimated point. The parameter estimation method, as explained in the previous section,

minimizes the objective function C. The shape of this function around its minimum shows us the feasibility of the minimization

process.

1) Analyses of the Estimated Parameters: In Figures 5(a) we show the estimated diffusion parameters along with the real

ones. In order to demonstrate the results, we project the high dimensional parameter space onto the 2D (dw, dg). The larger

markers in the plot represent the real parameters used to grow the synthetic tumors and the smaller ones represent the estimated

parameters retrieved from the images. Each small marker with a specific shape and color is the estimate for the larger marker

with the same shape and color. Although there is only one estimate for each parameter set dw, dg, ρ there are multiple small

markers for each large marker due to projecting onto lower dimensional space. In other words, different small markers of the

same shape and color are the estimated parameters of the tumors with different ρ but same dw and dg .

Analyzing Figure 5 we observe that the parameter estimation method is able to retrieve the value of dw with good accuracy.

Moreover, the method is able to distinguish between different tumors with close diffusion coefficients. The estimation of dg

on the other hand seems to be less accurate. We notice the consistent positive bias in the estimate of dg which increases with

increasing dw. We believe there are two reasons for this. The first one is the difference between numerical schemes we use

to solve the reaction-diffusion PDE and the traveling time formulation. The numerical scheme for the PDE [47] uses linear

interpolation of the diffusion tensors between voxels creating higher diffusion within the grey matter neighboring white matter.

The traveling time formulation, which uses the diffusion tensors on the voxels, accounts for this by increasing dg therefore

estimating a higher dg . As a result as the value of dw increases the bias on dg increases. The second reason is computing

the curvature effect term in Equation 9 using the images, where the contour enclosing the tumor delineation has sharp corners

(due to discretization) which causes high curvature. Since the high curvature slows down the evolution, the traveling time

formulation accounts for this by increasing the diffusion coefficient. This second reason is especially observed for the tumors

where dw is low. Even in the presence of this bias we notice that for slowly diffusing tumors the dg estimates are very close

to the real values and the method is able to distinguish between different tumors with close diffusion coefficients. For highly

diffusing tumors the dg estimates are rather unreliable however the order of the ratio between dw and dg is well captured.
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Fig. 5. The results of the parameter estimation from time series of images for the synthetic tumor experiments. The synthetic tumors are grown with the
reaction-diffusion model with known parameters and synthetic images were created from these tumors. The parameter estimation method was applied to these
images to retrieve the parameters of the model. The plot (a) shows the real diffusion rates dw and dg (the large markers) and the estimated diffusion rates
(the small markers). Small markers of a specific shape and color are the estimates of the larger marker with the same shape and the same color. Figure(b)
plots the estimated initial time estimate T0 (the time elapsed between the emergence of the tumor and the detection) vs. its real value. y = x line is also
drawn for better comparison.

Regarding the estimation of T0, in Figure 5(b) we plot the estimated value of T0 in the y-axis versus its real value in the

x-axis where the y = x line is also drawn. Observing this plot we notice that the estimates for T0 remains within the 10-15%

margin of the real value, which shows that the proposed method is able to retrieve T0.

2) Analyses of the Minimization Surface: Regarding the shape of the minimization surface on the global scale, in our

experiments we observed that this surface remains convex for all the tumors. However, the exact shape of the surface and its

slope in different directions around the minimum point varied. We know that the estimated parameters provide us the best fit

to the evolution of the tumor delineation observed in a set of images, let us say with an error of C∗. The question we want

to answer is how much this evolution varies from the optimum when we slightly move away from the “best” parameter set.

In order to answer this question, for an estimated parameter set (d∗w , d∗g, T
∗
0 ) that gives the minimum error of C∗ we find the

other parameter sets which give an error smaller than C∗+ǫ. In other words, parameter sets which provides an evolution of the

tumor delineation which is ǫ away from the best fit in the average. In our high dimensional parameter space these parameter

sets are enclosed in an ellipsoid around the estimated point which we name ǫ-ellipsoid (see Appendix D for details on how we

construct the ǫ-ellipsoids). In Figures 6(a,b) we show the projections of some of these ǫ-ellipsoids on the respective parameter

spaces where the round dots are the actual parameters, the crosses are the estimated parameters and ellipses around each cross

are the projections of the ǫ-ellipsoids. In this study we have chosen to set ǫ = 0.2 mm2.

(a) (b)

Fig. 6. Figures plot the projections of some of the ǫ-ellipsoids on the respective parameter spaces. The round dots are the real parameters of the reaction-
diffusion model, the crosses are the estimated parameters and ellipses are the projections of the ǫ-ellipsoids for each cross. For a given cross, the cross represents
the minimum of the respective minimization surface with an error of C∗ and all the points inside the ellipse surrounding that cross are the parameters who
has error less than C∗ + 0.2 mm2. In other words ellipses enclose all the parameters producing very similar evolutions of the tumor delineation as the cross
in the center.

Observing Figure 6(a) we notice that the major axis of the ellipses remain parallel to dg axis however, this is due to the
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difference of scale between dw axis and the dg axis. When placed on the same scale these ellipses are rather circular. The

second thing we notice is that the ellipses grow with increasing dw. This is a consequence of using normalized distances

between surfaces in our error measure, see Equation 12. As dw increases the tumor diffuses faster in the white matter and its

size increases. As a result the boundaries of the visible tumor reaches the extent of the white matter and most of the surface

enclosing the tumor delineation in the image remains in the grey matter (as grey matter diffusion is much lower the tumor

stops in the white-grey matter boundary) or reaches the boundaries of the brain. Therefore changing dw does not affect these

portions of the surface and its contribution to the error measure decreases resulting in the larger ellipses we observe. This shows

us that for more diffusive tumors a larger set of parameters yields similar errors therefore minimization surface is flatter. In

Figure 6(b) we observe the coupling between dw and T0. One can obtain a similar evolution by increasing dw and decreasing

T0 (and vice-versa). The reason for this can be explained by the effect of convergence given in Equation 5, see Figure 2. We

see that when T0 is lower the speed of the tumor delineation is slower but if we increase the value of the diffusion we would

obtain a similar evolution. The shape of the convergence curve in Figure 2 allows us to distinguish between these different

cases and therefore find a minimum. In Equation 5 we also notice that if T0 is very high then a small change in T0 does

not affect the speed of the tumor delineation and this is the reason why we observe ellipsoids with major-axis parallel to the

T0 axis at high T0 values. One can think of the extreme case where T0 is very large and the effect of convergence becomes

negligible. In this case we would expect its value not to change anything however, including the size of the tumor in the first

image using the error term C2 (Equation 16) helps us distinguish between very high T0 values.

One important conclusion we can reach from the sensitivity analysis presented in this section is the dependence of the

estimated parameters on the uncertainty on the extracted tumor delineations. The tumor delineation either done by the expert

manually or done using a segmentation algorithm has a variability. Kaus et al. in [48] studied this variation for manual

delineations and found out that in the case of low-grade gliomas the intra-expert variability is around 2% and the inter-expert

variability is around 10% by volume comparison (they compared the volume of the tumor delineated by different experts and

by the same expert multiple times). These variability values were greater than the automatic algorithms [48]. The ǫ = 0.2 mm2

value we used in this section corresponds to the inter-expert variation for manual delineation, 10% of volume variation for a

tumor of 2.0 cm in diameter, see Appendix E for details. In other words, the ǫ-ellipsoids drawn in Figures 6(a) and (b) also

demonstrates the influence of the inter-expert variability in the tumor delineations on the estimated parameters.

C. Varying the fixed ρ and Speed of Growth

In all the above experiments we have fixed the value of ρ to its real value. Naturally the diffusion rate estimates depend

on this value of ρ. By fixing ρ we actually determine the location of the dw and dg estimates. In order to understand the

effect of the value of ρ on the estimation of diffusion rates and the coupling between ρ and D, we have performed a slightly

different experiment. Instead of fixing ρ to its real value we have set it to a different value and then estimated the other

parameters dw, dg and T0. For the ease of demonstration we only show the estimation results for the synthetic tumors with

ρ = 0.012/day. The experiment we performed is the same as the one explained in the previous section however, this time in
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Fig. 7. In the figures we plot v(w,g) = 2

q

d(w,g)ρ values estimated by fixing ρ = 0.015 versus ρ = 0.012. We also plot the y = x line for a better

comparison. We know that the estimated dw and dg values depend on where we fix the ρ. However, observing these figures we note that no matter what
value we fix ρ to, the product of ρ and the estimated diffusion coefficient d(w,g) remains constant. Therefore the asymptotic speed of growth of the tumor
in the white matter and in the grey matter can be estimated uniquely regardless of the choice of ρ.
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the estimation method we set ρ = 0.015/day. As expected the estimated diffusion rates are lower than the values estimated

by setting ρ = 0.012/day. The interesting point however, was not the change in the values but the coupling between D and

ρ. In Figure 7(a) we plot vw = 2
√

dwρ computed with ρ = 0.015 and the dw value estimated by fixing ρ to this value versus

v computed using ρ = 0.012 and the dw estimated with this ρ. Figure 7(b) is the same plot for dg values. We observe from

these graphs that the estimated diffusion rates change when we change the fixed ρ however, the product of the proliferation and

the diffusion rates remain constant. The value vw,g = 2
√

d(w,g)ρ is the asymptotic speed of tumor growth and the proposed

method is able to retrieve this speed uniquely from time series of images for all the 180 synthetic cases used in this analysis.

Here we would like to draw the attention to one important conclusion that can be reached with the observations and the

experiments presented so far. In Figure 4 and in the accompanying table we have demonstrated that two tumors showing very

similar volume changes in time had very similar asymptotic speeds in the white and in the grey matter (2
√

ρdw,g). In this

section, we have shown that using the parameter estimation method we can uniquely identify this product for all the tumors

presented in this study. These two suggests that the evolution of the tumor delineation - for the synthetic tumors grown by

reaction-diffusion models - can be uniquely matched by the proposed parameter estimation method and reproduced by the

traveling time formulation. In Figure 8 we demonstrate this for a synthetic tumor. We first estimate the diffusion rates of the

synthetic tumor whose evolution is shown in Figure 8(a). The estimation process is done once by setting ρ = 0.012/day
and another time by setting ρ = 0.015/day. We have used three images in the estimation each 200 days apart. The resulting

diffusion parameters are given in the table accompanying the images and the resulting optimum evolutions are shown in

Figure 8(b) in red and green contours respectively. Following this, we start from the last image of the tumor used in the

estimation and predict the further evolution of the tumor using the estimated parameters and the traveling time formulation.

We do this once using the parameters estimated by setting ρ = 0.012 and once for those estimated by setting ρ = 0.015. We

compare the prediction results with the actual evolution of the synthetic tumor in Figures 8(c) and (d) respectively. We observe

that the predictions obtained by using different ρ values are almost identical and they show very high resemblance with the

actual evolution of the tumor.

After analyzing the presented methodology with synthetic cases we apply the method to a few real cases in the next section.

D. Case Studies with Patient Data

The evaluation of parameter estimation for tumor growth models using real patient images is not easy because we do not

have access to the real values of the parameters. The real values could be found using microscopic in-vivo analysis however,

up to the best of our knowledge such a study has not been performed yet. In this work we perform an indirect evaluation for

the proposed parameter estimation method using patient images. For a given patient dataset, we estimate the parameters using

all but the image taken at the last time point. Then using the estimated parameters we simulate the evolution of the tumor

delineation starting from the image taken just before the last one for the same number of days as the time difference between

the last image and the one before it. We then compare the evolution predicted using the estimated parameters and the traveling

time formulation with the one observed in the last image. The correlation between the prediction and the observed delineation

provides us with a qualitative evaluation of the estimated parameters. The strong assumption we do here is that the values of

the parameters remain constant between the images. Considering therapy and other effects on the tumor this assumption is not

very realistic. However, we consider the estimated parameters as the average parameters over time including all the effects and

carry on with the analysis.

As a preliminary step in this work we use two patient datasets which include anatomical and diffusion tensor MR images.

The dataset for the first patient, who suffers from a high grade glioma (Glioblastoma Multiforme), includes T1-post gadolinium

MR images (with the resolution of 0.5x0.5x6.5 mm3) at three successive different time points and diffusion tensor MR image

(with the resolution of 2.5x2.5x2.5 mm3) taken at the second time point. The second patient suffers from a low grade glioma

(second grade astrocytoma) and the dataset for this patient includes T2 flair MR images (with the resolution of 0.5x0.5x6.5

mm3) at 5 successive time points and the DT-MRI image (with the resolution of 2.5x2.5x2.5 mm3) taken at the first time

point. For both cases the tumor boundaries were manually delineated by an expert in each image separately. We note that

although manual delineations were used, in terms of the method and the analysis any segmentation algorithm can replace the

manual delineation. As explained in the previous paragraph we estimate the parameters of the tumor growth model using all the

images but the last one. The DT-MRI images of the patients are used to construct the diffusion tensor D of the tumor growth

model. In constructing the diffusion tensor D for tumor cells we adapt the proposed models in [12] and [13]. As our focus in

this article is the parameter estimation method we do not introduce a new diffusion tensor construction and we use the existing

ones. Clatz et al. have proposed the tensor construction as given in Equation 3 for the high grade gliomas, following this we

use this type of construction for our high grade case. On the other hand, Jbabdi et al. proposed to use another construction

for the low grade gliomas given as

D(x) =

{
dgI
V (x) [diag(αe1(x)dw , dg, dg)] V (x)T , (18)

where V (x) is the eigenvector matrix obtained by decomposing the water diffusion tensor Dwater, e1(x) is the principal

eigenvalue of the same tensor and α here is a normalization factor such that highest e1 value in the brain becomes 1. The
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(a) (b)

(c) (d)

Real Diffusion Rates Rates Estimated ρ = 0.012/day Rates Estimated ρ = 0.015/day
dw 0.25 mm2/day 0.27 mm2/day 0.19 mm2/day
dg 0.010 mm2/day 0.024 mm2/day 0.014 mm2/day

Fig. 8. The proposed parameter estimation methodology can uniquely estimate the asymptotic speeds of the tumor in the white and in the grey matter as a
function of the parameters of the model. Figures show prediction experiments on synthetic tumors showing that combined with the traveling time formulation
the estimated parameters capture the growth of the tumor regardless of the value the ρ is fixed to. (a) Evolution of the synthetic tumor shown in 3 white
contours representing the delineation at the time of detection, 200 days and 400 days after the detection. (b) Optimum evolutions obtained by estimating
the diffusion rates by setting ρ = 0.012/day in red and ρ = 0.015/day in green. The estimated parameters are given in the table. (c) Starting from the
final image used in estimation (outermost white contour in (a)), further evolution is predicted using the parameters estimated when ρ was set to 0.012.
The predicted evolution shown in red while the actual evolution shown in white. (d) Same image is shown for the prediction obtained using the parameters
estimated when ρ was set to 0.015. Prediction shown in green contours. Observe that regardless of the fixed ρ value the traveling time formulation and the
estimated parameters capture the growth of the tumor and able to simulate its evolution.

difference between this construction and the one given in Equation 3 is that in this one tumor cells are assumed to diffuse

much faster along the fiber and they diffuse very slowly in the transverse direction. In the construction the diffusion rate in

the grey matter is used also for this transverse diffusion rate. As a result of such a construction the evolution obtained is much

more anisotropic and creates more “spiky” tumors. Following the model assumptions made by the authors in [13] we use

this type of construction for the low grade case. The images used to estimate parameters, the estimated parameters and the

predicted evolution of the tumor delineations along with the real delineations are given in Figures 9 and 10. In the images in

both Figures, first we show the anatomical images at the time of detection and the intermediate images used in the parameter

estimation. On the intermediate images we also plot the manual delineations for the underlying image (white contour) and the

simulated evolution of the tumor delineation with the estimated parameters (dark contour) obtained in the course of estimation.

Following this we start from the last image (in time) used in the parameter estimation and predict the evolution of the tumor

delineation until the acquisition of the final image (which was not used in the estimation). In the corresponding images we

show the anatomical MR image taken at the last time point showing the final state of the tumor along the tumor delineation

predicted using the estimated parameters drawn as the dark contour. In the accompanying tables we provide the values of the

estimated parameters.

In the images of the first patient in Figure 9 (a,b,c) the tumor showed evolution in two different regions. In the first region

seen on the upper left corner of the images the tumor has a much larger volume, contains a necrotic core and exerts a visible

mass effect. The second region on the other hand is a newly emerging lesion with no observable mass effect. This part is

believed to be a diffused branch of the larger region however, no connection was visible in the images most probably due to

slice spacing. We apply our analysis to the newly emerging part because it does not exert a mass effect and it is ideal for our

analysis. Following the discussions given in Section III-A we fix the value of ρ to be able to estimate the diffusion parameters.
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(a) (b) (c)

First Image Second image Final image

21 days after the first 67 days after the first

ρ(set) dw dg

0.05 1/day 0.66 mm2/day 0.0013 mm2/day

Fig. 9. The parameter estimation method is applied to the images of a real patient suffering from high grade glioma. Images in columns (a) and (b) shows
different slices of the T1-post gadolinium images which are used to estimate the parameters of the growth model given in the table. In (b) we also show the
manual delineation of the tumor (in white) used in parameter estimation along with the optimum simulation obtained by the estimated parameters (in black)
(only white contour is shown in (a) since it is the same as the black one). (c) The final image showing the final state of the tumor and the evolution of the
delineation predicted by the estimated parameters as the black contour.

The proliferation rate was set at ρ = 0.05/day around the suggested value in the literature [3]. We observe in the image (c)

that the prediction of the tumor delineation is in very good agreement with the final state of the tumor. This shows us that

although we can provide the speed of growth only, the parameters combined with the growth model are in good agreement

with the evolution of the tumor. Moreover, for the high grade tumor we estimated the speed of growth along the white matter

as vw = 0.31 mm/day and in the grey matter as vg = 0.02 mm/day which are in good agreement with the literature [3],

[12], [13].

In the case of the low grade tumor shown in Figure 10, the correlation between the predicted tumor delineation and the final

state of the tumor is in line with our previous arguments. We observe that the slow evolution of the tumor is well captured by

the estimated parameters. For the proliferation rate we pick a lower value than the one in the previous case since it is a lower

grade tumor. It was set to ρ = 0.008/day. Through the estimated diffusion rates we find the speed of growth along the white

matter as vw = 0.08 mm/day and in the grey matter as vg = 0.004 mm/day.

Comparing the speed values estimated for the high grade and the low grade glioma we observe the expected difference.

However, we would like to note that this difference is affected by the difference in the tensor construction method. In our

experiments we have observed that when the diffusion rates for the same patient are estimated using the tensor construction

given in Equation 18, the resulting values are higher. This is consistent with the fact that the tensors constructed with this

method have lower diffusion in the transversal direction of the fibers. As a result a higher diffusion rate is needed to explain

the same amount of growth. If we would like to compare the speed values for these two tumors we should keep this effect

in mind. Therefore, the difference between speed of growth of these tumors are higher than the difference given between the

above mentioned values.
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(a) (b) (c) (d) (e)

First Image Second image Third Image Fourth Image Final image

39 days after the first
121 days after the

first

210 days after the

first

390 days after the

first

ρ(set) dw dg

0.008 1/day 0.20 mm2/day 7x10−4 mm2/day

Fig. 10. As a second case we applied our methodology to the images of a patient suffering from a low grade tumor. Images (a)-(d) show different slices of
the T2 flair images and the manual delineations (in white) which are used to estimate the parameters of the growth model given in the table. Also in these
images we show the simulated evolution of the tumor delineation obtained by the estimated parameters in black contours. The simulated evolution starts from
the white contour in the Image (a). Images (e) are the slices of the final image showing the final state of the tumor and the delineation predicted by the
estimated parameters as the black contour.

IV. CONCLUSIONS

In this work we proposed and analyzed a parameter estimation method for the reaction-diffusion tumor growth models

in the context of brain gliomas. The proposed methodology uses the evolution of the tumor, visible in the series of patient

images, for estimating the parameters of the growth model. Using the patient images, the real 3D geometry of the brain and

the tumor, tissue inhomogeneities and different diffusion properties are taken into account by the method. Moreover, unlike

the previous methods that use the tumor cell density distribution, which is not available in the images, the proposed method

formulates the evolution of the tumor delineation based on the reaction-diffusion dynamics. Such a formulation provides us a

consistent framework in which the observables are the same as the model outputs and this removes the need of assuming a

tumor cell density distribution in the images. To the best of our knowledge, this article constitutes the first work focusing on

the automatic parameter estimation problem for reaction-diffusion tumor growth models using series of medical images and

the real geometry of the patient.
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In order to understand the theoretical properties of the underlying parameter estimation problem and the proposed method we

performed thorough analysis using synthetic tumors for which the growth model parameters are known. The reaction-diffusion

model that we have focused on has 3 different parameters: the diffusion rate in the grey matter dg , the diffusion rate in the

white matter dw and the proliferation rate of tumor cells ρ. In our analysis we have shown that these parameters are coupled

and therefore there is not a unique solution constrained by the observations made on medical images. However, we have also

shown that once the proliferation rate ρ is fixed, then we were able to uniquely estimate the diffusion rates in the grey matter

dg and in the white matter dw for all the 180 synthetic tumors presented in this work. Moreover, in this case we could also

estimate the time elapsed between the emergence of the tumor and its detection, T0. In fixing ρ we assumed that its value

can be found through microscopic analysis of biopsy results [45], [46]. We have also shown that the value of ρ determines

the estimates of the other parameters. Investigating the coupling between diffusion and the proliferation rate we have shown

that no matter what ρ value we fix, the product of the estimated diffusion rates with ρ remains constant for the same tumor.

This product represents the speed of growth of the tumor in terms of the model parameters. We have shown that for each

tumor used in this work we were able to uniquely estimate this product in the white matter and in the grey matter separately.

Moreover, we have also shown that the estimated diffusion rates and the fixed proliferation rate were able to capture the growth

dynamics of the tumor and simulate its evolution regardless of the value ρ was fixed to. This demonstrated that the proposed

methodology is successful in creating the “patient-specific” model and perform personalized simulations.

We also applied our method to two real cases, one high grade glioma and one low grade. In the light of the synthetic analysis,

we have set the proliferation rates ρ for these tumors to average values and estimated the diffusion rates. Using the estimated

parameters and the traveling time formulation we have shown promising preliminary results in personalizing reaction-diffusion

models. The prediction studies provided us an indirect validation for the estimated parameters and the formulation. Moreover,

these results demonstrated that although the complete parameter estimation problem has a non-unique solution, by fixing ρ
and estimating the diffusion rates we are able to personalize the growth model and use it to simulate the tumor growth and

predict the further evolution. Therefore, the proposed methodology showed itself to be a successful attempt for adapting the

tumor growth models to patient images and creating “patient-specific” models. The strongest assumption we made during the

analysis of the real cases was that the parameters of the growth model do not change in time and they do not vary in space.

This may not be realistic for the exact values of the parameters considering the existence of different types of therapies and

the random nature of the tumor progression, which exists both in time and in space. However, we have regarded the estimated

parameters as the average values over time and space including all the different effects, which is a clinically logical step [49].

On the other hand, independent parameter estimation and analysis could be done between each set of two successive images

as well. Such an analysis combined with the time course of the therapy could give us hints on the effect of the therapy on

different parameters and on the growth speed of the tumor.

The method proposed in this article is a first attempt to solve the parameter estimation problem and there are different

improvements that should be integrated in the future studies. As a first step, we ignored the mass effect of the tumor. In most

glioma cases the mass effect is apparent, smaller in the low grade gliomas and larger for the higher grades. For a complete

modeling, the mass effect should be taken into account in the parameter estimation methodology. The second point is the

effect of the tumor growth on the fiber structure. The white matter is disturbed due to the tumor invasion and this should be

included to have a more complete methodology [2]. The third point for further improvement is the therapy response and the

shrinkage of the tumor. In this work we focused on the reaction-diffusion growth models which only formulate the growth

of the tumor. Therefore, the shrinkage due to therapy or any other process is not taken into account in our methodology.

Fortunately, the proposed traveling time formulation and the parameter estimation methodology can be used in the case of

shrinkage after certain modifications (embedding the Eikonal formulation in a level-set framework). However, the parameter

estimation problem should be redefined to decouple the therapy response and natural growth of the tumor. In the further studies

the effect of the therapy and the possible shrinkage of the tumor should be taken into account. One other point that can be

included in the methodology is the multi-phase modeling. Multi-phase models describe and formulate the interactions between

different phases such as different tumor populations and tumor-brain interface. We can think of generalizing the proposed

method to include multi-phases through coupling several Eikonal models. Such an approach would enable us to easily explain

multi-foci gliomas and also model the response of the brain tissue to tumor growth. As a last point for improvement, we aimed

not to use any assumptions on the tumor cell density in our method however, as more information becomes available on the

cell density distribution, it can also be integrated into the proposed methodology.

In this work our aim was to propose the parameter estimation method and analyse it theoretically. We also applied the

method to a few real cases demonstrating the applicability of the method and showed promising results. Eventually a more

thorough analysis of the estimated parameters and the estimation methodology should be performed using a big dataset of

patient images. Such a study will let us better understand the clinical signficance of the estimated parameters and the constructed

patient-specific models. In the follow-up of this work we plan to focus on this direction. There are several problems that should

be overcome for this purpose. The first problem is the lack of diffusion tensor imaging for the patients. As we have seen the

DTI is very important in the modeling and in the estimation of the parameters therefore, it is crucial to have this information.

The advances in the registration methods can be helpful to solve this problem as they would give us the opportunity to create

and register DT-MRI atlases on the patient images. The second problem is regarding the surgery applied in glioma cases. The
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surgery changes the structure of the brain as well as the properties of the tumor. In order to overcome this problem, we need

to adjust the traveling time formulation such that it can describe the evolution of the tumor delineation between pre-op and

post-op images.

The method proposed in this article adapts the reaction-diffusion model to specific patient images. There are two clinically

relevant outputs of this adaptation: the estimated parameters and the “patient-specific” growth model. The estimated parameters,

specifically the speed of growth and the measure of differential motility, can serve as quantification measures for tumor growth

and help the diagnosis process. Through population studies and group analysis, correspondence between different parameter

ranges and different WHO grades of gliomas can be found [49]. This analysis may provide us with information about variation

within tumor grades and could allow to identify the transition from low grade glioma - which is not treated but only monitored

- to a high grade tumor - requiring immediate treatment - more accurately. A quantitative analysis of the tumor evolution

during therapy, i.e. an accurate, localized estimation of tumor growth or shrinkage, may allow to estimate the efficacy of a

chosen treatment option much quicker than with current qualitative approaches. Determining the changes in growth parameters

due to the treatment may finally provide the means to understand the tumor response to therapy – specific for the individual

patient [50]. The patient-specific tumor growth model, in other words the generic model with the patient-specific parameters,

gives us the opportunity to simulate the specific evolution of a patients tumor. The expected anisotropic growth suggested by

the patient-specific model may guide biopsies or at least more targeted imaging methods (such as MRSI) for more accurate

estimations of the tumor extensions. Eventually, as the generic models become more realistic patient-specific models can be

used to better plan the therapy process [51] and predict possible outcomes.

APPENDIX A

THE TRAVELING TIME FORMULATION

The equation of the approximation for the speed of the tumor front including the effect of time convergence is given as

v(t) =
√

n
′Dn(2

√
ρ − 3/(2t

√
ρ)). (19)

This equation is valid when the front of the tumor is not curved and the parameters are constant. In more general case, as

in the case of the brain, the front is curved and the parameters vary. In order to formulate the motion of the tumor front we

make a voxel based assumption. We assume that within the voxel the tumor front is planar and the parameters of the model

(D and ρ) are constant and the values of them are taken as the values at that voxel. Under this assumption Equation 19 can

be converted into a traveling time formulation for the tumor front using the same idea as explained in [52]. Using the relation

|∇T | = 1/v(t) =

[
2
√

ρntDn− 3

2T

√
n

tDn

ρ

]−1

(20)

where T is an implicit time function such that it embeds the location of the tumor delineation at different times as iso-time

surfaces. Remembering that the n can be written as ∇T/|∇T | (because T is an implicit function) we can write the traveling

time formulation as
√
∇T ′D∇T =

2
√

ρT

4ρT − 3
. (21)

This equation alone only gives the relation of successive iso-time surfaces of T . In order to build the solution we need a

Dirichlet type boundary conditions, namely an initial surface for which we know the T value. In the context of the tumor

growth modeling this surface is given as the surface enclosing the tumor delineation in the image. Using the image we can

write the necessary Dirichlet condition as

T (x) = T0 ∀x ∈ Γ (22)

where T0 is the initial time we start from and Γ is the surface found in the image.

APPENDIX B

DERIVATION OF THE EFFECT OF THE CURVATURE FOR ANISOTROPIC DIFFUSION TENSORS

This derivation follows the derivation given in [35] and modifies it for the anisotropic tensor case. The reaction-diffusion

model has the general form:

ut = ∇ · (D∇u) + ρu(1 − u). (23)

We apply a coordinate change by parameterizing the moving frame of the u function as

x = X(ξ, τ), t = τ. (24)
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We assume that this parameterization is a diffeomorphism. By chain rule the partial derivatives using the new coordinates can

be written as

∂

∂ξi
=

∂Xj

∂ξi

∂

∂xj
(25)

∂

∂τ
=

∂

∂t
+

∂Xj

∂τ

∂

∂xj
(26)

where the indices are summed (this is the case throughout this appendix). Likewise the partial derivatives with respect to the

Euclidean coordinates can be written in terms of the new coordinate system.

∂

∂xi
= αij

∂

∂ξj
(27)

∂

∂t
=

∂

∂τ
− αjk

∂Xj

∂t

∂

∂ξk
(28)

represents are the partial derivatives in terms of the new coordinate system. αij is the ijth component of the inverse of the

Jacobian matrix with respect to the parameterization X . We identify ξ1 as the normal direction to the iso-surfaces of u at

every point. We also define the tangent and the normal vectors of the parameterization as

ri =
∂Xj

∂ξi
(29)

ni = rj × rk, j, k 6= i. (30)

Using this we can define the [α] matrix using these vectors:

αij =
(nj)i

rjnj
. (31)

For the ease of derivation, through the choice of the parameterization we let r1 · r2 = 0 and r1 · r3 = 0 (r1 ‖ n1) and set r1

as the normal vector to the iso-surface of the u function. The derivative terms in the reaction-diffusion equation become

ut =
∂u

∂τ
− αjk

∂Xj

∂τ

∂u

∂ξk
(32)

∇ · (D∇u) = αkpαijdki
∂2u

∂ξp∂ξj
(33)

+
∂

∂xk
(dkiαij)

∂u

∂ξj
.

Then the whole equation can be written as

αkpαijdki
∂2u

∂ξp∂ξj
+

∂

∂xk
(dkiαij)

∂u

∂ξj
(34)

−(
∂u

∂τ
− αjk

∂Xj

∂τ

∂u

∂ξk
) + ρu(1 − u) = 0.

At this moment we use the two big assumptions made in [35]. The first of these assumptions say that the spatial variation of

ξ1 is much smaller than the ξ2 and ξ3. This actually says that the normal to the front changes faster than the tangent space of

the parameterization. Therefore, the effect of curvature is in a lower order than the speed of the moving frame. Remembering

that the [α] is the inverse Jacobian matrix of the parameterization X this assumption lets us say that αj1 = O(1) while

αjk = O(ǫ). The second big assumption is that to the leading order in ǫ, u is independent of τ . In the planar evolution this

assumption readily holds since the solution of the reaction-diffusion equation is a traveling wave therefore, does not depend

on time. However, for the curved evolution this does not have hold. This assumption on the dependence on τ lets us treat the

curved evolution as if it admits a traveling wave. Using the singular perturbation method we can gather the first order terms

and 34 reduces to

αk1dk1αi1
∂2u

∂ξ2
1

+
∂

∂xk
(dkiαi1)

∂u

∂ξ1
(35)

αj1
∂Xj

∂τ

∂u

∂ξ1
+ ρu(1 − u) = O(ǫ).

Gathering the terms and recognizing the matrix multiplications this equation can be rewritten in the compact form

α′Dα
∂2u

∂ξ2
+ (∇ · (Dα) + α · ∂X

∂τ
)
∂u

∂ξ1
+ ρu(1 − u) = O(ǫ). (36)
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Now in order to have a traveling wave solution this ODE should have the same form as the one in Equation 4. This means

that we need the coefficients of this equation to be constants. However, this will not be possible for every iso-contour of the

function u. The curvature will have different effects for different iso-surfaces. Hence, we require it only for the origin of the

moving frame (u = 0.5 iso-contour in the case of logistic growth). Using this information and the restriction we obtain

α′Dα = ρ (37)

∇ · (Dα) + α · ∂X

∂t
= 2ρ. (38)

At this point we remember that α ‖ n1 which is normal to the iso-surface of u. We define a level set function S such that

the zero-level set of S will correspond to the origin of our moving frame therefore, ∇S/|∇S| = n. We can then write α as

α = −K∇S where K is just a coefficient to be determined. From Equation 37 we find K as

K =

√
ρ

∇S′D∇S
. (39)

On the other hand, the Equation 38 gives us

−∇ · (DK∇S) − K∇S · Xt = ρc0. (40)

In order to replace Xt we need one more relation which comes from the fact that the value of function S on the origin of the

moving frame doesn’t change by construction. Therefore,

∂

∂t
S(x, t)|on the moving frame origin = 0 (41)

∇S · Xt + St = 0. (42)

Placing this in Equation 40 we obtain

∇ · (DK∇S) + KSt = ρc0 (43)

∇ · (D∇S ·
√

ρ

∇S′D∇S
) +

√
ρ

∇S′D∇S
St = ρc0. (44)

Now transforming the dynamic Hamilton-Jacobi equation given above into a static one by inverting the embedding method

explained in [38] we obtain the anisotropic Eikonal equation with the curvature term

∇ · ((D∇T )

√
ρ

∇T ′D∇T
) +

√
ρ

∇T ′D∇T
= ρc0. (45)

Relocating terms and letting c0 = 2 we get our formulation:

[2
√

ρ −∇ · ( D∇T√
∇T ′D∇T

)]
√
∇T ′D∇T = 1. (46)

This equation uses the asymptotic speed v given in Section II-A. We can also replace v by v(t) and obtain the whole equation

{4ρT − 3

2
√

ρT
−∇ · D∇T√

∇T ′D∇T
}
√
∇T ′D∇T = 1 (47)

APPENDIX C

NUMERICAL METHOD FOR THE ANISOTROPIC EIKONAL EQUATION WITH CURVATURE EFFECT

The static Hamilton Jacobi equation given in Equation 5 is a first order equation and has the form of an anisotropic Eikonal

equation:

F (x)
√
∇T ′D∇T = 1, (48)

where the additional F (x) is a spatially varying speed function. In [31] we have proposed a numerical method to solve this

kind of equation. The proposed method is based on the Fast Marching methods [52] and modifies it in order to take into

account the anisotropy in the equation. The original Fast Marching method numerically solves the isotropic Eikonal equation

(F (x)|∇T | = 1) by following the gradient direction of T as it constructs the solution. This, when applied to the Equation 48,

creates erroneous solutions because the characteristic direction should be followed when constructing the solution of this

anisotropic equation [41].

The numerical method proposed in [31] integrates a recursive correction scheme inside the original fast marching algorithm.

This correction scheme makes sure that as we solve the Equation 5 we follow the characteristic directions of the PDE [53].

The overall method starts from a given initial contour and sweeps the domain outwards finding the solution of the Equation 48

at each voxel. This equation has 2 different solutions at each voxel and in the case of Equation 5 we choose the value such

that as we move away from the delineation the T value increases (since the tumor delineation will pass from those points at a
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Fig. 11. The curve of convergence for the iterative scheme given by Equations 51-55. We visualize the difference
P

x∈Ω |Cn − F n
curv| as a function the

iteration number n. The curve is obtained for the example shown in Figure 3.

later time in the case where the tumor grows). The advantages of this numerical method are that it is a sweeping method and

it only uses the immediate neighbors of a point rather than using points far away [41] to compute the values. Therefore, it is a

fast and accurate method for solving anisotropic Eikonal equations. For the details of the algorithm please refer to [31]. Here,

regardless of the details of the algorithm, we continue our discussion based on the fact that we have a sweeping algorithm

which solves anisotropic Eikonal equations in a fast manner.

Using the sweeping method for solving the Equation 7 (and for the Equation 8) is not very obvious because it is not a first

order equation due to the divergence term. These equations can be solved with other iterative methods [38], [40] however, these

methods are not very fast. In order to benefit from the advantages of the sweeping method explained above, we separate the

curvature part from the equation and construct an iterative method that solves anisotropic Eikonal equations at each iterations

with different speed terms. The form we use for Equation 7 (it is the same construction for Equation 8) becomes

{4ρT − 3

2
√

ρT
−∇ · D∇T√

∇T ′D∇T
}
√
∇T ′D∇T = 1 (49)

{4ρT − 3

2
√

ρT
+ Fcurv}

√
∇T ′D∇T = 1. (50)

Viewing the convergence term as a speed term independent of T as Fcurv enables us to use the sweeping method and construct

the simple iterative method

F 0
curv = 0 (51)

{4ρT n−1 − 3

2
√

ρT n−1
+ Fn−1

curv}
√
∇T ′n−1D∇T n−1 = 1 (52)

Compute T n−1 (53)

Cn−1 = −∇ · D∇T n−1

√
∇T ′n−1D∇T n−1

(54)

Fn
curv = Fn−1

curv + α(Cn−1 − Fn−1
curv). (55)

where αn−1 < 1 is the parameter determining the rate of convergence which in our case is taken as α = 0.8. In Equation 55

we see that the Fn
curv is updated with a proportional gain using the error made in the previous iteration. In this respect this

scheme is similar to the feedback control loops. We iterate this algorithm until

∑

x∈Ω

|Cn − Fn
curv| < ǫ (56)

where we sum represents the summation over all points in the domain of computation and ǫ is a small value. Once this criteria

is satisfied we know that Fcurv is indeed the effect of the curvature. The rate of convergence depends on α however, in our

experiments we have observed that for a large range of α ∈ (0.2, 0.8) the rate is pretty rapid see Figure 11.
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D CONSTRUCTION OF ǫ-ELLIPSOIDS

The parameter estimation problem in this work is formulated as the optimization problem with the objective function C.

For a given set of images the method tries to find the parameters of the tumor growth model which would minimize the value

of the function C. ǫ-ellipsoids is a simple way to understand the shape and the steepness of the minimization surface around

the minimum point. The construction of the ǫ-ellipsoids is as follows. For a given parameter estimation problem let us say the

estimated parameters p∗ corresponds to an error value of C∗. As a consequence C∗ is the minimum of the objective function

C for this problem. We first construct the quadratic approximation of C around p∗

C = C∗ + g′(p − p∗) +
1

2
(p − p∗)′G(p − p∗), (57)

where g is the gradient vector and G is the Hessian at p∗. Since p∗ is the minimum we know that g = 0. Moreover since the

point p∗ is the minimum of C the G is a positive definite matrix. The construction of the quadratic approximation is done by

sampling the function C and fitting a quadratic function by least square minimization.

Once the quadratic approximation of C is obtained we define the ǫ-ellipsoid as follows

P = {p|C(p) = C∗ + ǫ}, (58)

where the set P is the ǫ-ellipsoid and p is an arbitrary parameter set. Since G is a positive definite matrix we are sure that P
is a closed surface and for all the points remaining inside P , C(p) < C∗ + ǫ.

Using the ǫ-ellipsoid we enclose a set of parameter sets for which each parameter set produces an evolution of the tumor

delineation that is ǫ close to the optimum evolution created by p∗. This means if the ǫ-ellipsoid is big for a problem then the

minimization surface is flatter therefore, it is harder to find the minimum point. Moreover, the directions of the semi-major

and semi-minor axis of the ellipsoid provides us the coupling between different parameters.

E RELATIONSHIP BETWEEN ǫ-ELLIPSOIDS AND UNCERTAINTY ON TUMOR DELINEATIONS

The method presented in this work estimates the parameters of the reaction-diffusion tumor growth models using the tumor

delineations extracted from the patient MR images. Although we do not focus on the segmentation algorithm in this work

(and we note once again that any segmentation algorithm could be used with the proposed method), we are interested in the

variability of tumor delineation extracted from the images. The tumor boundaries either extracted by an expert manually or by

a segmentation algorithm automatically contains a certain variability. This variability has been studied by Kaus et al. in [48].

In this work, they show that in the case of low-grade gliomas the highest variability was seen between the delineations done

by different experts. This inter-expert variability is shown to be around 10% by volume overlap for the dataset they used.

In Section III-B2 we presented the overall variation of the estimated parameters by showing the shape of the minimization

surface around the optimum parameters. In doing so we have shown the extend of the basin around the optimum parameters

using the ǫ-ellipsoids as explained in Appendix D. Here we show the relationship between the variability of input tumor

delineations and the ǫ-ellipsoids. We show that the variability of the estimated parameters due to the uncertainty on the tumor

delineations is given by the ǫ-ellipsoids. First we start by proving the following claim.

Claim 1. Let ΓR1 and ΓR2 be two delineations of the same tumor in the same image obtained using different methods (same

expert different time, different experts, different methods). Then the optimum parameters obtained using ΓR2 remains within

the 2δ2-ellipsoid around the optimum parameters obtained using ΓR1. And δ2 = max (̺ (ΓR2, ΓR1) , ̺ (ΓR1, ΓR2)), where ̺
is defined in Equation 14.

Proof: Let ΓS1 and ΓS2 be the simulated tumor delineations computed with the optimum parameteres obtained by using

ΓR1 and ΓR2 respectively. Without loss of generality we assume that ΓR1, ΓR2, ΓS1 and ΓS2 are represented by the point

sets {xn
1}, {xn

2}, {yn
1 } and {yn

2 } who have the same number of elements, M .

Let us also define the functions

yi(x
m
j ) = argy∈ΓSi

min ||xj − y||2, xm
j ∈ ΓRj

xi(x
m
j ) = argx∈ΓRi

min ||xj − x||2, xm
j ∈ ΓRj

Then the distance of ΓS2 to ΓR1 is given as
1

M

∑

i∈M

||xi
1 − y2(x

i
1)||2.

From this distance we can write

1

M

∑

i∈M

||xi
1 − y2(x

i
1)||2 ≤ 1

M

∑

i∈M

||xi
1 − y2(x

i
2)||2

≤ 1

M

∑

i∈M

||xi
2 − y2(x

i
2)||2 +

1

M

∑

i∈M

||xi
2 − x1(x

i
2)||2,
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where the first step comes from the definition of yi(xj) and the second step is an application of the triangle inequality. Using

the fact that ΓS2 is the optimum simulation obtained using ΓR2 and placing δ2

1

M

∑

i∈M

||xi
2 − y2(x

i
2)||2 + δ2 ≤ 1

M

∑

i∈M

||xi
2 − y1(x

i
2)||2 + δ2

≤ 1

M

∑

i∈M

||xi
2 − y1(x

i
1)||2 + δ2

≤ 1

M

∑

i∈M

||xi
1 − y1(x

i
1)||2 + 2δ2,

where the second step again is derived from the definition of yi(xj) and the third step is another application of the triangle

inequality. As a result we see that

1

M

∑

i∈M

||xi
1 − y2(x

i
1)||2 ≤ 1

M

∑

i∈M

||xi
1 − y1(x

i
1)||2 + 2δ2. (59)

By definition of the ǫ-ellipsoid given in Appendix D the Inequality 59 shows that ΓS2 is in the 2δ2-ellipsoid of ΓS1.

Claim 1 shows us that when we have δ2 variability on one of the tumor delineations used in the estimation of the reaction-

diffusion parameters using the proposed method then the effect of this variability on the estimated parameters is captured

within the 2δ2-ellipsoid as the ones given in Section III-B2.

The analysis given in [48] provides the inter-expert variability in terms of volume overlap. The 10% variability on volume

overlap corresponds to an average difference of 0.32 mm between delineations for a tumor with 2 cm diameter. Based on

the Claim 1 we can say that the effect of this variability is captured within the ǫ = 0.2 mm2-ellipsoid around the optimum

parameters as presented in Figures 6(a) and (b).
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